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Squarefree parts of polynomial values

par David KRUMM

Résumé. Étant donné un polynôme non constant séparable f(x)
à coefficients entiers, nous considérons l’ensemble S constitué des
parties sans facteurs carrés de toutes les valeurs rationnelles de
f(x), et étudions son comportement modulo un nombre premier.
Ayant fixé un nombre premier p, nous déterminons des conditions
nécessaires et suffisantes pour que S contienne un élément divisible
par p. Nous conjecturons que si p est suffisamment grand, alors S
contient une infinité de représentants de chaque classe résiduelle
non nulle modulo p. Nous prouvons cette conjecture quand f(x)
est de degré 1 ou 2. Si f(x) est de degré 3, ou s’il est de degré
4 avec une racine rationnelle, la preuve de la conjecture utilise la
conjecture de parité pour les courbes elliptiques. Pour les poly-
nômes de degré arbitraire, un analogue local de la conjecture est
prouvé en utilisant des résultats standard de la théorie des corps de
classe. Des résultats numériques sont aussi inclus qui confirment
la version globale de la conjecture.

Abstract. Given a separable nonconstant polynomial f(x) with
integer coefficients, we consider the set S consisting of the square-
free parts of all the rational values of f(x), and study its behavior
modulo primes. Fixing a prime p, we determine necessary and
sufficient conditions for S to contain an element divisible by p.
We conjecture that if p is large enough, then S contains infinitely
many representatives from every nonzero residue class modulo p.
The conjecture is proved by elementary means assuming f(x) has
degree 1 or 2. If f(x) has degree 3, or if it has degree 4 and has
a rational root, the conjecture is shown to follow from the parity
conjecture for elliptic curves. For polynomials of arbitrary degree,
a local analogue of the conjecture is proved using standard results
from class field theory, and empirical evidence is given to support
the global version of the conjecture.
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1. Introduction

The squarefree part of a nonzero rational number r, which we denote here
by S(r), is the unique squarefree integer d such that r/d is a square in Q.
To any separable polynomial f(x) ∈ Z[x] of positive degree we associate
the following set of squarefree integers:

S(f) = {S(f(r)) : r ∈ Q and f(r) 6= 0}.
An alternate definition of the set S(f) can be made in more geometric
terms. Let C be the hyperelliptic curve defined by the equation y2 = f(x),
and for any squarefree integer d, let Cd denote the quadratic twist of C by
d; i.e., the hyperelliptic curve defined by dy2 = f(x). It may be the case
that the curve Cd has rational points at infinity or affine rational points
(x, y) with f(x) = 0; we will refer to these as trivial rational points. With
this terminology,

S(f) = {squarefree d : Cd has a nontrivial rational point}.
For any prime number p we consider the problem of determining which
residue classes modulo p are represented in the set S(f). A simple criterion
for deciding whether S(f) contains a multiple of p can be readily obtained
— see Theorem 2.1. The case of nonzero residue classes is not nearly as
simple; in fact, most of this article is devoted to studying that case. Our
main goal is to provide evidence in support of the following:

Conjecture 1.1. For all but finitely many primes p, the set S(f) contains
infinitely many elements from every nonzero residue class modulo p.

The initial motivation for this work was an observation made in the pro-
cess of studying quadratic points on the modular curves Y1(N). Consider,
for example, the quadratic number fields K such that the curve Y1(18) has
a K-rational point1. As shown in [16, Thm. 2.6.5], if we let

f(x) = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1,
then every such field has the formK = Q(

√
d) for some d ∈ S(f). Moreover,

every number d ∈ S(f) satisfies d ≡ 1 (mod 8) and d ≡ 0 or 1 (mod 3).
In view of this result it becomes natural to ask, for any integer n, which
residue classes modulo n are represented in the set S(f). This question can
of course be asked not only for this particular polynomial f(x), but for any
polynomial. In this article we restrict attention to prime values of n and
to separable polynomials in order to simplify various arguments. Thus, we
arrive at the problem of determining which residue classes modulo a prime
p are represented in a set of the form S(f).

1Questions about quadratic points on this curve arise in connection to elliptic curves over
quadratic fields, and also to dynamical properties of quadratic polynomials over quadratic fields;
see [7, §3.11].
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Another instance in which this problem becomes of interest is a ques-
tion concerning congruent numbers. Recall that a positive integer is called
congruent if it is the area of a right triangle with rational sides. The set
of congruent numbers is closely related to the set S(f) for the polynomial
f(x) = x3 − x. Indeed, it is easy to see that a positive integer is congru-
ent if and only if its squarefree part is congruent, and furthermore, it is
well known that a positive squarefree integer d is congruent if and only
if d ∈ S(f); see [15, Chap. 1]. The Birch and Swinnerton-Dyer conjecture
would imply that S(f) contains every positive squarefree integer d ≡ 5, 6
or 7 (mod 8). This result has not been proved unconditionally, but par-
tial results have been achieved. Notably, Monsky [21] has shown that S(f)
contains infinitely many elements from each of the residue classes 5, 6,
7 modulo 8. Now, for any integer n one might ask which residue classes
modulo n contain a congruent number. With regards to this question, the
following is shown in §3.

Theorem 1.1. For every prime number p there exist infinitely many
congruent numbers divisible by p. Furthermore, assuming the Parity Con-
jecture, every residue class modulo p contains infinitely many congruent
numbers.

For polynomials of small degree we can give the best evidence supporting
our main conjecture. The next result summarizes our work in §3.

Theorem 1.2. Conjecture 1.1 holds unconditionally if f(x) has degree 1
or 2. If f(x) has degree 3, or if it has degree 4 and has a rational root, then
the conjecture follows from the Parity Conjecture.

For polynomials of higher degree we can only show that there is no local
obstruction to the conjecture. Letting C denote the hyperelliptic curve
y2 = f(x), the conjecture can be rephrased as follows: if p is a large enough
prime, then for every integer m coprime to p there exist infinitely many
squarefree integers d such that d ≡ m (mod p) and Cd has a nontrivial
rational point. Collecting the main results of §4 we obtain the following
local version of the conjecture.

Theorem 1.3. Suppose that f(x) has odd degree, or that it has even degree
and some irreducible divisor of f(x) has abelian Galois group. Then there is
an effectively computable constant N such that the following holds for every
prime p ≥ N : if m is any integer coprime to p, then there exist infinitely
many squarefree integers d ≡ m (mod p) such that the curve Cd has a
nontrivial point over every completion of Q.

Remark. We expect that the Galois group condition imposed when f(x)
has even degree is unnecessary, although our arguments do make essential
use of this assumption.
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As an improvement to Conjecture 1.1 it would be desirable to have a pre-
cise quantitative statement about how the elements of S(f) are distributed
among the residue class modulo p. Given a prime p and an integer m, we
consider the function

D(t) = #{d ∈ S(f) : |d| ≤ t and d ≡ m (mod p)},

and ask what the asymptotic behavior of D(t) is as t → ∞. A similar
question has been studied by other authors, but without restricting d to
any particular residue class: Stewart-Top [30, Thm. 2] show that

#{d ∈ S(f) : |d| ≤ t} � t1/(g+1)/(log t)2,

where g is the genus of the hyperelliptic curve y2 = f(x), and Granville [10,
Conj. 1.3] conjectures that if g ≥ 2, then there is a positive constant cf such
that

#{d ∈ S(f) : |d| ≤ t} ∼ cf · t1/(g+1).

