OURNAL de Théorie des Nombres de BORDEAUX

 anciennement Séminaire de Théorie des Nombres de BordeauxEren Mehmet KIRAL, Ian PETROW et Matthew P. YOUNG
Oscillatory integrals with uniformity in parameters
Tome 31, n 1 (2019), p. 145-159.
http://jtnb.cedram.org/item?id=JTNB_2019__31_1_145_0
© Société Arithmétique de Bordeaux, 2019, tous droits réservés.
L'accès aux articles de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Oscillatory integrals with uniformity in parameters

par Eren Mehmet Kiral, Ian PETROW et Matthew P. YOUNG

Abstract

RÉSUMÉ. Nous prouvons une formule asymptotique précise pour certains types d'intégrales oscillatoires que l'on peut traiter par la méthode de la phase stationnaire. Les estimations sont uniformes en termes de paramètres auxiliaires, ce qui est crucial pour les applications en théorie analytique des nombres.

Abstract. We prove a sharp asymptotic formula for certain oscillatory integrals that may be approached using the stationary phase method. The estimates are uniform in terms of auxiliary parameters, which is crucial for application in analytic number theory.

1. Introduction

Exponential integrals occur in many problems in analytic number theory, including moments of L-functions, lattice-point counting, and the circle method (see e.g. [3], [5], [6]). For some more advanced applications (e.g. in [2]) it is necessary to develop an asymptotic expansion of multidimensional integrals with uniformity in parameters. For example, in their celebrated paper [2], Conrey and Iwaniec are faced with an integral of the form

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} w\left(x_{1}, x_{2}, x_{3}\right) e\left(2 \sqrt{t x_{1} x_{2} x_{3}}-x_{1} \lambda_{1}-x_{2} \lambda_{2}-x_{3} \lambda_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \tag{1.1}
\end{equation*}
$$

for some smooth dyadically supported weight function w. In (1.1) and other intended applications (see also [7], [8]), one is faced with an integral in several variables with several varying parameters, and needs an asymptotic expansion in terms of all of the parameters. In this paper, we treat such integrals by iteratively applying the stationary phase method in one variable.

[^0]As such, this paper concerns the asymptotic behavior of oscillatory integrals of the form

$$
I=I\left(x_{2}, \ldots, x_{d} ; w, \phi\right)=\int_{\mathbb{R}} w\left(x_{1}, \ldots, x_{d}\right) e^{i \phi\left(x_{1}, \ldots, x_{d}\right)} \mathrm{d} x_{1}
$$

where w, ϕ are smooth functions of \mathbb{R}^{d} and w has compact support. We wish to understand the behavior of I as w and ϕ vary in certain families defined in terms of derivative bounds. One may then apply other oscillatory integral transforms in the auxiliary variables (such as additional stationary phase analyses, Fourier/Mellin transforms, or the integral transforms appearing in the Kuznetsov formula), which is a common technique in analytic number theory. The present work hopes to automate the analysis of I as much as possible, thereby shifting the mental burden off tedious calculations with weight functions so that number theorists can focus on more arithmetic aspects.

Next we discuss some of the existing results in the literature, and why they are unsatisfactory for some applications the authors have encountered in analytic number theory. The stationary phase method appears in many standard textbooks, e.g. see [4, Theorem 7.7.5], [9, Ch. VIII Proposition 3], or [10, Theorem 3.11]. The method gives an asymptotic expansion of a Fourier integral of the form $\int_{-\infty}^{\infty} e^{i \lambda \varphi(x)} a(x) \mathrm{d} x$, where a is smooth of compact support, under the assumption that $\varphi^{\prime}\left(x_{0}\right)=0$ for a unique point x_{0} in the support of a. We do not wish to restrict attention to phase functions of the form $\lambda \varphi(x)$. For instance, one may consider a phase of the form $\lambda x-x^{2}$ or $x-\lambda \log x$. Although one may sometimes reduce to the case $\lambda \varphi(x)$ by some ad-hoc change of variables, e.g. $x \rightarrow \lambda x$ in the first example above, it is not desirable to require a pre-processing step.

In order to arrive at the primary results of this paper stated in Section 3, we study the main term resulting from a stationary phase analysis. This main term is given in terms of differential operators applied to a, and evaluated at x_{0} (which is the stationary point, defined implicitly in terms of these auxiliary variables). These differential operators have coefficients depending on φ (with negative powers of $\varphi^{\prime \prime}\left(x_{0}\right)$, see [10, (3.4.11)]). Most of the work in this paper consists of bounding the derivatives of this main term with respect to the remaining variables.

The paper is organized as follows. In Section 2 we define the class of functions of interest to us here, followed by some examples and easy properties. In Section 3 we state our Main Theorem, which gives an asymptotic formula for I under conditions ensuring the stationary phase method may be applied. The crucial point here is that we establish derivative bounds on I, which are strong enough that one may often fruitfully and easily iterate the stationary phase method. In Section 4 we illustrate this process with an example which was chosen due to its application to some moment problems
in the analytic theory of L-functions [2], [7], [8]. We give the proof of the Main Theorem in Section 5.

2. Inert functions

2.1. Basic Definition. We begin with certain families of functions defined by derivative bounds. Let \mathcal{F} be an index set and $X=X_{T}: \mathcal{F} \rightarrow \mathbb{R}_{\geq 1}$ be a function of $T \in \mathcal{F}$.

Definition 2.1. A family $\left\{w_{T}\right\}_{T \in \mathcal{F}}$ of smooth functions supported on a product of dyadic intervals in $\mathbb{R}_{>0}^{d}$ is called X-inert if for each $j=$ $\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{Z}_{\geq 0}^{d}$ we have

$$
\begin{aligned}
& C\left(j_{1}, \ldots, j_{d}\right) \\
& :=\sup _{T \in \mathcal{F}} \sup _{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{>0}^{d}} X_{T}^{-j_{1}-\cdots-j_{d}}\left|x_{1}^{j_{1}} \cdots x_{d}^{j_{d}} w_{T}^{\left(j_{1}, \ldots, j_{d}\right)}\left(x_{1}, \ldots, x_{d}\right)\right|<\infty .
\end{aligned}
$$

The notion of X-inert measures the uniformity of the "flatness" of the functions w_{T} as we move across the family \mathcal{F}.

We also remark that the assumption that w_{T} has support on a product of dyadic intervals is often easily attained, by application of a dyadic partition of unity. We often abbreviate the sequence of constants $C\left(j_{1}, \ldots, j_{d}\right)$ associated to a family of inert functions by $C_{\mathcal{F}}$.

Convention. Throughout this paper, constants implied by \ll and $O()$ symbols are uniform with respect to \mathcal{F}, and depend only on $C_{\mathcal{F}}$. On the occasion that an implied constant depends on some additional auxiliary parameter, e.g. $\varepsilon>0$ or $A \geq 1$, we will place it as a subscript. We also use the standard notation $e(x)=e^{2 \pi i x}$.
2.2. Examples. We present several examples of how inert families may be constructed.

