
65-9

Two complete and minimal systems associated
with the zeros of the Riemann zeta function

par JEAN-FRANÇOIS BURNOL

RÉSUMÉ. Nous relions trois thèmes restés jusqu’alors distincts:
les propriétés hilbertiennes des zéros de Riemann, la "formule

duale de Poisson" de Duffin-Weinberger (que nous appelons for-
mule de co-Poisson), les espaces de fonctions entières "de Sonine"
définis et étudiés par de Branges. Nous déterminons dans quels
espaces de Sonine (étendus) les zéros forment un système com-
plet, ou minimal. Nous obtenons des résultats généraux concer-
nant la distribution des zéros des fonctions entières de de Branges-
Sonine. Nous attirons l’attention sur certaines distributions liées à
la transformation de Fourier et qui sont apparues dans nos travaux
anterieurs.

ABSTRACT. We link together three themes which had remained
separated so far: the Hilbert space properties of the Riemann ze-
ros, the "dual Poisson formula" of Duffin-Weinberger (also named
by us co-Poisson formula), and the "Sonine spaces" of entire func-
tions defined and studied by de Branges. We determine in which
(extended) Sonine spaces the zeros define a complete, or minimal,
system. We obtain some general results dealing with the distri-
bution of the zeros of the de-Branges-Sonine entire functions. We
draw attention onto some distributions associated with the Fourier
transform and which we introduced in our earlier works.

1. The Duffin-Weinberger "dualized" Poisson formula (aka
co-Poisson)

We start with a description of the "dualized Poisson formula" of Duffin
and Weinberger ([13, 14]). We were not aware at the time of [7] that
the formula called by us co-Poisson formula had been discovered (much)
earlier. Here is a (hopefully not too inexact) brief historical account: the
story starts with Duffin who gave in an innovative 1945 paper [10] a certain
formula constructing pairs of functions which are reciprocal under the sine
transform. As pointed out by Duffin in the conclusion of his paper a special
instance of the formula leads to the functional equation of the L-function
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1 - ls + 5S - ... (as we explain below, this goes both ways in fact). The
co-Poisson formula which we discuss later will stand in a similar relation
with the zeta function 1 + 29 + ..., the pole of zeta adding its own
special touch to the matter. Weinberger extended in his dissertation [25]
this work of Duffin and also he found analogous formulae involving Hankel
transforms. Boas [1] gave a formal argument allowing to derive Duffin
type formulae from the Poisson formula. However formal arguments might
be misleading and this is what happened here: formula [1, 3.(iii)] which
is derived with the help of a purely formal argument looks like it is the
co-Poisson formula, but is not in fact correct. It is only much later in
1991 that Duffin and Weinberger [13] (see also [14]) published and proved
the formula which, in hindsight, we see now is the one to be associated
with the Riemann zeta function. They also explained its "dual" relation
to the so-much-well-known Poisson summation formula. In [7] we followed
later a different (esoterically adelic) path to the same result. As explained
in [7], there are manifold ways to derive the co-Poisson formula (this is
why we use "co-Poisson" rather than the "dualized Poisson" of Duffin and
Weinberger). In this Introduction we shall explain one such approach: a
re-examination of the Fourier meaning of the functional equation of the
Riemann zeta function.
When applied to functions which are compactly supported away from

the origin, the co-Poisson formula creates pairs of cosine-tranform recipro-
cal functions with the intriguing additional property that each one of the
pair is constant in some interval symmetrical around the origin. Imposing
two linear conditions we make these constants vanish, and this leads us to a
topic which has been invented by de Branges as an illustration, or challenge,
to his general theory of Hilbert spaces of entire functions ([3]), apparently
with the aim to study the Gamma function, and ultimately also the Rie-
mann zeta function. The entire functions in these specific de Branges spaces
are the Mellin transforms, with a Gamma factor, of the functions with the
vanishing property for some general Hankel transform (the cosine or sine
transforms being special cases). These general "Sonine Spaces" were intro-
duced in [2], and further studied and axiomatized by J. and V. Rovnyak
in [22]. Sonine himself never dealt with such spaces, but in a study ([23])
of Bessel functions he constructed a pair of functions vanishing in some in-
terval around the origin and reciprocal under some Hankel transform. An
account of the Sonine spaces is given in a final section of [3], additional
results are to be found in [4] and [5]. As the co-Poisson formula has not
been available in these studies, the way we have related the Riemann zeta
function to the Sonine spaces in [7] has brought a novel element to these
developments, a more intimate, and explicit, web of connections between
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the Riemann zeta function and the de Branges spaces, and their extensions
allowing poles.