Another useful function to consider is defined as follows. Recall that the
height of a rational number r = a/b expressed in lowest terms is the number
H(r) = max{|a|, |b|}. For any real number t ≥ 1, let

S(f, t) = {S(f(r)) : f(r) 6= 0 and H(r) ≤ t}.

With p and m as above, we then define

E(t) = #{d ∈ S(f, t) : d ≡ m (mod p)}

and ask how this function behaves as t → ∞. A related question was
answered by Poonen in [24, Thm. 3.5], though again disregarding residue
classes: under the assumption of the abc conjecture, if f(x) has degree ≥ 2,
then

#{S(f(1)), S(f(2)), . . . , S(f(t))} ∼ t.
If results analogous to those of Stewart-Top or Poonen could be obtained for
the functions D(t) or E(t), we would have a proof (perhaps conditional on
the abc conjecture) and a more precise version of Conjecture 1.1. However,
it is not clear whether the methods of these authors can be modified to
yield asymptotics for our counting functions.

This article is organized as follows. In §2 we give necessary and sufficient
conditions for the set S(f) to contain an element divisible by p. A discussion
of Conjecture 1.1 for polynomials of degrees 1-4 is given in §3. In §4 we
prove a local analogue of the conjecture for polynomials of arbitrary degree.
Finally, §5 contains empirical evidence supporting Conjecture 1.1.

Remark. Some of the material in this article appears in the author’s Ph.D.
thesis [16].
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2. The residue class of 0

Let f(x) ∈ Z[x] be a nonconstant separable polynomial. We show in
this section how to decide, for most primes p, whether the residue class
of 0 modulo p is represented in the set S(f). This particular residue class
is easier than others to deal with because there is a simple criterion to
decide whether p divides the squarefree part of a nonzero rational number r.
Indeed, we have p|S(r) if and only if ordp(r) is odd. Here, ordp denotes the
standard p-adic valuation.

It will be convenient from this point on to distinguish between two types
of primes. Throughout this article we say that an odd prime p is good
for f(x) if the reduced polynomial f̄(x) ∈ Fp[x] has the same degree as
f(x) and has nonzero discriminant. This condition on p implies that the
hyperelliptic curve y2 = f(x) has good reduction modulo p; see [19, p. 464,
Ex. 1.26].

Lemma 2.1. Let R(f) be the set of all primes q that are good for f(x) and
such that f(x) has a root modulo q. Then R(f) is an infinite set.

Proof. The Chebotarev Density Theorem implies that there are infinitely
many primes q such that f(x) has a root modulo q. (See [3, Thm. 2], for
instance.) The result now follows by noting that all but finitely many primes
are good for f(x). �

Lemma 2.2. For any finite subset T of R(f) there exists d ∈ S(f) such
that d is divisible by every prime in T .

Proof. Let t be the product of all the primes in T , and let

A = {n ∈ Z : f(n) 6= 0, t|f(n), and gcd(t, f ′(n)) = 1}.

We claim that A is nonempty. By definition of R(f), for every prime q ∈ T
there is an integer nq such that q|f(nq). Moreover, since q is good for f(x),
every root of f(x) modulo q must be a simple root; hence, q does not divide
f ′(nq). Let n be an integer satisfying n ≡ nq (mod q) for all q ∈ T , and
f(n) 6= 0. (The existence of n is guaranteed by the Chinese Remainder
Theorem.) For every q ∈ T we have

f(n) ≡ f(nq) ≡ 0 (mod q) and f ′(n) ≡ f ′(nq) 6≡ 0 (mod q).

Therefore n ∈ A, proving that A is nonempty. We partition A into subsets
B and C defined by

B = {n ∈ A : ordq(f(n)) ≡ 1 (mod 2) for all q ∈ T}

and C = A \ B. Note that if n ∈ B, then the number d = S(f(n)) is
divisible by every prime in T . Hence, the proof will be complete if we show
that B is nonempty. Since A is nonempty, at least one of B and C must
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be nonempty. Assuming C is nonempty, we will show that B must also be
nonempty, and this will conclude the proof.

Given n ∈ C, let W ⊆ T consist of all primes q ∈ T such that ordq(f(n))
is even. For every q ∈ W , write ordq(f(n)) = 2sq with sq ≥ 1. For every
prime q ∈ T \W , set ordq(f(n)) = rq, which is an odd positive integer.
Define v ∈ Z by the formula

v =
∏
q∈W

q2sq−1 ·
∏

q∈T\W
qrq+1.

Using a Taylor expansion we see that
f(n+ v) = f(n) + f ′(n) · v + z · v2

for some integer z. Now, for every q ∈W we have
ordq(f(n)) = 2sq and ordq(z · v2) ≥ 2ordq(v) = 4sq − 2 ≥ 2sq.

Moreover, by definition of A, q does not divide f ′(n), and so
ordq(f ′(n) · v) = ordq(v) = 2sq − 1 < 2sq.

Therefore, ordq(f(n + v)) = 2sq − 1 is odd. By a similar argument we see
that for primes q ∈ T \W , ordq(f(n+ v)) = rq is also odd. Thus, f(n+ v)
has odd and positive valuation at every prime in T . Finally, for every q ∈ T ,
f ′(n+ v) is congruent to f ′(n) modulo q, and is therefore not divisible by
q. We conclude that n+ v ∈ B, showing that B is nonempty. �

We record a consequence of the proof of Lemma 2.2 for use in a later
section.

Lemma 2.3. Let q be a good prime for f(x) such that f(x) has a root
modulo q. Then there exists an integer n such that ordq(f(n)) is odd and q
does not divide f ′(n).

Proof. Following the proof of Lemma 2.2 with T = {q}, this result is the
statement that the set B is nonempty. �

Proposition 2.1. With notation as in Lemma 2.2, there exist infinitely
many d ∈ S(f) such that d is divisible by every prime in T .

Proof. Let t be the product of all the primes in T , and fix any prime
q ∈ R(f) \ T . Applying Lemma 2.2 to the finite subset T ∪ {q} of R(f)
we see that there is an element dq ∈ S(f) that is divisible by qt. Since dq is
divisible by q, the map q 7→ dq is necessarily finite-to-one (as every element
of S(f) is only divisible by finitely many primes). By Lemma 2.1, the set
R(f) \ T is infinite, so its image in S(f) must also be infinite. Hence, there
are infinitely many elements of the form dq in S(f). By construction, every
number dq is divisible by t, and hence by every prime in T . �
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Theorem 2.1. Let p be a good prime for f(x).
(1) If f(x) has odd degree, then there are infinitely many d ∈ S(f) such

that p|d.
(2) Suppose f(x) has even degree.

(a) If there exists d ∈ S(f) such that p|d, then f(x) has a root
modulo p.

(b) Conversely, if f(x) has a root modulo p, then there are infin-
itely many d ∈ S(f) such that p|d.

Proof. Suppose first that f(x) has odd degree, and write f(x) =
∑2g+1
i=0 aix

i.
If g = 0, the result follows by noting that for any prime q 6= p the equation
f(r) = pq has a rational solution, so that pq ∈ S(f). As q varies over all
primes different from p, we obtain infinitely many elements of S(f) that
are divisible by p. Assume now that g ≥ 1. The argument in this case is
based on evaluating f(x) at values 1/pn for odd n. Let

F (x) = x2g+2 · f(1/x) = x(a2g+1 + a2gx+ · · ·+ a0x
2g+1).