Example 2.2 (Dilation). Let $w\left(x_{1}, \ldots, x_{d}\right)$ be a fixed smooth function that is supported on $[1,2]^{d}$ and define

$$
\begin{equation*}
w_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots x_{d}\right)=w\left(\frac{x_{1}}{X_{1}}, \ldots, \frac{x_{d}}{X_{d}}\right) . \tag{2.1}
\end{equation*}
$$

Then with $\mathcal{F}=\left\{T=\left(X_{1}, \ldots, X_{d}\right) \in \mathbb{R}_{>0}^{d}\right\}$, the family $\left\{w_{T}\right\}_{T \in \mathcal{F}}$ is 1-inert.
Example 2.3 (Oscillation). With w as in the previous example we let

$$
\begin{equation*}
W_{T}\left(x_{1}, \ldots, x_{d}\right)=e^{i \lambda_{1} x_{1}+\cdots+i \lambda_{d} x_{d}} w\left(\frac{x_{1}}{X_{1}}, \ldots, \frac{x_{d}}{X_{d}}\right) \tag{2.2}
\end{equation*}
$$

but now $\mathcal{F}=\left\{T=\left(X_{1}, \ldots, X_{d}, \lambda_{1}, \ldots, \lambda_{d}\right)\right\}$. It is easy to see W_{T} is X inert with $X=X_{T}=1+\max \left(\left|\lambda_{1}\right| X_{1}, \ldots,\left|\lambda_{d}\right| X_{d}\right)$, but not Y-inert for any $Y=Y_{T}$ such that $Y_{T} / X_{T} \rightarrow 0$ as $X_{T} \rightarrow \infty$.

Example 2.4 (Products). Let $\left\{w_{T}\right\}_{T \in \mathcal{F}}$ and $\left\{v_{T^{\prime}}\right\}_{T^{\prime} \in \mathcal{F}^{\prime}}$ be X and Y-inert families respectively. Then $\left\{w_{T} \cdot v_{T^{\prime}}\right\}_{\left(T, T^{\prime}\right) \in \mathcal{F} \times \mathcal{F}^{\prime}}$ is a $\max \left(X_{T}, Y_{T^{\prime}}\right)$-inert family.

For instance, in the one-variable case, we have

$$
\left|\max (X, Y)^{-j} x^{j} \frac{\mathrm{~d}^{j}}{\mathrm{~d} x^{j}} w_{T}(x) v_{T^{\prime}}(x)\right| \leq \sum_{k=0}^{j}\binom{j}{k} C_{w}(k) C_{v}(j-k) .
$$

Example 2.5 (Specialization). Suppose that $\left\{w_{T}\left(x_{1}, \ldots, x_{d}\right)\right\}_{T \in \mathcal{F}}$ is X inert, supported on $x_{i} \asymp X_{i}$, and that we specialize $x_{1}=X_{1} f\left(\frac{x_{2}}{X_{2}}, \ldots, \frac{x_{d}}{X_{d}}\right)$, say, where f is a fixed smooth function. Let

$$
W_{T}\left(x_{2}, \ldots, x_{d}\right)=w_{T}\left(X_{1} f\left(\frac{x_{2}}{X_{2}}, \ldots, \frac{x_{d}}{X_{d}}\right), x_{2}, \ldots, x_{d}\right) .
$$

Then $\left\{W_{T}\right\}_{T \in \mathcal{F}}$ is also X-inert.
One may deduce this quickly from (5.12) below.
2.3. Fourier transforms. Under the Fourier transform inert functions behave regularly. Suppose that $w_{T}\left(x_{1}, \ldots, x_{d}\right)$ is X-inert and supported on $x_{i} \asymp X_{i}$ for each i. Let

$$
\widehat{w_{T}}\left(t_{1}, x_{2}, \ldots, x_{d}\right)=\int_{-\infty}^{\infty} w_{T}\left(x_{1}, \ldots, x_{d}\right) e\left(-x_{1} t_{1}\right) \mathrm{d} x_{1}
$$

denote its Fourier transform in the x_{1}-variable.
Proposition 2.6. Suppose that $\left\{w_{T}: T \in \mathcal{F}\right\}$ is a family of X-inert functions such that x_{1} is supported on $x_{1} \asymp X_{1}$, and $\left\{w_{ \pm Y_{1}}: Y_{1} \in(0, \infty)\right\}$ is a 1-inert family of functions with support on $\pm t_{1} \asymp Y_{1}$. Then the family $\left.\left\{X_{1}^{-1} w_{ \pm Y_{1}}\left(t_{1}\right) \widehat{w_{T}}\left(t_{1}, x_{2}, \ldots, x_{d}\right):\left(T, \pm Y_{1}\right) \in \mathcal{F} \times \pm(0, \infty)\right\}\right\}$ is X-inert. Furthermore if $Y_{1} \gg q^{\varepsilon} X / X_{1}$ then for any $A>0$, we have

$$
X_{1}^{-1} w_{ \pm Y_{1}}\left(t_{1}\right) \widehat{w_{T}}\left(t_{1}, x_{2}, \ldots, x_{d}\right)<_{\varepsilon, A} q^{-A}
$$

Proof. It is a standard fact in Fourier analysis that $\widehat{w_{T}}$ and its derivatives may be bounded in terms of X, X_{1}, \ldots, X_{d} by integration by parts. Integrating by parts j_{1} times gives

$$
\begin{aligned}
& \frac{\partial^{j_{1}} X_{1}^{-1} \widehat{w_{T}}\left(t_{1}, x_{2}, \ldots, x_{d}\right)}{\partial t_{1}^{j_{1}}} \\
& \quad=\int_{-\infty}^{\infty} \frac{\partial^{j_{1}}}{\partial x_{1}^{j_{1}}}\left[w_{T}\left(X_{1} x_{1}, \ldots, x_{d}\right) x_{1}^{j_{1}}\right] e\left(-x_{1} X_{1} t_{1}\right) \frac{\mathrm{d} x_{1}}{\left(-t_{1}\right)^{j_{1}}} \ll \frac{X^{j_{1}}}{\left|t_{1}\right|^{j_{1}}},
\end{aligned}
$$

since the j_{1}-th derivative of the expression in square brackets is $\ll X^{j_{1}}$, and is supported on $x_{1} \asymp 1$. By a slight generalization of this to allow derivatives with respect to x_{2}, \ldots, x_{d}, we see that $X_{1}^{-1} \widehat{w_{T}}\left(t_{1}, x_{2}, \ldots, x_{d}\right)$
satisfies the desired derivative bound that an X-inert function is required to have.

The missing property is that it is not dyadically supported in t_{1} (with $\left.t_{1}>0\right)$. However, we can get around this minor issue by defining

$$
W_{T, Y_{1}}\left(t_{1}, x_{2}, \ldots x_{d}\right)=w_{Y_{1}}\left(t_{1}\right) \widehat{w_{T}}\left(t_{1}, x_{2}, \ldots x_{d}\right),
$$

where $\left\{w_{Y_{1}}: Y_{1}>0\right\}$ is a 1-inert family, supported on $t_{1} \asymp Y_{1}\left(\right.$ or $\left.-t_{1} \asymp Y_{1}\right)$. For instance, $w_{Y_{1}}$ could be part of a dyadic partition of unity. Now we can claim that $X_{1}^{-1} W_{T, Y_{1}}$ forms an X-inert family. Moreover, by a similar integration by parts argument, we have that

$$
W_{T, Y_{1}}\left(t_{1}, x_{2}, \ldots, x_{d}\right)<_{A} X_{1}\left(1+\frac{\left|t_{1}\right| X_{1}}{X}\right)^{-A} \asymp\left(1+\frac{Y_{1} X_{1}}{X}\right)^{-A}
$$

giving the final statement of the proposition.