Although this paper is mostly self-contained, we refer the reader to "On
Fourier and Zeta(s)" ([7]) for the motivating framework and additional
background and also to our Notes [6, 8, 9] for our results obtained so far
and whose aim is ultimately to reach a better understanding of some aspects
of the Fourier Transform.

Riemann sums F(n), or -IF(2), T T have special connections
with, on one hand the Riemann zeta function ((s) = (itself ob-
tained as such a summation with F(x) = x-S), and, on the other hand,
with the Fourier Transform.

In particular the functional equation of the Riemann zeta function is
known to be equivalent to the Poisson summation formula:

which, for simplicity, we apply to a function 1( x) in the Schwartz class of
smooth quickly decreasing functions.

Note 1. We shall make use of the following convention for the Fourier
Transform:

With a scaling-parameter u # 0, (1) leads to:

which, for the Gaussian Ø(x) = gives the Jacobi identity for the
theta function (a function of u2). Riemann obtains from the theta identity
one of his proofs of the functional equation of the zeta function, which we
recall here in its symmetrical form:

But there is more to be said on the Riemann sums p~( u ) from
the point of view of their connections with the Fourier Transform than just
the Poisson summation formula (2); there holds the co-Poisson intertwin-

("dualized Poisson formula" of Duffin-Weinberger [13]), which
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reads:
, ., B

We show in [7] that it is enough to suppose for its validity that the inte-
grals f~ and JJRg(y)dy are absolutely convergent. The co-Poisson
formula then computes the Fourier Transform of a locally integrable func-
tion which is also tempered as a distribution, the Fourier transform having
the meaning given to it by Schwartz’s theory of tempered distributions. In
the case when g(x) is smooth, compactly supported away from x = 0, then
the identity is an identity of Schwartz functions. It is a funny thing that
the easiest manner to prove for such a g(x) that the sides of (4) belong to
the Schwartz class is to use the Poisson formula (2) itself. So the Poisson
formula helps us in understanding the co-Poisson sums, and the co-Poisson
formula tells us things on the Poisson-sums.
A most interesting case arises when the function g(x) is an integrable

function, compactly supported away from x = 0, which turns out to have
the property that the co-Poisson formula is an identity in The
author has no definite opinion on whether it is, or is not, an obvious prob-
lem to decide which (compactly supported away from x = 0) will be
such that (one, hence) the two sides of the co-Poisson identity are square-
integrable. The only thing one can say so far is that has to be itself

square-integrable.

Note 2. Both the Poisson summation formulae (1), (2), and the co-Poisson
intertwining formula (4) tell us 0 = 0 when applied to odd functions (tak-
ing derivatives leads to further identities which apply non-trivially to odd-
functions.) In all the following we deal only with even functions on the
real line. The square integrable among them will be assigned squared-norm

dt. We let K = L2(0, oo; dt), and we let F+ be the cosine trans-
form on K:

The elements of K are also tacitly viewed as even functions on R.

Let us return to how the functional equation (3) relates with (2) and (4).
The left-hand-side of (3) is, for
expression which is valid in the critical strip is:

/ ,
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More generally we have the Muntz Formula [24, 11.11]:

We call the expression inside the parentheses the modified Poisson sum
(so the summation is accompanied with the substracted integral). Replac-
ing 0(t) with with g(t) smooth, compactly supported away from
t = 0, gives a formula involving a co-Poisson sum:

Let us now write f (s) = the right Mellin Transform,
as opposed to the left Mellin Transform dt. These transforms

are unitary identifications of K = L2(0, oo; dt) with £2(s =-1 + iT; 
Let 7 be the unitary operator 1(f)(t) = f (1 It) / I t I - The composite F+.1 is
scale invariant hence diagonalized by the Mellin Transform, and this gives,
on the critical line:

with a certain function X(s) which we obtain easily from the choice f (t) =
to be ~rs-1/2r(12s)~r(2), hence also X(s) _ s).