Since p is good for f(x), p does not divide a2g+1. Hence, for every positive
integer n,

ordp(F (pn)) = n.

In particular, if n is odd, then ordp(F (pn)) is odd, so p divides the squarefree
part of F (pn). Letting d = S(F (pn)), we then have

p|d and d = S(f(1/pn)) ∈ S(f).
Thus, we have shown that the set D = {S(F (pn)) : n is odd} is contained
in S(f), and every number in D is divisible by p. We claim that D is
infinite, which will prove part (1) of the theorem. Note that if d ∈ D, say
d = S(F (pn)), then the Diophantine equation dy2 = F (x) has an integral
solution (with x = pn). Since g ≥ 1, Siegel’s theorem [11, Thm. D.9.1]
implies that this equation has only a finite number of integral solutions
(x, y). Hence, d can only be the squarefree part of F (pn) for finitely many
values of n. It follows that the set D is infinite, proving our claim.

To prove part (2), suppose that f(x) has even degree and write f(x) =∑2g+2
i=0 aix

i. Let F (x, y) ∈ Z[x, y] be defined by

F (x, y) = y2g+2 · f(x/y) = a2g+2x
2g+2 + a2g+1x

2g+1y + · · ·+ a0y
2g+2.

If S(f) contains an element divisible by p, then there is a rational number r
such that f(r) 6= 0 and the integer d = S(f(r)) is divisible by p. Writing
r = a/b with a and b coprime integers, we have

d = S(f(a/b)) = S(F (a, b)).
Hence, there is an integer s such that F (a, b) = ds2. We claim that p
cannot divide b. For suppose that p|b, and reduce the equation ds2 = F (a, b)
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modulo p; we obtain
a2g+2 · a2g+2 ≡ F (a, b) ≡ ds2 ≡ 0 (mod p).

However, this is impossible because p does not divide a2g+2 (as p is good
for f(x)), and p does not divide a (since p|b and a is coprime to b). This
proves the claim. The equation

b2g+2 · f(a/b) = ds2

therefore takes place in the local ring Z(p), so we may reduce the equation
modulo p to conclude that f̄(a/b) = 0, and hence f(x) has a root modulo
p. This proves part 2(a) of the theorem.

Conversely, suppose that f(x) has a root modulo p. Then p ∈ R(f), so
we may apply Proposition 2.1 to the set T = {p} ⊂ R(f), and thus obtain
that there are infinitely many d ∈ S(f) such that p|d. This proves 2(b). �

Remark. In [31, Lem. 2], Top shows that if f(x) ∈ Z[x] is a nonconstant
separable polynomial, then there are infinitely many primes p such that the
residue class of 0 modulo p is represented in the set S(f). In the case that
f(x) has odd degree, Theorem 2.1 provides a stronger statement. Indeed,
the theorem implies that for all but finitely many primes p, the class 0 mod p
is represented in S(f), and in fact is represented by infinitely many elements
of S(f).

Having given a simple criterion for deciding whether the residue class of
0 modulo p is represented in S(f), we will henceforth restrict attention to
nonzero classes.

3. The case of degrees 1-4

For every positive integer n we define a statement A(n) as follows.
Statement A(n). Let f(x) ∈ Z[x] be a separable polynomial of degree n,
and let p be a good prime for f(x). Then for every integer m coprime to p
there exist infinitely many elements d ∈ S(f) such that d ≡ m (mod p).

We show in this section that A(1) and A(2) hold unconditionally, and
that A(3) is implied by the Parity Conjecture for elliptic curves over Q.
Furthermore, still assuming the Parity Conjecture, we show that A(4) holds
for polynomials having a rational root. In order to obtain these results it
will be convenient to work with somewhat stronger statements I(n) and
P(n).
Statement I(n). Let h(x) ∈ Z[x] be a separable primitive2 polynomial
of degree n, and let p be a good prime for h(x). Then for every integer
m coprime to p there exist infinitely many primes q ∈ S(h) such that
q ≡ m (mod p).

2A polynomial is called primitive if the g.c.d. of its coefficients is equal to 1.



Squarefree parts of polynomial values 707

Lemma 3.1. For every positive integer n, I(n) implies A(n).

Proof. Assume that I(n) holds. Let f(x) be a separable polynomial of degree
n, let p be a good prime for f(x), and let m be any integer coprime to
p. We must show that there are infinitely many elements d ∈ S(f) such
that d ≡ m (mod p). By factoring out the greatest common divisor of the
coefficients of f(x), we may write f(x) = δs2 · h(x) with δ squarefree and
h(x) primitive of degree n. Note that since p is good for f(x), it is also good
for h(x). Applying Statement I(n) to h(x) we see that there exist infinitely
many primes q ∈ S(h) such that q ≡ δ−1m (mod p). Here, δ−1 denotes the
multiplicative inverse of δ modulo p. Fix any such prime q that does not
divide δ. The integer d = δq is then squarefree and congruent to m modulo
p. Since q ∈ S(h), there are rational numbers r and t such that h(r) = qt2

and h(r) 6= 0. Then

f(r) = δs2 · h(r) = δq(st)2 = d(st)2,

so d = S(f(r)) ∈ S(f). Since we have infinitely many choices for q,
this construction yields infinitely many numbers d ∈ S(f) such that d ≡
m (mod p). �

Statement P(n). Let h(x) ∈ Z[x] be a separable polynomial of degree n
with square leading coefficient, and let p be a good prime for h(x). Then for
every integer m coprime to p there exist infinitely many primes q ∈ S(h)
such that q ≡ m (mod p).

Lemma 3.2. For every positive integer n, P(n) implies A(n).

Proof. Assume that P(n) holds. Let f(x) be a separable polynomial of
degree n, let p be a good prime for f(x), and let m be any integer coprime
to p. We must show that there are infinitely many elements d ∈ S(f) such
that d ≡ m (mod p). Let δ be the squarefree part of the leading coefficient
of f(x), and define h(x) = δ · f(x). Note that p is good for h(x), and
that the leading coefficient of h(x) is a square. Applying statement P(n)
to h(x) we see that there exist infinitely many primes q ∈ S(h) such that
q ≡ δ−1m (mod p). (Note that δ has a multiplicative inverse modulo p
because p does not divide the leading coefficient of f(x).) Fix any such
prime q that does not divide δ. The integer d = δq is then squarefree and
congruent to m modulo p. Since q ∈ S(h), we can write qs2 = h(r) for some
rational numbers r, s with h(r) 6= 0. Then

d(s/δ)2 = δq(s/δ)2 = h(r)/δ = f(r),

so d = S(f(r)) ∈ S(f). Since we have infinitely many choices for q,
this construction yields infinitely many numbers d ∈ S(f) such that d ≡
m (mod p). �
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Lemma 3.3. Let a1, . . . , an be pairwise coprime integers, and let x1, . . . , xn
be integers with gcd(ai, xi) = 1 for all i. Then there exist infinitely many
prime numbers q such that q ≡ xi (mod ai) for all i.

Proof. By the Chinese Remainder Theorem, there is an integer N such
that N ≡ xi (mod ai) for all i. Note that N is coprime to each ai, and
thus coprime to the number a = a1 · · · an. Dirichlet’s theorem on primes in
arithmetic progressions [14, p. 251, Thm. 1] then implies that there exist
infinitely many primes q that are congruent to N modulo a. Clearly, every
such prime q satisfies q ≡ xi (mod ai) for all i. �

Proposition 3.1. Statement A(1) holds.