3. Stationary phase

Main Theorem (Stationary phase). Suppose w_{T} is X-inert in $t_{1}, \ldots t_{d}$, supported on $t_{1} \asymp Z$ and $t_{i} \asymp X_{i}$ for $i=2, \ldots, d$. Suppose that on the support of $w_{T}, \phi=\phi_{T}$ satisfies

$$
\begin{equation*}
\frac{\partial^{a_{1}+a_{2}+\cdots+a_{d}}}{\partial t_{1}^{a_{1}} \ldots \partial t_{d}^{a_{d}}} \phi\left(t_{1}, t_{2}, \ldots, t_{d}\right) \ll_{\mathcal{F}} \frac{Y}{Z^{a_{1}}} \frac{1}{X_{2}^{a_{2}} \ldots X_{d}^{a_{d}}}, \tag{3.1}
\end{equation*}
$$

for all $a_{1}, \ldots, a_{d} \in \mathbb{N}$. Suppose $\phi^{\prime \prime}\left(t_{1}, t_{2}, \ldots, t_{d}\right) \gg \frac{Y}{Z^{2}}$, (here and below, ϕ^{\prime} and $\phi^{\prime \prime}$ denote the derivative with respect to t_{1}) for all $t_{1}, t_{2}, \ldots, t_{d}$ in the support of w_{T}, and there exists $t_{0} \in \mathbb{R}$ such that $\phi^{\prime}\left(t_{0}\right)=0$ (note t_{0} is necessarily unique). Suppose that $Y / X^{2} \geq R \geq 1$. Then

$$
\begin{align*}
& I=\int_{\mathbb{R}} e^{i \phi\left(t_{1}, \ldots, t_{d}\right)} w_{T}\left(t_{1}, \ldots, t_{d}\right) \mathrm{d} t_{1} \tag{3.2}\\
&=\frac{Z}{\sqrt{Y}} e^{i \phi\left(t_{0}, t_{2}, \ldots, t_{d}\right)} W_{T}\left(t_{2}, \ldots, t_{d}\right)+O_{A}\left(Z R^{-A}\right)
\end{align*}
$$

for some X-inert family of functions W_{T}, and where $A>0$ may be taken to be arbitrarily large. The implied constant in (3.2) depends only on A and $C_{\mathcal{F}}$.

The fact that the family W_{T} is inert in (3.2) shows a kind of closure property of the weight functions that appear in stationary phase. It is therefore well-suited for iterated integrals where the conditions of stationary phase may be applied.

The Main Theorem builds on earlier work of Blomer-Khan-Young [1] which obtained an asymptotic formula for I in the one-variable case. What is new in this paper is the careful analysis of the derivative bounds on the resulting weight function with respect to all the remaining variables t_{2}, \ldots, t_{d}.

To continue this discussion, we synthesize Lemma 8.1 and Proposition 8.2 of [1] using this language of inert functions, along with some simplified choices of parameters, with the following:

Lemma 3.1 ([1]). Suppose that $w=w_{T}(t)$ is a family of X-inert functions, with compact support on $[Z, 2 Z]$, so that $w^{(j)}(t) \ll(Z / X)^{-j}$. Also suppose that ϕ is smooth and satisfies $\phi^{(j)}(t) \ll \frac{Y}{Z^{j}}$ for some $Y / X^{2} \geq R \geq 1$ and all t in the support of w. Let

$$
I=\int_{-\infty}^{\infty} w(t) e^{i \phi(t)} \mathrm{d} t
$$

(1) If $\left|\phi^{\prime}(t)\right| \gg \frac{Y}{Z}$ for all t in the support of w, then $I \ll_{A} Z R^{-A}$ for A arbitrarily large.
(2) If $\phi^{\prime \prime}(t) \gg \frac{Y}{Z^{2}}$ for all t in the support of w, and there exists $t_{0} \in \mathbb{R}$ such that $\phi^{\prime}\left(t_{0}\right)=0$ (note t_{0} is necessarily unique), then

$$
\begin{equation*}
I=\frac{e^{i \phi\left(t_{0}\right)}}{\sqrt{\phi^{\prime \prime}\left(t_{0}\right)}} F_{T}\left(t_{0}\right)+O_{A}\left(Z R^{-A}\right) \tag{3.3}
\end{equation*}
$$

where F_{T} is a family of X-inert functions (depending on A) supported on $t_{0} \asymp Z$.

In case it is useful in other contexts, we mention that statement (1) only requires $Y / X \geq R$.

The part of the conclusion that F_{T} is a family of X-inert functions is not explicitly stated that way, but is implicit in $[1,(8.11)]$. Here we need to carefully mention that $[1,(8.11)]$ gives bounds on the derivatives of $F_{T}(y)$ viewing y as an independent variable. In practice, $y=t_{0}$ depends on ϕ in some way, and so more information is required in order to realize F_{T} as an inert function with respect to auxilliary variables.

4. An example

Suppose $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, and $w_{T}\left(x_{1}, x_{2}, x_{3}\right)$ is an X-inert family supported on $x_{i} \asymp X_{i}$ for all $i=1,2,3$. Suppose that the family $T \in \mathcal{F}$ may be parameterized by some real number $q \geq 1$, where $X<_{\varepsilon} q^{\varepsilon}$. Consider

$$
\begin{equation*}
I=\int_{\mathbb{R}^{3}} w_{T}\left(x_{1}, x_{2}, x_{3}\right) e\left(-t x_{1} x_{2} x_{3}+x_{1} \lambda_{1}+x_{2} \lambda_{2}+x_{3} \lambda_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \tag{4.1}
\end{equation*}
$$

Suppose that $t>0$ is so that $P:=t X_{1} X_{2} X_{3} \gg q^{\delta}$ for some fixed $\delta>0$, since otherwise the phase arising from $t x_{1} x_{2} x_{3}$ is hardly oscillatory (in this case, $e\left(-t x_{1} x_{2} x_{3}\right) w_{T}\left(x_{1}, x_{2}, x_{3}\right)$ is X-inert with $X<_{\varepsilon} q^{\varepsilon}$, so that Proposition 2.6 applies). Also, suppose that $X_{i} \ll q^{100}$, for each $i=1,2,3$. To begin, we first locate the λ_{i} into dyadic regions outside of which I is very small.

Since $\frac{\partial}{\partial x_{i}} \phi=\lambda_{i}-\frac{t x_{1} x_{2} x_{3}}{x_{i}}$ (here and throughout this example, our usage of ϕ differs by a factor of 2π from that in the previous section, but this has no significant effect), unless

$$
\begin{equation*}
\lambda_{i} \asymp \frac{P}{X_{i}}, \tag{4.2}
\end{equation*}
$$

then $\left|\frac{\partial}{\partial x_{i}} \phi\right| \gg\left|\lambda_{i}\right|+\frac{P}{X_{i}}$. In this scenario, we may apply Lemma 3.1 part (1) with $Z=X_{i}$ and $Y=\left|\lambda_{1}\right| X_{1}+P$. Since $Y \gg q^{\delta} \gg X^{2} q^{\varepsilon}$ by assumption, we conclude that $I \ll_{A} q^{-A}$ unless (4.2) holds.