The co-Poisson formula (4) follows then from the functional equation in
the form

together with (7) and (6). And the Poisson formula (2) similarly follows
from (8) together with (5). We refer the reader to [7] for further discussion
and perspectives.
The general idea of the equivalence between the Poisson summation for-

mula (2) and the functional equation (3), with an involvement of the left
Mellin Transforrrc f(t)tS-1 dt, has been familiar and popular for many
decades. Recognizing that the right Mellin Transform f (t)t-S dt allows
for a distinct Fourier-theoretic interpretation of the functional equation
emerged only recently with our analysis [7] of the co-Poisson formula.
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2. Sonine spaces of de Branges and co-Poisson subspaces

Let us now discuss some specific aspects of the co-Poisson formula (4)
(for an even function):

, - , 
-

We are using the right Mellin transform = f °° g(t)t-S dt. Let us take
the (even) integrable function g(t) to be with its support in [a, A] (and, as
will be omitted from now on, also [-A, -a] of course), with 0  a  A. Let
us assume that the co-Poisson sum F(t) given by the right hand side belongs
to K = L2(0, oo; dt). It has the property of being equal to the constant
-g(1) in (0, a) and with its Fourier (cosine) transform again constant in
(0,1/A). After rescaling, we may always arrange that aA = 1, which we
will assume henceforth, so that I /A = a (hence, here, 0  a  1).

So we are led to associate to each a &#x3E; 0 the sub-Hilbert space La of K
consisting of functions which are constant in (0, a) and with their cosine
transform again constant in (0, a). Elementary arguments (such as the
ones used in [7, Prop. 6.6]), prove that the La’s for 0  a  oo compose a

strictly decreasing chain of non-trivial infinite dimensional subspaces of K
with K = Ua&#x3E;oLa, {0} = La = Ub&#x3E;aLb (one may also show that
Ub&#x3E;aLb, while dense in La, is a proper subspace). This filtration is a slight
variant on the filtration of K which is given by the Sonine spaces Ka, a &#x3E; 0,
defined and studied by de Branges in [2]. The Sonine space Ka consists of
the functions in K which are vanishing identically, as well as their Fourier
(cosine) transforms, in (0, a). The terminology "Sonine spaces", from [22]
and [3], includes spaces related to the Fourier sine transform, and also to
the Hankel transforms, and is used to refer to some isometric spaces of
analytic functions; we will also call Ka and La "Sonine spaces" . In the

present paper we use only the Fourier cosine tranform.

Theorem 2.1 (De Branges [2]). Let 0  a  oo. Let f (t) belong to Ka.
Then its completed right Mellin transforms is an

entire function. The evaluations at complex numbers w are continuous

linear forms on Ka.

We gave an elementary proof of this statement in [6]. See also [8,
Th6or6me 1] for a useful extension. Some slight change of variable is nec-
essary to recover the original de Branges formulation, as he ascribes to the
real axis the role played here by the critical line. The point of view in [2]
is to start with a direct characterization of the entire functions M( f ) (s).
Indeed a fascinating discovery of de Branges is that the space of functions
M(f)(s), f E Ka satisfies all axioms of his general theory of Hilbert spaces
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of entire functions [3] (we use the critical line where [3] always has the real
axis). It appears to be useful not to focus exclusively on entire functions,
and to allow poles, perhaps only finitely many.

Proposition 2.2 ([7, 6.10]). Let f (t) belong to La. Then its completed
right Mellin transform M( f )(s) _ a meromorphic func-
tion in the entire complex plane, with at most poles at 0 and at 1. The

evaluation f H for 0, ~ ~ 1, or f H Ress=o(M( f )),
f H Ress-1(M( f )) are continuous linear forms on La. One has the func-
tional equations M(,~+( f ))(s) = M( f )(1 - s).
We will write a for the vector in La with

This is 0,1. For w = 0 we have Yo which computes the residue
at 0, and similarly Y# for the residue at 1. We are using the bilinear
forms [f, g] = f (t)g(t) dt and not the Hermitian scalar product ( f , g) =

f (t)g(t) dt in order to ensure that the dependency of Yw,k with respect
to w is analytic and not anti-analytic. There are also evaluators in

the subspace Ka, which are (for w # 0,1 ) orthogonal projections from La
to Ka of the evaluators 

Definition 3. We let Ya C La be the closed subspace of La which is

spanned by the vectors 1 0  1~  mp, associated to the non-trivial

zeros p of the Riemann zeta function with multiplicity mp.