Proof. By Lemma 3.1 it suffices to show that I(1) holds. Let f(x) be a
primitive polynomial of degree 1, so that we can write f(x) = ax+ b with
gcd(a, b) = 1. Let p be a good prime for f(x), and let m be any integer
not divisible by p. Since p does not divide a, Lemma 3.3 implies that there
exist infinitely many primes q satisfying q ≡ m (mod p) and q ≡ b (mod a).
By construction, every such prime has the form q = b+na = f(n) for some
n ∈ Z, and so q = S(f(n)) ∈ S(f). This shows that there are infinitely
many primes q ∈ S(f) such that q ≡ m (mod p), and I(1) is proved. �

In order to prove that A(2) holds we will need the following classical
result; see [14, p. 273] for further details on this theorem.

Theorem of Legendre. Let a, b, c be nonzero integers that are squarefree,
pairwise coprime, and not all positive nor all negative. Then the equation

ax2 + by2 + cz2 = 0
has a nontrivial integral solution if and only if the following conditions are
satisfied:

• −bc is a square modulo a;
• −ac is a square modulo b;
• −ab is a square modulo c.

Proposition 3.2. Statement A(2) holds.

Proof. By Lemma 3.2 it suffices to show that P(2) holds. Let f(x) be a
quadratic polynomial with square leading coefficient, so that f(x) has the
form f(x) = a2x2 + bx + c for some integers a, b, c. We assume that the
discriminant ∆ = b2−4a2c is nonzero, and write ∆ = δs2 with δ a squarefree
integer and s ∈ Z. Letting p be a good prime for f(x) and m an integer
coprime to p, we must show that there exist infinitely many primes q ∈ S(f)
such that q ≡ m (mod p).

Let F (x, y) ∈ Z[x, y] be the binary quadratic form defined by
F (x, y) = y2 · f(x/y) = a2x2 + bxy + cy2.
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A simple calculation shows that for every prime q we have

q ∈ S(f) ⇐⇒ F (x, y) represents q over Q.

Thus, it suffices to show that there are infinitely many primes q ≡
m (mod p) that are rationally represented by F (x, y). The form F (x, y)
is equivalent (over Q) to the diagonal form G(x, y) = x2 − δy2. Indeed,
letting (

X
Y

)
=
(
a b

2a
0 s

2a

)(
x
y

)
we have G(X,Y ) = F (x, y). Since equivalent forms represent the same
values, the proof will be complete if we show that there are infinitely many
primes q ≡ m (mod p) that are rationally represented by G(x, y). Since p
is a good prime for f(x), p is coprime 8δ. Hence, by Lemma 3.3 there exist
infinitely many primes q satisfying

q ≡ m (mod p) and q ≡ 1 (mod 8δ).

Letting q be any such prime, we claim that q is represented by G(x, y) over
Q. One can verify using Quadratic Reciprocity that δ is a square modulo
q; Legendre’s theorem then implies that the equation

x2 − δy2 − qz2 = 0

has a nontrivial integral solution, say (x0, y0, z0). If δ 6= 1, then we must
have z0 6= 0 since δ is squarefree. In this case we can divide by z2

0 to obtain
G(x0/z0, y0/z0) = q. If δ = 1, then it is trivial to see that G(x, y) represents
q: for instance,

G

(
q + 1

2 ,
q − 1

2

)
= q.

This proves our claim and hence the proposition. �

We turn now to consider the statement A(3). For this statement we do
not have an unconditional proof as was the case for A(1) and A(2); however,
we can bring the machinery of elliptic curves to bear on the problem, and
thus provide compelling evidence that A(3) should hold. Recall that the
Parity Conjecture for elliptic curves states that the analytic and algebraic
ranks of an elliptic curve over Q must have the same parity. (See the survey
in [26, Chap. 4] for more details.) We will need to use a different version
of this conjecture which relates the rank of an elliptic curve to the rank
of a quadratic twist of the curve. For a statement of this conjecture in the
literature, see [9, p. 4].
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Parity Conjecture for quadratic twists. Let E be an elliptic curve over
Q with conductor NE, and let d be a squarefree integer coprime to 2 ·NE.
Then

(−1)rank Ed(Q) = (−1)rank E(Q) · χd(−NE),
where χd is the quadratic Dirichlet character associated to the field Q(

√
d).

Recall that if D is the discriminant of the field Q(
√
d), then the character

χd : (Z/DZ)× → {±1}
can be defined using the Kronecker symbol:

χd(n) =
(
D

n

)
.

(See [22, p. 296] for a definition of this symbol.) In particular, χd has the
following properties:

• χd(−1) = sign(d)
• If d ≡ 1 (mod 4), then χd(2) = (−1)(d2−1)/8.
• For any odd prime q - d, χd(q) is the Legendre symbol

(
d
q

)
.

Lemma 3.4. Let E/Q be an elliptic curve, p an odd prime not dividing the
conductor of E, and m an integer coprime to p. If the Parity Conjecture
holds, then there exist infinitely many squarefree integers d ≡ m (mod p)
such that the twist Ed has positive rank.
Proof. Let

NE = 2e ·
v∏
i=1

pei
i

be the factorization of the conductor of E, and set ε = (−1)1+rank E(Q). By
Lemma 3.3, there exist infinitely many primes q satisfying

q ≡ ε (mod 8p1 · · · pv) and q ≡ εm (mod p).
Fix any such prime q. Letting d = ε · q, we have

d ≡ 1 (mod 8p1 · · · pv) and d ≡ m (mod p).
Note that d is squarefree and coprime to 2 · NE . The properties of the
character χd imply that

χd(−NE) = χd(−1)χd(2)e
v∏
i=1

(
d

pi

)ei

= χd(−1) = sign(d) = ε.

Hence, by the Parity Conjecture,
(−1)rank Ed(Q) = (−1)rank E(Q) · ε = (−1)rank E(Q)(−1)1+rank E(Q) = −1.
It follows that Ed has odd, hence positive, rank. Since we have infinitely

many choices for q, this argument yields infinitely many squarefree integers
d ≡ m (mod p) such that Ed has positive rank. �
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Lemma 3.5. Let C/Q be a hyperelliptic curve of genus 1, p an odd prime
of good reduction for C, and m an integer coprime to p. If the Parity
Conjecture holds, then there exist infinitely many squarefree integers d ≡
m (mod p) such that the Jacobian of Cd has positive rank.

Proof. Let E = Jac(C), which is an elliptic curve over Q. Since C has good
reduction modulo p, then E also has good reduction modulo p. Hence, p
does not divide the conductor of E; see [28, p. 256]. By Lemma 3.4, there
exist infinitely many squarefree integers d ≡ m (mod p) such that Ed has
positive rank. The result now follows by noting that Ed = Jac(Cd). (This
can be deduced from the construction of the Jacobian of a genus 1 curve;
see [1] or [5, Chap. 20].) �

Proposition 3.3. Statement A(3) follows from the Parity Conjecture.