Now suppose that (4.2) holds. Viewing x_{2}, x_{3} as fixed, change variables $x_{1} \rightarrow x_{1} \frac{X_{2} X_{3}}{x_{2} x_{3}}$, so that

$$
\begin{align*}
& I=\int_{\mathbb{R}^{3}} w_{T}\left(x_{1}, x_{2}, x_{3}\right) \tag{4.3}\\
& \quad e\left(-t x_{1} X_{2} X_{3}+x_{1} \lambda_{1} \frac{X_{2} X_{3}}{x_{2} x_{3}}+x_{2} \lambda_{2}+x_{3} \lambda_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}
\end{align*}
$$

where w_{T} denotes a new X-inert family of functions (we do not give a new name to the new family). The reason to perform this change of variables is to de-linearize the phase so that stationary phase may be applied in either the x_{2} or x_{3} variables. Let us focus on x_{3} first, where the phase takes the form $\phi=\lambda_{3} x_{3}+x_{1} \lambda_{1} \frac{X_{2} X_{3}}{x_{2} x_{3}}$, so

$$
\begin{equation*}
\frac{\partial}{\partial x_{3}} \phi=\lambda_{3}-x_{1} \lambda_{1} \frac{X_{2} X_{3}}{x_{2} x_{3}^{2}} \quad \text { and } \quad \frac{\partial^{2}}{\partial x_{3}^{2}} \phi=2 \frac{x_{1} \lambda_{1} X_{2} X_{3}}{x_{2} x_{3}^{3}} . \tag{4.4}
\end{equation*}
$$

The conditions of the Main Theorem hold with $Y=X_{1} \lambda_{1} \asymp P$ and $Z=X_{3}$, and with the stationary point $\left(x_{3}\right)_{0}=\left(\frac{\lambda_{1} x_{1} X_{2} X_{3}}{\lambda_{3} x_{2}}\right)^{1 / 2}$. For consistency, one may check from (4.2) that

$$
\begin{equation*}
\left(x_{3}\right)_{0} \asymp\left(\frac{\lambda_{1} X_{1} X_{3}}{\lambda_{3}}\right)^{1 / 2} \asymp X_{3}, \tag{4.5}
\end{equation*}
$$

so that indeed the magnitude of $\left(x_{3}\right)_{0}$ matches the support of w_{T}.
We therefore obtain from the Main Theorem that

$$
\begin{align*}
& I=\frac{X_{3}}{\sqrt{P}} \int_{\mathbb{R}^{2}} e\left(-t x_{1} X_{2} X_{3}\right) e\left(x_{2} \lambda_{2}+2 \sqrt{\frac{\lambda_{1} \lambda_{3} x_{1} X_{2} X_{3}}{x_{2}}}\right) \tag{4.6}\\
& w_{T}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \mathrm{~d} x_{1}+O_{A}\left(q^{-A}\right) .
\end{align*}
$$

Again, w_{T} represents a new X-inert family of functions.
Now we repeat the process for x_{2}. The new phase to consider is $\phi=$ $x_{2} \lambda_{2}+2 \sqrt{\frac{\lambda_{1} \lambda_{3} x_{1} X_{2} X_{3}}{x_{2}}}$ which satisfies

$$
\begin{equation*}
\frac{\partial}{\partial x_{2}} \phi=\lambda_{2}-\sqrt{\frac{\lambda_{1} \lambda_{3} x_{1} X_{2} X_{3}}{x_{2}^{3}}} \quad \text { and } \quad \frac{\partial^{2}}{\partial x_{2}^{2}} \phi=\frac{3}{2} \frac{\sqrt{\lambda_{1} \lambda_{3} x_{1} X_{2} X_{3}}}{x_{2}^{5 / 2}} . \tag{4.7}
\end{equation*}
$$

The conditions of the Main Theorem hold, with $Z=X_{2}$ and

$$
\begin{equation*}
Y=\sqrt{\lambda_{1} \lambda_{3} X_{1} X_{3}} \asymp P \tag{4.8}
\end{equation*}
$$

The stationary point occurs as

$$
\begin{equation*}
\left(x_{2}\right)_{0}=\left(\frac{\lambda_{1} \lambda_{3} x_{1} X_{2} X_{3}}{\lambda_{2}^{2}}\right)^{1 / 3} \tag{4.9}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& I=\frac{X_{2} X_{3}}{P} \int_{-\infty}^{\infty} e\left(-t x_{1} X_{2} X_{3}+3\left(\lambda_{1} \lambda_{2} \lambda_{3} x_{1} X_{2} X_{3}\right)^{1 / 3}\right) \tag{4.10}\\
& w_{T}\left(x_{1}\right) \mathrm{d} x_{1}+O_{A}\left(q^{-A}\right)
\end{align*}
$$

Finally, we perform stationary phase one final time, on x_{1}. We have $\phi=-t x_{1} X_{2} X_{3}+3\left(\lambda_{1} \lambda_{2} \lambda_{3} x_{1} X_{2} X_{3}\right)^{1 / 3}$ which satisfies the conditions of Theorem 3 with $Z=X_{1}$, and $Y=P$. The stationary point occurs at

$$
\begin{equation*}
\left(x_{1}\right)_{0}=\left(\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{t^{3} X_{2}^{2} X_{3}^{2}}\right)^{1 / 2} \tag{4.11}
\end{equation*}
$$

Similarly to the previous two cases, we have

$$
\begin{equation*}
I=\frac{X_{1} X_{2} X_{3}}{P^{3 / 2}} e\left(2 \sqrt{\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{t}}\right) W_{T}(\cdot)+O_{A}\left(q^{-A}\right) \tag{4.12}
\end{equation*}
$$

Here the notation $W_{T}(\cdot)$ denotes an inert function after specializing the variables in terms of the ambient parameters X_{i}, λ_{i}, t.

It is an important feature of the above analysis that if the original inert function appearing in (4.1) is X-inert in terms of additional variables (e.g. the λ_{i}), then the resulting inert function in (4.12) remains X-inert with respect to these variables.

An easy modification of the line of reasoning presented in this section can be used to analyze (1.1). Indeed, the astute reader may notice that the Conrey-Iwaniec integral (1.1) is of the same form as a threefold Fourier transform of (4.12) with the substitution $t \leftrightarrow 1 / t$.

5. Proof of the Main Theorem

Our proof of the Main Theorem proceeds gradually. As a first step, we will show

Lemma 5.1. Suppose w_{T} is X-inert in $t_{1}, \ldots t_{d}$, supported on $t_{1} \asymp Z$ and $t_{i} \asymp X_{i}$ for $i=2, \ldots, d$, and ϕ satisfies

$$
\begin{equation*}
\frac{\partial^{a_{1}+a_{2}+\cdots+a_{d}}}{\partial t_{1}^{a_{1}} \ldots \partial t_{d}^{a_{d}}} \phi\left(t_{1}, t_{2}, \ldots, t_{d}\right)<_{C_{\mathcal{F}}} \frac{Y}{Z^{a_{1}}} \frac{X^{a_{2}+\cdots+a_{d}}}{X_{2}^{a_{2}} \ldots X_{d}^{a_{d}}} \tag{5.1}
\end{equation*}
$$

on the support of w_{T}. Assume the conditions in Lemma 3.1(2) hold for $t=t_{1}$ (uniformly in t_{2}, \ldots, t_{d}), and that t_{0} satisfies

$$
\begin{equation*}
\frac{\partial^{b_{2}+\cdots+b_{d}}}{\partial t_{2}^{b_{2}} \ldots \partial t_{d}^{b_{d}}} t_{0}<_{C_{\mathcal{F}}} \frac{t_{0}}{X_{2}^{b_{2}} \ldots X_{d}^{b_{d}}}, \tag{5.2}
\end{equation*}
$$

for $t_{0} \asymp Z$ (that is, $\frac{1}{Z} t_{0}$ is 1-inert). Then

$$
\begin{equation*}
I=\frac{e^{i \phi\left(t_{0}, t_{2}, \ldots, t_{d}\right)}}{\sqrt{\phi^{\prime \prime}\left(t_{0}, t_{2}, \ldots, t_{d}\right)}} F_{T}\left(t_{0}, t_{2}, \ldots, t_{d}\right)+O_{A}\left(Z R^{-A}\right), \tag{5.3}
\end{equation*}
$$

where $F_{T}=F_{T}\left(t_{0}, t_{2}, \ldots, t_{d}\right)$ is X-inert in t_{2}, \ldots, t_{d}.
Lemma 5.1 differs from the Main Theorem in a few ways. The assumption (5.1) is slightly weaker than (3.1) because of the presence of X on the right hand side of (5.1). Moreover, Lemma 5.1 contains an additional assumption (5.2) on the behavior of the function t_{0} implicitly defined by $\phi^{\prime}\left(t_{0}, t_{2}, \ldots, t_{d}\right)=0$. Finally, the main term in (3.2) is simplified in that $\left(\phi^{\prime \prime}\left(t_{0}, t_{2}, \ldots, t_{d}\right)\right)^{-1 / 2}$ is, in essence, replaced by $Z Y^{-1 / 2}$. Before turning to the proof of Lemma 5.1, we state some additional lemmas that bridge the gap from Lemma 5.1 to the Main Theorem.