Proof. Let f(x) ∈ Z[x] be separable of degree 3, let p be a good prime
for f(x), and let m be any integer coprime to p. We must show, assuming
the Parity Conjecture, that there are infinitely many elements d ∈ S(f)
such that d ≡ m (mod p). Let E be the elliptic curve over Q defined by
the equation y2 = f(x). Since p is good for f(x), p is an odd prime of
good reduction for E. Hence, by Lemma 3.5, the Parity Conjecture implies
that there exist infinitely many squarefree integers d ≡ m (mod p) such
that the Jacobian of Ed has positive rank. However, for every such d, Ed
is an elliptic curve and thus isomorphic to its Jacobian; therefore, Ed has
positive rank. In particular, Ed must have a nontrivial rational point, and
so d ∈ S(f). �

Remark. In the proof of Proposition 3.3 we only need the existence of a
nontrivial rational point on the twist Ed, while the Parity Conjecture (via
Lemma 3.4) produces a seemingly much stronger result, namely that Ed
has positive rank. It is natural to wonder whether one can avoid recourse to
the conjecture by only proving the existence of a nontrivial torsion point on
Ed. Unfortunately, this approach will not work. It follows from a theorem
of Silverman [27, Thm. 6] that if E is any elliptic curve over Q, then all
but finitely many twists Ed have the property that the torsion subgroup of
Ed(Q) contains only 2-torsion points. Since 2-torsion points on an elliptic
curve are – using our terminology – trivial rational points, this leaves only a
finite number of twists that might have a nontrivial rational torsion point.
Hence, we cannot expect by this method to produce the infinitely many
integers d required to prove A(3).

We now discuss our main conjecture in the case of polynomials of degree
4. Though we expect that the statement A(4) holds, it does not seem im-
mediate to deduce it from the Parity Conjecture. In particular, if the proof
of Proposition 3.3 is followed with a polynomial f(x) of degree 4 instead of
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degree 3, the result will be a statement weaker than A(4): instead of ob-
taining twists Cd with a nontrivial rational point, we would obtain twists
Cd whose Jacobian has a nontrivial rational point. There is, nevertheless,
one instance in which we can deduce A(4) from the Parity Conjecture:

Proposition 3.4. Assume the Parity Conjecture. Then Statement A(4)
holds if we restrict attention to polynomials f(x) having a rational root.

Proof. Let f(x) ∈ Z[x] be a separable polynomial of degree 4 with a rational
root, let p be a good prime for f(x), and let m be any integer coprime to p.
We must show that there are infinitely many elements d ∈ S(f) such that
d ≡ m (mod p). Let C be the hyperelliptic curve of genus 1 defined by the
equation y2 = f(x). Note that every quadratic twist of C has a rational
point with y = 0. By Lemma 3.5 there exist infinitely many squarefree
integers d ≡ m (mod p) such that the Jacobian of Cd has positive rank.
Since Cd has a rational point, it can be given the structure of an elliptic
curve, and is therefore isomorphic to its Jacobian. Hence, Cd has infinitely
many rational points. In particular, it has a nontrivial rational point, so
d ∈ S(f). �

We conclude this section with an application to congruent numbers.

Theorem 3.1. For every prime number p there exist infinitely many con-
gruent numbers divisible by p. Furthermore, assuming the Parity Conjec-
ture, every residue class modulo p contains infinitely many congruent num-
bers.

Proof. If p = 2, this follows (unconditionally) from Monsky’s result cited
in the introduction. Now fix an odd prime p. Recall that a positive square-
free integer d is congruent if and only if d ∈ S(f), where f(x) = x3 − x.
The discriminant of f(x) is 4, so p is good for f(x). Since f(x) has odd
degree, Theorem 2.1 implies that there are infinitely many elements of S(f)
that are divisible by p. Note that f(−x) = −f(x), so that the set S(f) is
closed under taking additive inverses. Hence, we can conclude that there
are infinitely many positive numbers in S(f) divisible by p.

To complete the proof we must show, assuming the Parity Conjecture,
that every nonzero residue class [m] modulo p contains infinitely many
congruent numbers. The rank of the elliptic curve E defined by the equation
y2 = x3 − x is 0, so the proof of Proposition 3.3 can be used to produce
infinitely many negative numbers d ∈ S(f) such that d ≡ −m (mod p).
For any such d we have (−d) ∈ S(f), −d ≡ m (mod p), and −d > 0. This
shows that there are infinitely many congruent numbers in [m]. �
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4. A local analogue

Let f(x) ∈ Z[x] be a separable nonconstant polynomial. In the previous
section we provided evidence for Conjecture 1.1 assuming that f(x) has
degree≤ 4. For polynomials of higher degree we cannot prove our conjecture
or even show that it would be implied by standard conjectures in arithmetic
or Diophantine geometry. Hence, we consider instead a weaker statement:
our main goal in this section is to show that there is no local obstruction
to Conjecture 1.1.

Let C be the hyperelliptic curve y2 = f(x), let p be a prime, and let m
be an integer coprime to p. Our conjecture states that if p is large enough,
then there exist infinitely many squarefree integers d ≡ m (mod p) such
that the curve Cd has a nontrivial rational point. We will prove a related
statement in which the global condition that Cd have a nontrivial rational
point is replaced by the local condition that it have a nontrivial point over
every completion of Q.

For the convenience of the reader, we recall here a few standard results
to be used.

Hasse-Weil bound. Let X be a smooth, irreducible, projective curve of
genus g over a finite field F`. Then

|#X(F`)− (`+ 1)| ≤ 2g
√
`.

Proof. See [12, §9.2]. �

Hensel’s Lemma. Let ` be a prime number, and let P (t1, . . . , tn) ∈
Z`[t1, . . . , tn]. Suppose α ∈ Fn

` is such that P (α) = 0 and ∇P (α) 6= 0.
Then there exists x ∈ Zn` such that P (x) = 0 and x = α.

Proof. See [25, p. 15, Cor. 1]. �

Lemma 4.1 (Squares in `-adic fields). Let x ∈ Q∗` and write x = `nu,
where n ∈ Z and u ∈ Z×` . Then x is a square in Q` if and only if n is even
and the following holds:

• If ` is odd, then u is a square in F`.
• If ` = 2, then u ≡ 1 (mod 8).

Proof. See p. 17, Thm. 3 and p. 18, Thm. 4 in [25]. �

Lemma 4.2. Let g be the genus of C. There exists an integer N0 such that
every prime ` ≥ N0 satisfies

(a) ` is good for f(x); and
(b) for every smooth projective curve X/F` of genus g, #X(F`)≥ 2g+5.
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Proof. For (a) to hold we take N0 to be larger than every prime dividing
the discriminant or the leading coefficient of f(x). For (b), the existence of
N0 is guaranteed by the Hasse-Weil bound; for instance, it suffices to have
N0 ≥ 4g2 + 6g + 4. �

Lemma 4.3. With N0 as in Lemma 4.2, let d be a squarefree integer and
let ` ≥ N0 be prime.

(1) If f(x) has odd degree, then the curve Cd has a nontrivial point
defined over Q`.

(2) Suppose f(x) has even degree. If ` - d, or if `|d and f(x) has a root
modulo `, then Cd has a nontrivial point defined over Q`.

Proof. Suppose first that ` does not divide d. Since ` is good for f(x), the
equation dy2 = f̄(x) defines a hyperelliptic curve of genus g over F`, which
we denote by C̃d. By the definition of N0 we have #C̃d(F`) ≥ 2g + 5. The
curve C̃d can have at most 2 points at infinity, so it must have at least
2g + 3 affine points defined over F`. At most 2g + 2 of these points can
be of the form (α, 0), so there must be a point (α, β) with β 6= 0. Let
F (x, y) = dy2 − f(x) ∈ Z`[x, y] and note that

F (α, β) = 0 and ∇F (α, β) =
(
−f̄ ′(α), 2dβ

)
6= (0, 0)

since f̄(x) has no repeated root. Hensel’s Lemma implies that the point
(α, β) lifts to a point (a, b) ∈ Z2

` with db2 = f(a). Moreover, since β 6= 0,
we must have b 6= 0, so (a, b) is a nontrivial point in Cd(Q`). Thus we have
shown that, regardless of what the degree of f(x) is, if ` does not divide d,
then Cd has a nontrivial point defined over Q`.

Now suppose that ` divides d.
Case 1 : f(x) has odd degree. Let F (x) = x2g+2 · f(1/x) ∈ Z[x], and let

a be the leading coefficient of f(x). A simple calculation shows that we can
write F (ad) = db, where b ∈ Z satisfies b ≡ a2 (mod `). Thus, b is a nonzero
square modulo `. By Lemma 4.1 there exists a (nonzero) element y ∈ Q`

such that y2 = b. We have F (ad) = dy2, and so
f(1/ad) = F (ad)/(ad)2g+2 = dy2/(ad)2g+2 = d(y/(ad)g+1)2.

This shows that the curve Cd has a nontrivial point defined over Q`.
Case 2 : f(x) has even degree. In this case we assume that f(x) has a

root modulo `. We will show that there is an integer r such that d · f(r) is
a nonzero square in Q`, and this will complete the proof. By Lemma 2.3
there exists an integer n such that ord`(f(n)) is odd and ` - f ′(n). Write

f(n) = `2k−1s and d = `t with ` - st.
Since ` does not divide t · f ′(n), we can choose an integer b such that
(4.1) bt · f ′(n) ≡ 1− st (mod `).
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Let a = `2k−1b and r = n+ a. Using a Taylor expansion we see that
f(r) = f(n+ a) = f(n) + f ′(n) · a+ z · a2

for some integer z. We may write z · a2 = `4k−2c for some c ∈ Z. Then
d · f(r) = d · f(n) + f ′(n)(ad) + d(za2)

= `2kst+ f ′(n)`2kbt+ `4k−1ct.

Letting m = st+ f ′(n)bt+ `2k−1ct we have, by (4.1),
d · f(r) = `2k ·m and m ≡ st+ f ′(n)bt ≡ 1 (mod `).

Lemma 4.1 then implies that d · f(r) is a square in Q∗` . �

We can now prove the local analogue of Conjecture 1.1 for polynomials
of odd degree.
Theorem 4.1. Fix N0 as in Lemma 4.2. Suppose that f(x) has odd degree.
Let p ≥ N0 be prime, and let m be an integer coprime to p. There exist
infinitely many squarefree integers d ≡ m (mod p) such that the curve Cd
has a nontrivial point over every completion of Q.
Proof. Let t be any integer such that f(t) 6= 0, and let ε ∈ {±1} be the
sign of f(t). Let `1, . . . , `r be all the primes < N0, with `1 = 2. We define
a squarefree integer δ by the formula

δ = ε ·
r∏
i=1

`ai
i ,

where ai ∈ {0, 1} is the parity of ord`i(f(t)). Note that δ·f(t) is positive and
has even valuation at every prime ` < N0. Hence, we may write δ · f(t) =
`2e`u` with u` ∈ Z not divisible by `. By Lemma 3.3 there exist infinitely
many primes q such that

q ≡ δ−1m (mod p),
q ≡ u−1

2 (mod 8), and
q ≡ u`i (mod `i) for every i > 1.

Fix any such prime q, and let d = q · δ. Note that d is squarefree and
d ≡ m (mod p). We claim that d · f(t) is a square in every field Q` with
` < N0. Indeed, for each odd prime ` < N0 we have

d · f(t) = q · δ · f(t) = q · `2e` · u` = `2e`(q · u`),
and by construction q · u` is a nonzero square modulo `. Hence, d · f(t) is
a square in Q` by Lemma 4.1. Similarly, we have

d · f(t) = q · δ · f(t) = q · 22e2 · u2 = 22e2(q · u2),
and by construction q · u2 ≡ 1 (mod 8). Hence, d · f(t) is a square in Q2.
Thus, we have shown that the curve Cd has a nontrivial point defined over
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Q` for every prime ` < N0. By Lemma 4.3, the same holds for all primes
` ≥ N0. Finally, Cd has a nontrivial point over R because d ·f(t) is positive
and hence a square in R. Since we have infinitely many choices for q, the
above construction yields infinitely many squarefree integers d ≡ m (mod p)
such that Cd has a nontrivial point over every completion of Q. �

Remark. We are not aware of any example of a polynomial f(x) of odd
degree and a prime p for which the conclusion of Theorem 4.1 fails; this
raises the question of whether the assumption that p ≥ N0 is superfluous.
For polynomials of even degree, however, a lower bound on p is necessary,
as will be shown in the examples following Theorem 4.2.

We turn now to consider the local analogue of Conjecture 1.1 for poly-
nomials of even degree. Unlike the relatively elementary proof in the case
of odd degree, the proof in this case uses results from class field theory. We
give here a brief review of the necessary definitions and theorems in order
to keep the article self-contained.

To begin we recall some basic facts about Artin symbols, as these will be
used in the proof of Lemma 4.4. See [6, p. 95] for proofs of these statements.
Let L/K be a Galois extension of number fields. Let p be a prime of OK
unramified in OL, and let P be a prime of OL lying over p. There is a
unique automorphism σ ∈ Gal(L/K) such that for every α ∈ OL,

σ(α) ≡ αN(p) (mod P).
Here, N(p) is the norm of the ideal p. This map σ is denoted using the Artin
symbol ((L/K)/P). As P ranges over all the primes of OL containing p, the
symbols ((L/K)/P) form a full conjugacy class in the group Gal(L/K); this
class is denoted by ((L/K)/p). We can now state a classical result which
is the main tool used in the proof of Lemma 4.4. We refer the reader to [6,
§8.B] and [17] for further details on this theorem.

Chebotarev Density Theorem. Let C be a conjugacy class in the group
Gal(L/K). The set of primes p of OK such that p is unramified in OL and
((L/K)/p) = C has Dirichlet density (#C)/[L : K].

In addition to the Chebotarev theorem we will need the following prop-
erties of the Artin symbol. These and other basic properties of the symbol
are proved in [18, Thm. 3.9].

• The prime p splits completely in L if and only if ((L/K)/p) = {1}.
• Let F/K be a Galois subextension of L/K and let P = P ∩ OF .
Then (

L/K

P

)∣∣∣∣
F

=
(
F/K

P

)
.

For the remainder of this section we fix an algebraic closure Q and con-
sider all number fields to be contained in Q. For any positive integer n,
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let ζn ∈ Q be a primitive n-th root of unity. Recall that for every integer
a coprime to n there is an automorphism σa ∈ Gal(Q(ζn)/Q) with the
property that σa(ζn) = ζan. Moreover, the map [a] 7→ σa is an isomorphism
(Z/nZ)× → Gal(Q(ζn)/Q). If p is a rational prime that does not divide
n, then p is unramified in Q(ζn), so there is a well defined Artin symbol(

Q(ζn)/Q
p

)
. One can check that this symbol is in fact equal to {σp}.

Lemma 4.4. Let h(x) ∈ Z[x] be irreducible and let L ⊂ Q be the splitting
field of h(x). Let n be a positive integer and let a be an integer coprime to
n. If the map σa fixes the field F = L ∩Q(ζn), then there exist infinitely
many primes p such that p ≡ a (mod n) and h(x) has a root modulo p.