A simple yet common situation occurs when t_{0} is a generalized monomial in the other variables, meaning

$$
\begin{equation*}
t_{0}=c t_{2}^{\alpha_{2}} \ldots t_{d}^{\alpha_{d}} \tag{5.4}
\end{equation*}
$$

where the α_{i} are fixed real numbers and c is some constant (depending on $T)$. It is easy to see that if t_{0} is of the form (5.4), then it satisfies (5.2). The following result shows that t_{0} satisfies (5.2) in much greater generality.

Lemma 5.2. Let conditions be as in Lemma 5.1. Then $\frac{1}{Z} t_{0}$ (with t_{0} defined implicitly by $\left.\phi^{\prime}\left(t_{0}, t_{2}, \ldots, t_{d}\right)=0\right)$ is X-inert. In particular, if ϕ satisfies (5.1) with $X=1$ (as in the Main Theorem) the assumption (5.2) may be omitted from the statement of Lemma 5.1.

The reader may wonder, then, why we have retained the assumption (5.2) in Lemma 5.1. One reason is that in many important cases, it is easy to verify (5.2) directly (e.g. when (5.4) holds). Another reason is that our proof of Lemma 5.2 builds naturally on the proof of Lemma 5.1.

Once one knows that $\frac{1}{Z} t_{0}$ is X-inert, it is then not too difficult to absorb $\phi^{\prime \prime}\left(t_{0}, t_{2}, \ldots, t_{d}\right)^{-1 / 2}$ into the weight function. For this, we have

Lemma 5.3. Let conditions be as in the Main Theorem. Then

$$
\begin{equation*}
\frac{F_{T}\left(t_{0}, t_{2}, \ldots, t_{d}\right)}{\sqrt{\phi^{\prime \prime}\left(t_{0}, t_{2}, \ldots, t_{d}\right)}}=\frac{Z}{\sqrt{Y}} W_{T}\left(t_{2}, \ldots, t_{d}\right), \tag{5.5}
\end{equation*}
$$

for some family of X-inert functions W_{T}.

Taken together, Lemmas 5.1, 5.2, and 5.3 then finish the proof of the Main Theorem.

Proof of Lemma 5.1. The assumptions in place mean that if we consider t_{2}, \ldots, t_{d} as temporarily fixed, then I meets the conditions of Lemma 3.1, part (2), and so (3.3) holds. The bound $[1,(8.11)]$ gives that

$$
\frac{\mathrm{d}^{j}}{d y^{j}} F_{T}(y) \ll(X / Z)^{j} \asymp(X / y)^{j}
$$

However, this estimate views t_{2}, \ldots, t_{d} as fixed, and does not give bounds on the derivatives of F with respect to t_{i} with $2 \leq i \leq d$. To go further, we need to extract the origin of $F=F_{T}$ from [1]. We have

$$
F(y)=\sum_{n} p_{n}(y), \quad p_{n}(y)=\left.c_{n}\left(\phi^{\prime \prime}(y)\right)^{-n} G_{y}^{(2 n)}(t)\right|_{t=y}
$$

where the sum over n is finite (depending only on the desired value of A in (3.3)), c_{n} are certain absolute constants, and

$$
G_{y}(t)=G_{y}\left(t ; t_{2}, \ldots, t_{d}\right)=w_{T}\left(t, t_{2}, \ldots, t_{d}\right) e^{i H\left(t, y, t_{2}, \ldots, t_{d}\right)}
$$

where (with $\phi^{\prime \prime}$ representing the second derivative in the first variable)

$$
\begin{aligned}
& H\left(t, y, t_{2}, \ldots, t_{d}\right) \\
& \quad=\phi\left(t, t_{2}, \ldots, t_{d}\right)-\phi\left(y, t_{2}, \ldots, t_{d}\right)-\frac{1}{2} \phi^{\prime \prime}\left(y, t_{2}, \ldots, t_{d}\right)(t-y)^{2} .
\end{aligned}
$$

Remarks. Within the definition of p_{n} (and hence F), the symbol y is an arbitrary real number in the support of w_{T}. Within (3.3), we then substitute $y=t_{0}$, where now t_{0} is an implicit function of the other variables. Moreover, this expansion may seen to be equivalent to $[10,(3.4 .11)]$.

It may aid the reader to summarize the steps of [1] leading to the above expression for F. Firstly, Part (1) of Lemma 3.1 follows from repeated integration by parts. It turns out that under the assumptions of Part (2) of Lemma 3.1, one can well-approximate I by a shorter integral around t_{0} of length $\asymp \frac{Z}{\sqrt{Y}} R^{\varepsilon}$. The assumed lower bound on $\phi^{\prime \prime}$ leads to a lower bound on $\left|\phi^{\prime}\right|$, by the mean value theorem. One then uses the integration by parts bound on the complement of this small neighborhood around t_{0} to show this part of the integral is $O\left(R^{-A}\right)$. Now, to develop the main term, one approximates $\phi(t)$ by $\phi\left(t_{0}\right)+\frac{1}{2} \phi^{\prime \prime}\left(t_{0}\right)\left(t-t_{0}\right)^{2}+\cdots$, where the dots represents the cubic and higher terms which in turn are pulled in to the smooth weight function. Finally, one uses the Fourier inversion formula on an integral of the form $\int_{-\infty}^{\infty} e^{i A\left(t-t_{0}\right)^{2}} g(t) \mathrm{d} t$ where g has controlled derivatives.

From this point on, the proof of Lemma 5.1 is self-contained. We write p_{n} more explicitly as a function of y, t_{2}, \ldots, t_{d} as

$$
\begin{equation*}
p_{n}\left(y, t_{2}, \ldots, t_{d}\right)=\left.c_{n}\left(\frac{1}{\phi^{\prime \prime}\left(y, t_{2}, \ldots, t_{d}\right)}\right)^{n} \frac{\partial^{2 n}}{\partial t^{2 n}} G_{y}\left(t ; t_{2}, \ldots, t_{d}\right)\right|_{t=y} \tag{5.6}
\end{equation*}
$$

We see that $\left.G_{y}^{(2 n)}(t)\right|_{t=y}$ is a sum of scalar multiples of terms of the form

$$
w_{T}^{\left(\nu_{0}\right)}\left(y, t_{2}, \ldots, t_{d}\right) H^{\left(\nu_{1}\right)}\left(y, y, t_{2}, \ldots, t_{d}\right) \cdots H^{\left(\nu_{\ell}\right)}\left(y, y, t_{2}, \ldots, t_{d}\right),
$$

where the superscripts refer to partial differentiation in the first variable, where $\nu_{0} \geq 0, \nu_{1}, \ldots, \nu_{\ell} \geq 1$, and where $\nu_{0}+\nu_{1}+\cdots+\nu_{\ell}=2 n$. Note that $H^{(\nu)}\left(y, y, t_{2}, \ldots, t_{d}\right)=\phi^{(\nu)}\left(y, t_{2}, \ldots, t_{d}\right)$ for $\nu \geq 3$, and vanishes otherwise. We therefore deduce that

$$
\begin{equation*}
\left.G_{y}^{(2 n)}(t)\right|_{t=y} \ll \max _{\nu_{0}+\nu_{1}+\cdots+\nu_{\ell}=2 n}\left(\frac{X}{Z}\right)^{\nu_{0}} \frac{Y^{\ell}}{Z^{\nu_{1}+\cdots+\nu_{\ell}}} \ll \frac{X^{2 n}+Y^{2 n / 3}}{Z^{2 n}} \tag{5.7}
\end{equation*}
$$

with the final inequality seen as follows. Since we may assume $\nu_{i} \geq 3$ for $i \geq$ 1 , we have $3 \ell \leq \nu_{1}+\cdots+\nu_{\ell}=2 n-\nu_{0}$, whence $X^{\nu_{0}} Y^{\ell} \leq\left(X / Y^{1 / 3}\right)^{\nu_{0}} Y^{2 n / 3}$, which is acceptable for $X \leq Y^{1 / 3}$. On the other hand, if $X \geq Y^{1 / 3}$, then we use $Y^{\ell} X^{\nu_{0}} \leq X^{3 \ell+\nu_{0}} \leq X^{2 n}$ to obtain the desired bound.

Let $J_{n}\left(y, t_{2}, \ldots, t_{d}\right)=\left.G_{y}^{(2 n)}\left(t, t_{2}, \ldots, t_{d}\right)\right|_{t=y}$. A slight generalization of (5.7) shows

$$
J_{n}^{\left(a_{1}, a_{2}, \ldots, a_{d}\right)}\left(y, t_{2}, \ldots, t_{d}\right) \ll \frac{X^{2 n}+Y^{2 n / 3}}{Z^{2 n}} \frac{X^{a_{1}+a_{2}+\cdots+a_{d}}}{Z^{a_{1}} X_{2}^{a_{2}} \ldots X_{d}^{a_{d}}}
$$

The meaning of the superscripts on J_{n} now mean differentiation with respect to the different variables, viewing y as independent from t_{2}, \ldots, t_{d}.

Next we examine $\Phi_{n}\left(y, \ldots, t_{d}\right):=\left(\phi^{\prime \prime}\left(y, t_{2}, \ldots, t_{d}\right)\right)^{-n}$. We claim

$$
\begin{equation*}
\Phi_{n}^{\left(a_{1}, a_{2}, \ldots, a_{d}\right)}\left(y, t_{2}, \ldots, t_{d}\right) \ll\left(Z^{2} / Y\right)^{n} \frac{1}{Z^{a_{1}}} \frac{X^{a_{2}+\cdots+a_{d}}}{X_{2}^{a_{2}} \ldots X_{d}^{a_{d}}} . \tag{5.8}
\end{equation*}
$$

For this, we first note that an easy induction argument gives

$$
\frac{\mathrm{d}^{a}}{\mathrm{~d} x^{a}} \frac{1}{f(x)}=\sum_{j_{1}+\cdots+j_{a}=a} c_{j_{1}, \ldots, j_{a}} \frac{\left(f^{\left(j_{1}\right)}(x)\right) \ldots\left(f^{\left(j_{a}\right)}(x)\right)}{f(x)^{a+1}}
$$

for certain constants $c_{j_{1}, \ldots, j_{a}}$. Next we generalize to multiple variables. Let \mathbf{j}_{i} be a d-tuple of nonnegative integers, and let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$. Then

$$
\begin{equation*}
\frac{\partial^{a_{1}+\cdots+a_{d}}}{\partial y^{a_{1}} \ldots \partial t_{d}^{a_{d}}} \frac{1}{f\left(y, t_{2}, \ldots, t_{d}\right)}=\sum_{\mathbf{j}_{1}+\mathbf{j}_{2}+\cdots+\mathbf{j}_{\mathbf{a} \cdot \mathbf{1}}=\mathbf{a}} c_{\mathbf{j}_{1}, \ldots \mathbf{j}_{\mathbf{a} \cdot \mathbf{1}}} \frac{f^{\left(\mathbf{j}_{1}\right)} \ldots f^{\left(\mathbf{j}_{\mathbf{a} \cdot \mathbf{1}}\right)}}{f^{\mathbf{a} \cdot \mathbf{1}+1}} \tag{5.9}
\end{equation*}
$$

where $\mathbf{1}$ is the 1 -vector of length d (so $\mathbf{a} \cdot \mathbf{1}=a_{1}+\cdots+a_{d}$), and $c_{\mathbf{j}_{1}, \ldots, \mathbf{j}_{\mathbf{a} \cdot \mathbf{1}}}$ are absolute constants. This may be easily verified by induction.

One may show directly from (5.1) that

$$
\begin{equation*}
\frac{\partial^{b_{1}+\cdots+b_{d}}}{\partial y^{b_{1}} \ldots \partial t_{d}^{b_{d}}}\left(\phi^{\prime \prime}\left(y, t_{2}, \ldots, t_{d}\right)\right)^{n} \ll\left(\frac{Y}{Z^{2}}\right)^{n} \frac{1}{Z^{b_{1}}} \frac{X^{b_{2}+\cdots+b_{d}}}{X_{2}^{b_{2}} \ldots X_{d}^{b_{d}}} \tag{5.10}
\end{equation*}
$$

Combining (5.9) with (5.10) and that $\phi^{\prime \prime}(t) \gg Y / Z^{2}$, we derive that

$$
\begin{aligned}
& \Phi_{n}^{\left(a_{1}, \ldots, a_{d}\right)}\left(y, t_{2}, \ldots, t_{d}\right) \\
& \ll \sum_{\mathbf{j}_{1}+\mathbf{j}_{2}+\cdots+\mathbf{j}_{\mathbf{a} \cdot \mathbf{1}}=\mathbf{a}} \frac{\left(\frac{Y}{Z^{2}}\right)^{n(\mathbf{a} \cdot \mathbf{1})} \prod_{k=2}^{d}\left(\frac{X}{X_{k}}\right)^{\mathbf{j}_{1} \cdot \mathbf{e}_{k}+\cdots+\mathbf{j}_{\mathbf{a} \cdot \mathbf{1}} \cdot \mathbf{e}_{k}}}{Z^{\mathbf{j}_{1} \cdot \mathbf{e}_{1}+\cdots+\mathbf{j}_{\mathbf{a} \cdot} \cdot \mathbf{e}_{1}}\left(\frac{Y}{Z^{2}}\right)^{n(\mathbf{a} \cdot \mathbf{1}+1)}},
\end{aligned}
$$

where \mathbf{e}_{k} is the k th standard basis vector. This simplifies to give the claimed (5.8).

Putting the above bounds together, we derive that

$$
\begin{equation*}
p_{n}^{\left(a_{1}, \ldots, a_{d}\right)}\left(y, t_{2}, \ldots, t_{d}\right) \ll\left(\left(\frac{X^{2}}{Y}\right)^{n}+\left(\frac{1}{Y^{1 / 3}}\right)^{n}\right) \frac{X^{a_{1}+\cdots+a_{d}}}{Z^{a_{1}} X_{2}^{a_{2}} \ldots X_{d}^{a_{d}}} \tag{5.11}
\end{equation*}
$$

Since $Y / X^{2} \geq R \geq 1$, this gives an asymptotic expansion in n as $R \rightarrow \infty$ (as in [1]), and each p_{n} is X-inert in all variables. Therefore, F is also X-inert in all variables (again, viewing y as an independent variable).