Proof. Let E = L · Q(ζn) be the composite of L and Q(ζn). By Galois
theory [8, §14.4, Prop. 21], the restriction map

Gal(E/Q)→ Gal(L/Q)×Gal(Q(ζn)/Q)

σ 7→
(
σ|L , σ|Q(ζn)

)
is an injective group homomorphism with image

H = {(ϕ, τ) : ϕ|F = τ |F }.
Since σa fixes F , the pair (1, σa) belongs to H. Hence, there is an automor-
phism σ ∈ Gal(E/Q) such that

σ|L = 1 and σ|Q(ζn) = σa.

Note that σ belongs to the center of Gal(E/Q) because the pair (1, σa) lies
in the center of H. Therefore, the conjugacy class of σ in Gal(E/Q) is {σ}.
From the Chebotarev Density Theorem it follows that there exist infinitely
many rational primes p, unramified in E, such that ((E/Q)/p) = {σ}. Fix
any such prime p that does not divide the leading coefficient of h(x).

Claim 1 : p ≡ a (mod n). Equivalently, the maps σp and σa are equal.
Let p be a prime of Q(ζn) lying over p and let P be a prime of E lying over
p. Then

σp =
(Q(ζn)/Q

p

)
=
(
E/Q
P

)∣∣∣∣
Q(ζn)

= σ|Q(ζn) = σa.

Claim 2 : h(x) has a root modulo p. Let p be any prime of L lying over
p, and P a prime of E lying over p. Then(

L/Q
p

)
=
(
E/Q
P

)∣∣∣∣
L

= σ|L = 1, so
(
L/Q
p

)
= {1}.

Therefore, p splits completely in L. Let θ ∈ L be a root of h(x), and let c
be the leading coefficient of h(x). Then the minimal polynomial of θ over Q
is 1

c · h(x), which has coefficients in the local ring Z(p), so θ is integral over
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Z(p). Hence, for any prime p of L lying over p, θ belongs to the local ring
OL,p. (This can be seen using [2, Prop. 5.12].) Since p splits completely in
L, the residue field of OL,p is Z/pZ. Thus, reducing the equation h(θ) = 0
modulo p we obtain a relation h(θ) = 0 over Z/pZ, and this proves the
claim. �

We can now prove our main theorem for polynomials of even degree by
combining Lemma 4.4 with the following well known result.

Kronecker-Weber Theorem. For every abelian extension L of Q there
is a positive integer b such that L ⊆ Q(ζb). Moreover, one can take b to be
the absolute value of the discriminant of L.

Proof. See [23, §V.1, Thm. 1.10] and [18, Thm. 3.3]. �

Theorem 4.2. Suppose that f(x) has even degree and that some irreducible
divisor of f(x) has abelian Galois group. Then there is a constant N such
that the following holds for every prime p ≥ N : if m is any integer coprime
to p, then there exist infinitely many squarefree integers d ≡ m (mod p)
such that the curve Cd has a nontrivial point over every completion of Q.

Proof. Let t be any integer such that f(t) 6= 0 and let δ be the squarefree
part of f(t). Let h(x) ∈ Z[x] be an irreducible divisor of f(x) such that the
splitting field L ⊂ Q of h(x) has abelian Galois group. By the Kronecker-
Weber theorem, there is an effectively computable positive integer b such
that L ⊆ Q(ζb). Fix an integer N0 as in Lemma 4.2, and let N be any
integer satisfying

N > max{b,N0, |f(t)|}.
We claim that N has the property given in the statement of the theorem.
Let p ≥ N be prime and let m be an integer coprime to p. We will show
that there are infinitely many squarefree integers d ≡ m (mod p) such that
Cd has a nontrivial point over every completion of Q. Let 2, `1, . . . , `r be
all the primes < N , and set

α = 8p · `1 · · · `r , n = α · b.

Since ζαn is a primitive b-th root of unity, we have L ⊆ Q(ζαn ) ⊆ Q(ζn).
Note that p does not divide 8b · `1 · · · `r since, by construction,

p ≥ N > max{2, `1, . . . , `r, b}.
Similarly, p does not divide δ since p ≥ N > |f(t)| ≥ |δ|. Hence, there exists
an integer a satisfying

a ≡ 1 (mod 8b · `1 · · · `r) and a ≡ δ−1m (mod p).
From the definitions it follows that a is coprime to n. We claim that the
map σa ∈ Gal(Q(ζn)/Q) fixes L; in fact, it fixes the larger field Q(ζαn ).
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Indeed, we have
σa(ζαn ) = σa(ζn)α = ζaαn = ζαn

because n|α(a−1). By Lemma 4.4 there exist infinitely many primes q such
that q ≡ a (mod n) and h(x) has a root modulo q. In particular, f(x) has
a root modulo q. Fix any such prime q ≥ N and let d = δ · q. Note that
d is squarefree and d ≡ m (mod p). By Lemma 4.3, the curve Cd has a
nontrivial point over every field Q` with ` ≥ N . (The only prime ` ≥ N
that divides d is ` = q, and f(x) has a root modulo q.) Moreover, since
d · f(t) is positive, Cd also has a nontrivial point over R. By construction,
q ≡ a ≡ 1 (mod 8 · `1 · · · `r), so Lemma 4.1 implies that q is a square in
Q2,Q`1 , . . . ,Q`r . Now, d · f(t) = q · δ · f(t), and δ · f(t) is a square integer,
so d ·f(t) is a square in Q` for all primes ` < N . Hence, Cd has a nontrivial
point over every field Q` with ` < N . Thus, we have shown that Cd has a
nontrivial point over every completion of Q. Since we have infinitely many
choices for q, this construction provides infinitely many squarefree integers
d ≡ m (mod p) such that Cd has a nontrivial point over every completion
of Q. �

Remark. All currently available evidence suggests that the Galois group
condition included in the hypotheses of Theorem 4.2 is not necessary. How-
ever, a lower bound on p is necessary – otherwise the conclusion of the
theorem may not hold. The examples below will illustrate some of the is-
sues that can arise at small primes.

Example. Let f(x) = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1. The prime
p = 3 is not good for f(x), because f(x) has a multiple root modulo 3
(namely, x = 1). We claim that if d ≡ 2 (mod 3) is any squarefree integer,
then the curve Cd does not have a nontrivial point over Q3. In particular,
this implies that there does not exist a squarefree integer d ≡ 2 (mod 3)
such that Cd has a nontrivial point over every completion of Q. Hence, the
conclusion of Theorem 4.2 does not hold if p = 3,m = 2. To prove the claim,
suppose that d is a squarefree integer such that Cd has a nontrivial point
over Q3. We will show that d ≡ 0, 1 (mod 3). By hypothesis, there exist
a, b ∈ Z3 and s ∈ Q∗3 such that ds2 = f(a/b). We may assume without loss
of generality that a and b are not both divisible by 3. Define a polynomial
F (x, y) ∈ Z[x, y] by
F (x, y) = y6 · f(x/y) = x6 + 2x5y + 5x4y2 + 10x3y3 + 10x2y4 + 4xy5 + y6.

Letting t = sb3, we have
F (a, b) = b6 · f(a/b) = b6 · ds2 = dt2.

Considering the 3-adic valuation of both sides of this equation we conclude
that t ∈ Z3. Now, allowing a and b to take all possible values modulo 9
we find that if F (a, b) ≡ 0 (mod 9), then a, b ≡ 0 (mod 3), which is a
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contradiction. Hence, F (a, b) is not divisible by 9, so t is not divisible by 3,
and therefore t2 ≡ 1 (mod 3). Thus,

d ≡ dt2 ≡ F (a, b) (mod 3).
The conclusion that d ≡ 0, 1 (mod 3) now follows from the easily verified
fact that the map F : F3 × F3 → F3 only takes the values 0 and 1.

The above example shows that the conclusion of Theorem 4.2 can fail
if p is not good for f(x). The next example will show that the same can
happen if p is a good prime that is too small.

Lemma 4.5. Suppose that f(x) has even degree. Let p be a good prime
for f(x), and assume that C(Fp) = ∅. Let d be any squarefree integer that
is a nonzero square modulo p. Then Cd does not have a nontrivial point
over Qp.

Proof. Suppose that Cd does have a nontrivial point over Qp, so that there
exist a, b ∈ Zp and s ∈ Q∗p such that ds2 = f(a/b). We may assume without
loss of generality that a and b are not both divisible by p. We consider two
cases, depending on whether b is divisible by p.

Suppose first that b 6≡ 0 (mod p), so that a/b ∈ Zp. Considering the
p-adic valuation of both sides of the equation ds2 = f(a/b) we see that
necessarily s ∈ Zp. This equation then takes place in Zp, so we may reduce
modulo p to obtain a solution to the equation d̄y2 = f(x) with x, y ∈ Fp.
Since d is a square modulo p, we may write d̄ = α2 for some α ∈ Fp.
Then we have a point (x, αy) ∈ C(Fp), contradicting the assumption that
C(Fp) = ∅.

Suppose now that b ≡ 0 (mod p). Write f(x) = c2kx
2k + · · · + c1x + c0

with c2k 6= 0, and let
F (x, y) = y2k · f(x/y) = c2kx

2k + c2k−1x
2k−1y + · · ·+ c1xy

2k−1 + c0y
2k.

We have
F (a, b) = b2k · f(a/b) = b2kds2 = dt2,

where t = sbk. Considering p-adic valuations we see that t ∈ Zp. The above
equation can then be reduced modulo p to obtain c2ka

2k ≡ dt2 (mod p). In
particular, c2ka

2k is a square modulo p. Since p does not divide a (because it
divides b), this implies that c2k is a square modulo p; thus, C(Fp) contains
two points at infinity. Once again, this contradicts the assumption that
C(Fp) = ∅. Since both cases have led to a contradiction, we conclude that
Cd cannot have a nontrivial point over Qp. �

Example. Let f(x) = 2x8 − x6 − 8x4 − x2 + 2. The prime p = 19 is
good for f(x), and the curve C : y2 = f(x) has no point over the field
F19. (This and other examples of “pointless” curves over finite fields can
be found in the articles [13, 20].) It follows from Lemma 4.5 that if m is a
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quadratic residue modulo 19, then there does not exist a squarefree integer
d ≡ m (mod 19) such that Cd has a nontrivial point over Q19. Hence, the
conclusion of Theorem 4.2 does not hold with these values of p and m.

5. Empirical data

In this last section we summarize the results of two numerical experi-
ments designed to test Conjecture 1.1. Unless otherwise specified, all com-
putations were done using Sage [29].

The first experiment is a partial verification of the conjecture for a sys-
tematically chosen collection of polynomials. Given a separable nonconstant
polynomial f(x) ∈ Z[x], the conjecture states that for every large enough
prime p, the set S(f) contains infinitely many elements from every nonzero
residue class modulo p. For purposes of checking this statement in practice,
the conjecture must be modified so that it can be reduced to a finite com-
putation. In particular, only a finite number of primes p can be considered,
and only a finite subset of S(f) can be computed. Hence, in order to test
the conjecture we take the following steps:

(1) Choose a finite set of primes, say, all primes p ≤ n for a fixed
positive integer n.

(2) Compute a finite subset of S(f): fix a height bound B and let

S̃(f) = {S(f(r)) : r ∈ Q, f(r) 6= 0, and H(r) ≤ B}.

(3) For every prime p ≤ n, check whether S̃(f) contains an element
from every nonzero residue class modulo p.

If p is a prime for which the check in step (3) fails, we will say that p is
an exceptional prime for f(x) (although this term depends on the choice of
height bound B). Conjecture 1.1 does not preclude the possibility that f(x)
may have exceptional primes, but it does suggest that all such primes must
be relatively small. Thus, if the conjecture holds, we should not expect to
find any large exceptional primes when following the steps above. For our
first experiment we chose a large collection of polynomials and carried out
a computation which shows that, as expected, all exceptional primes for
the selected polynomials are quite small.

Proposition 5.1. Let f(x) ∈ Z[x] be a separable polynomial of degree 4,
5, 6, 7, 8 or 9, all of whose coefficients have absolute value at most 3. Then
for every prime 19 < p < 103, the set S(f) contains a representative from
every nonzero residue class modulo p.

Proof. For every polynomial f(x) satisfying the conditions of the proposi-
tion, we follow the three steps listed above taking n = 103 and B = 400.
The largest exceptional prime that occurs in the entire computation is 19.
Hence, for every prime 19 < p < 103, the set S̃(f) contains a representative
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from every nonzero residue class modulo p. Since S(f) ⊇ S̃(f), the same
holds for S(f). �

Remark. The total number of polynomials satisfying the conditions of
Proposition 5.1 is 17,896.

For the second experiment we select only four polynomials, but carry out
a more extensive computation in terms of the number of primes considered.
For each of the selected polynomials f(x) we set a height bound of B = 800
and compute the set S̃(f) as defined earlier. This set is then reduced modulo
p for every prime p < 10, 000, and a list of exceptional primes is kept. Once
again, all exceptional primes that were found are very small. The precise
results of our computation are as follows:

• For the fifth cyclotomic polynomial, f(x) = x4 + x3 + x2 + x + 1,
the only exceptional prime below 10, 000 is p = 5. The reduction of
the set S̃(f) modulo 5 is {0, 1}.
• For the polynomial f(x) = x7 − 3 there is no exceptional prime
below 10,000. This example illustrates a more general fact: we have
not found any polynomial f(x) of odd degree having an exceptional
prime.
• For the polynomial from Example 4, namely f(x) = x6 + 2x5 +

5x4 +10x3 +10x2 +4x+1, the only exceptional prime below 10, 000
is p = 3. The reduction of the set S̃(f) modulo 3 is {0, 1}.
• For the polynomial f(x) = 2x8−x6−8x4−x2 +2, which appears in
Example 4, the primes 2, 3, and 97 are not good, and turn out to be
exceptional primes; the only good exceptional prime below 10, 000
is p = 19. The reduction of the set S̃(f) modulo 19 consists of all
non-squares modulo 19, a result that is consistent with Example 4.

Using Magma [4] we determine that the latter two polynomials are irre-
ducible and have nonabelian Galois group. Hence, the results of this exper-
iment support the statement that the conclusion of Theorem 4.2 remains
valid without the assumption that some divisor of f(x) has abelian Galois
group.

We end this article by posing two questions motivated by the above
experiments.

Questions.

(1) Does the conclusion of Theorem 4.2 continue to be true if the hy-
pothesis of an irreducible divisor with abelian Galois group is re-
moved?

(2) For polynomials of odd degree, can Conjecture 1.1 be strengthened
to include all primes, rather than all but finitely many?
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