As a final step we need to incorporate the fact that t_{0}, which is substituted for y, is not an independent variable but rather a function of t_{2}, \ldots, t_{d}. We may derive the shape of a general derivative of F as follows. Let $\mathbf{a}=\left(a_{2}, \ldots, a_{d}\right), \mathbf{j}=\left(j_{2}, \ldots, j_{d}\right), \mathbf{k}=\left(k_{2}, \ldots, k_{d}\right)$, and \mathbf{b}_{i} be ($d-1$)-tuples of nonnegative integers. We claim

$$
\begin{align*}
& \frac{\partial^{a_{2}+\cdots+a_{d}}}{\partial t_{2}^{a_{2}} \ldots \partial t_{d}^{a_{d}}} F\left(t_{0}, t_{2}, \ldots, t_{d}\right) \tag{5.12}\\
& \quad=\sum_{\mathbf{j}+\mathbf{k} \leq \mathbf{a}} \sum_{N \leq j_{2}+\cdots+j_{d}} \sum_{\mathbf{b}_{1}+\cdots+\mathbf{b}_{N}+\mathbf{k}=\mathbf{a}} c_{\mathbf{j}, \mathbf{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{N}} \\
& \\
& \quad \times F^{\left(j_{2}+\cdots+j_{d}, k_{2}, \ldots, k_{d}\right)} t_{0}^{\left(\mathbf{b}_{1}\right)} \ldots t_{0}^{\left(\mathbf{b}_{N}\right)},
\end{align*}
$$

where the condition $\mathbf{j}+\mathbf{k} \leq \mathbf{a}$ is interpreted componentwise (so $j_{\ell}+k_{\ell} \leq a_{\ell}$ for all ℓ), and the c_{*} 's are absolute constants. Moreover, we emphasize that the notation $F^{\left(j_{2}+\cdots+j_{d}, k_{2}, \ldots, k_{d}\right)}$ here and below represents partial differentation of F with y viewed as an independent variable. Once one guesses this shape of expression, it is not difficult to verify it using induction.

Using (5.12), (5.11), and (5.2), we derive

$$
\begin{aligned}
& \frac{\partial^{a_{2}+\cdots+a_{d}}}{\partial t_{2}^{a_{2}} \cdots \partial t_{d}^{a_{d}}} F\left(t_{0}, t_{2}, \ldots, t_{d}\right) \\
& \ll \max \frac{X^{j_{2}+\cdots+j_{d}+k_{2}+\cdots+k_{d}}}{Z^{j_{2}+\cdots+j_{d}} X_{2}^{k_{2}} \cdots X_{d}^{k_{d}}} \frac{Z^{N}}{\prod_{\ell=2}^{d} X_{\ell}^{\left(\mathbf{b}_{1}+\cdots+\mathbf{b}_{N}\right) \cdot \mathbf{e}_{\ell}}},
\end{aligned}
$$

where the maximum is over $\mathbf{j}+\mathbf{k} \leq \mathbf{a}, N \leq j_{2}+\cdots+j_{d}, \mathbf{b}_{1}+\cdots+\mathbf{b}_{N}+\mathbf{k}=\mathbf{a}$. Since $N \leq j_{2}+\cdots+j_{d}$, in the Z-aspect, the above bound is $\ll 1$ (meaning, the exponent on Z is ≤ 0). The power on X is at most $a_{2}+\cdots+a_{d}$, and the power of X_{ℓ} in the denominator is a_{ℓ}. Hence

$$
\frac{\partial^{a_{2}+\cdots+a_{d}}}{\partial t_{2}^{a_{2}} \ldots \partial t_{d}^{a_{d}}} F\left(t_{0}, t_{2}, \ldots, t_{d}\right) \ll\left(\frac{X}{X_{2}}\right)^{a_{2}} \cdots\left(\frac{X}{X_{d}}\right)^{a_{d}}
$$

which is precisely the desired condition to show that F is X-inert. This completes the proof of Lemma 5.1.

Proof of Lemma 5.2. Let $f=\phi^{\prime}$ (the derivative with respect to the first variable, t_{1}), so t_{0} is defined implicitly by $f\left(t_{0}, t_{2}, \ldots, t_{d}\right)=0$. Note that (5.1) translates to

$$
f^{\left(a_{1}, a_{2}, \ldots, a_{d}\right)}\left(t_{1}, t_{2}, \ldots, t_{d}\right) \ll \frac{Y}{Z} \frac{1}{Z^{a_{1}}}\left(\frac{X}{X_{2}}\right)^{a_{2}} \ldots\left(\frac{X}{X_{d}}\right)^{a_{d}}
$$

Likewise, the condition $\phi^{\prime \prime}(t) \gg Y / Z^{2}$ means

$$
f^{(1,0, \ldots, 0)}\left(t_{1}, t_{2}, \ldots, t_{d}\right) \gg \frac{Y}{Z^{2}}
$$

Implicit differentiation gives

$$
t_{0}^{\left(\mathbf{e}_{j_{0}}\right)}=-\frac{f^{\left(\mathbf{e}_{j_{0}}\right)}}{f^{\left(\mathbf{e}_{1}\right)}}
$$

where $j_{0} \in\{2,3, \ldots, d\}$, and \mathbf{e}_{j} denotes the j-th standard basis vector. From this, we easily deduce $t_{0}^{\left(\mathbf{e}_{j_{0}}\right)} \ll Z \frac{X}{X_{j_{0}}}$, consistent with $\frac{1}{Z} t_{0}$ being X inert. Now we proceed inductively to treat arbitrary derivatives. Let $\mathbf{a}=$ $\left(a_{2}, \ldots, a_{d}\right)$. We have

$$
t_{0}^{\left(\mathbf{a}+\mathbf{e}_{j_{0}}\right)}=-\frac{\partial^{a_{2}+\cdots+a_{d}}}{\partial t_{2}^{a_{2}} \ldots \partial t_{d}^{a_{d}}} \frac{f^{\left(\mathbf{e}_{j_{0}}\right)}\left(t_{0}, t_{2}, \ldots, t_{d}\right)}{f^{\left(\mathbf{e}_{1}\right)}\left(t_{0}, t_{2}, \ldots, t_{d}\right)}
$$

As shorthand, let $g=f^{\left(\mathbf{e}_{j_{0}}\right)}$, and $h=f^{\left(\mathbf{e}_{1}\right)}$. By (5.12), we have

$$
\begin{array}{r}
\frac{\partial^{a_{2}+\cdots+a_{d}}}{\partial t_{2}^{a_{2}} \ldots \partial t_{d}^{a_{d}}}\left(\frac{g}{h}\right)=\sum_{\mathbf{j}+\mathbf{k} \leq \mathbf{a}} \sum_{N \leq j_{2}+\cdots+j_{d} \mathbf{b}_{1}+\cdots+\mathbf{b}_{N}+\mathbf{k}=\mathbf{a}} c_{\mathbf{j}_{2}, \ldots, \mathbf{j}_{d}, \mathbf{k}, N, \mathbf{b}_{1}, \ldots, \mathbf{b}_{N}} \\
\times\left(\frac{g}{h}\right)^{\left(j_{2}+\cdots+j_{d}, k_{2}, \ldots, k_{d}\right)} t_{0}^{\left(\mathbf{b}_{1}\right)} \ldots t_{0}^{\left(\mathbf{b}_{N}\right)} .
\end{array}
$$

Note the total "degree" of any \mathbf{b}_{i} is at most that of \mathbf{a}, so our inductive hypothesis gives the desired bound for these $t_{0}^{\left(\mathbf{b}_{i}\right)}$.

We claim that

$$
\begin{equation*}
\left(\frac{g}{h}\right)^{\left(\alpha, k_{2}, \ldots, k_{d}\right)} \ll Z \frac{X}{X_{j_{0}}} \frac{1}{Z^{\alpha}}\left(\frac{X}{X_{2}}\right)^{k_{2}} \ldots\left(\frac{X}{X_{d}}\right)^{k_{d}} \tag{5.13}
\end{equation*}
$$

Taking this for granted for a moment, we derive

$$
\begin{aligned}
t_{0}^{\left(\mathbf{a}+\mathbf{e}_{j_{0}}\right)} \ll & \sum_{\mathbf{j}+\mathbf{k} \leq \mathbf{a}} \sum_{N \leq j_{2}+\cdots+j_{d}} \sum_{\mathbf{b}_{1}+\cdots+\mathbf{b}_{N}+\mathbf{k}=\mathbf{a}} \\
& Z \frac{X}{X_{j_{0}}} \frac{1}{Z^{j_{2}+\cdots+j_{d}}}\left(\frac{X}{X_{2}}\right)^{k_{2}} \cdots\left(\frac{X}{X_{d}}\right)^{k_{d}} Z^{N} \prod_{\ell=2}^{d}\left(\frac{X}{X_{\ell}}\right)^{\left(\mathbf{b}_{1}+\cdots+\mathbf{b}_{N}\right) \cdot \mathbf{e}_{\ell}}
\end{aligned}
$$

using the inductive hypothesis. This simplifies as

$$
t_{0}^{\left(\mathbf{a}+\mathbf{e}_{j_{0}}\right)} \ll Z \frac{X}{X_{j_{0}}}\left(\frac{X}{X_{2}}\right)^{a_{2}} \ldots\left(\frac{X}{X_{d}}\right)^{a_{d}}
$$

as desired.
Now we prove the claim (5.13). The generalized product rule gives

$$
\left(\frac{g}{h}\right)^{(\mathbf{m})}=\sum_{\mathbf{m}_{1}+\mathbf{m}_{2}=\mathbf{m}} c_{\mathbf{m}_{1}, \mathbf{m}_{2}} g^{\left(\mathbf{m}_{1}\right)}\left(\frac{1}{h}\right)^{\left(\mathbf{m}_{2}\right)}
$$

Meanwhile, the derivatives of $1 / h$ are given by (5.9). Therefore,

$$
\begin{aligned}
&\left(\frac{g}{h}\right)^{\left(\alpha, k_{2}, \ldots, k_{d}\right)} \ll \sum_{\mathbf{m}_{1}+\mathbf{m}_{2}=\left(\alpha, k_{2}, \ldots, k_{d}\right)} \frac{Y}{Z} \frac{X}{X_{j_{0}}} \frac{1}{Z^{\mathbf{m}_{1} \cdot \mathbf{e}_{1}}} \prod_{\ell=2}^{d}\left(\frac{X}{X_{\ell}}\right)^{\mathbf{m}_{1} \cdot \mathbf{e}_{\ell}} \\
& \quad \times \sum_{\mathbf{j}_{1}+\cdots+\mathbf{j}_{\mathbf{m}_{2} \cdot \mathbf{1}}=\mathbf{m}_{2}} \frac{\left(\frac{Y}{Z^{2}}\right)^{\mathbf{m}_{2} \cdot \mathbf{1}}}{\left(\frac{Y}{Z^{2}}\right)^{\mathbf{m}_{2} \cdot \mathbf{1}+1}} \frac{1}{Z^{\left(\mathbf{j}_{1}+\ldots \mathbf{j}_{\mathbf{m}_{2} \cdot \mathbf{1}}\right) \cdot \mathbf{e}_{1}}} \prod_{\ell=2}^{d}\left(\frac{X}{X_{\ell}}\right)^{\left(\mathbf{j}_{1}+\ldots \mathbf{j}_{\mathbf{m}_{2} \cdot \mathbf{1}}\right) \cdot \mathbf{e}_{\ell}} .
\end{aligned}
$$

This simplifies to give the claimed bound.
Proof of Lemma 5.3. Suppose $D \subset \mathbb{R}$ is an open interval, and $f: D \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{d} \rightarrow D$ are smooth. It is not hard to show that

$$
\begin{align*}
& \frac{\partial^{a_{1}+\cdots+a_{d}}}{\partial x_{1}^{a_{1}} \ldots \partial x_{d}^{a_{d}}} f\left(g\left(x_{1}, \ldots, x_{d}\right)\right) \tag{5.14}\\
&=\sum_{1 \leq k \leq \mathbf{a} \cdot \mathbf{1} \mathbf{j}_{1}+\cdots+\mathbf{j}_{k}=\mathbf{a}} c_{\mathbf{j}_{1}, \ldots, \mathbf{j}_{k}} f^{(k)}(g) g^{\left(\mathbf{j}_{1}\right)} \ldots g^{\left(\mathbf{j}_{k}\right)}
\end{align*}
$$

for certain constants c_{*}. If f is fixed, and g is part of an X-inert family of functions, then one may easily deduce that $f \circ g$ is also an X-inert family.

In the present context, we take $g=\frac{Z^{2}}{Y} \phi^{\prime \prime}\left(t_{0}, t_{2}, \ldots t_{d}\right)$, which forms an X-inert family of functions, by the previous lemmas. Since $\phi^{\prime \prime} \asymp \frac{Y}{Z^{2}}$ by
assumption, the image of g is contained in a fixed open interval of positive reals (not including 0). We may take $f(u)=u^{-1 / 2}$, which is smooth on the image of g.

References

[1] V. Blomer, R. Khan \& M. P. Young, "Distribution of Maass of holomorphic cusp forms", Duke Math. J. 162 (2013), no. 14, p. 2609-2644.
[2] J. B. Conrey \& H. Iwaniec, "The cubic moment of central values of automorphic L functions", Ann. Math. 151 (2000), no. 3, p. 1175-1216.
[3] S. W. Graham \& G. Kolesnik, van der Corput's method of exponential sums, London Mathematical Society Lecture Note Series, vol. 126, Cambridge University Press, 1991.
[4] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003.
[5] M. N. Huxley, Area, lattice points, and exponential sums, London Mathematical Society Monographs. New Series, vol. 13, Oxford University Press, 1996.
[6] H. Iwaniec \& E. Kowalski, Analytic number theory, Colloquium Publications, vol. 53, American Mathematical Society, 2004.
[7] E. M. Kiral \& M. P. Young, "The fifth moment of modular L-functions", https://arxiv. org/abs/1701.07507, 2017.
[8] I. Petrow \& M. P. Young, "A generalized cubic moment and the Petersson formula for newforms", Math. Ann. 373 (2019), no. 1-2, p. 287-353.
[9] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 1993.
[10] M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical Society, 2012.

Eren Mehmet Kiral
Department of Mathematics
Texas A\&M University
College Station
TX 77843-3368, U.S.A.
E-mail: erenmehmetkiral@protonmail.com
URL: https://ekiral.github.io/
Ian Petrow
ETH Zürich - Departement Mathematik
HG G 66.4
Rämistrasse 101
8092 Zürich, Switzerland
E-mail: ian.petrow@math.ethz.ch
URL: https://people.math.ethz.ch/~petrowi/
Matthew P. Young
Department of Mathematics
Texas A\&M University
College Station
TX 77843-3368, U.S.A.
E-mail: myoung@math.tamu.edu
URL: http://www.math.tamu.edu/~myoung/

[^0]: Manuscrit reçu le 3 mars 2018, accepté le 25 septembre 2018.
 2010 Mathematics Subject Classification. 41A60, 42A38.
 Mots-clefs. Oscillatory integrals, Stationary phase.
 The first author was partially supported by an AMS-Simons travel grant, and thanks RIKEN iTHEMS for access to their office space. The second author was supported by Swiss National Science Foundation grant PZ00P2_168164. This material is based upon work of M.Y. supported by the National Science Foundation under agreement No. DMS-1401008. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