Definition 4. We let the "co-Poisson subspace" 
be the subspace of square-integrable functions F(t) which are co-Poisson
sums of a function g E L 1 (a, A; dt) (A = 

The subspace of Ka defined analogously to Ya is denoted Za (rather ZA)
in [7]. The subspace of Ka analogous to the co-Poisson subspace Pa of La
is denoted Wa (rather WA) in [7]. One has n Ka. It may be
shown that if the integrable function g(t), compactly supported away from
t = 0, has its co-Poisson sum in La, then g is supported in [a, A] and is
square-integrable itself.

3. Statements of Completeness and Minimality
It is a non-trivial fact that Pa (and Wa also, as is proven in [7]) is closed.

This is part of the following two theorems.

Theorem 3.1. The vectors ya P, ki 0  k  mp, associated with the non-
trivial zeros of the Riemann zeta function, are a minimal system in La if
and only if a  1. They are a complete system if and only if a &#x3E; 1. For
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a  1 the perpendicular complement to Ya is the co-Poisson subspace Pd.
For a &#x3E; 1 we may omit arbitrarily (finitely) many of the and still

have a complete system in La. 

Theorem 3.2. The vectors ZP ~, 0  k  mp, are a minimal, but not com-
plete, system for a  1. They are not minirraal for a = 1~ but the system
obtained from omitting 2 arbitrarily chosen among them (with the conven-
tion that one either orrtits and ZP,,",,P_2 or and ZP,,~~~P~_1)
is again a minimal system, which is also complete in In the case a &#x3E; 1

the vectors are complete in Ka, even after omitting arbitrarily (finitely)
many among them.

Remark 5. This is to be contrasted with the fact that the evaluators 

associated with the non-trivial zeros of a Dirichlet L-function x) (for
an even primitive character of conductor q) are a complete and minimal
system in Completeness was proven in [7, 6.30], and minimality is
established as we will do here for the Riemann zeta function.

We use the terminology that an indexed collection of vectors in a

Hilbert space K is said to be minimal if no ua is in the closure of the linear

span of the u(3 ’s, (3 ~ a, and is said to be complete if the linear span of
the ua’s is dense in K. To each minimal and complete system is associated
a uniquely determined dual system (va) with (v(3, ua) _ (actually in
our Ld’s, we use rather the bilinear form ~f,g~ = Such a
dual system is necessarily minimal, but by no means necessarily complete
in general (as an example, one may take ~n = 1 - zn, n &#x3E; 1, in the Hardy
space of the unit disc. Then Vm = for m &#x3E; 1, and they are not
complete).

For simplicity sake, let us assume that the zeros are all simple. Then,
once we know that ((S)/(8 - p), for p a non-trivial zero, belongs to the
space Li of (right) Mellin transforms of elements of L1, we then identify
the system dual to the as consisting of (the inverse Mellin transforms
of) the functions ((S)/((8 - ~(p)7r’~r(~/2)). Without any simplifying
assumption, we still have that the dual system is obtained from suitable lin-
ear combinations (it does not seem very useful to spell them out explicitely)
of the functions ((S)/(8 - p)~, 1  l  p a non-trivial zero.
The proofs of 3.1 and 3.2 are a further application of the technique of [7,

Chap.6], which uses a Theorem of Krein on Nevanlinna functions [19, 17].
Another technique is needed to establish the completeness in Li of the
functions ((8)/(8 - p)i, 1 ::; 1  ?7~:

Theorem 3.3. The functions ((8)/(8 - p)l, for p a non-trivial zero and
1 ::; 1  mp belong to L1. They are minimal and complete in Li. The dual
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system consists of vectors given for each p by triangular linear combinations
of the evaluators 0  k  mp.

There appears in the proof of 3.3 some computations of residues which are
reminiscent of a theorem of Ramanujan which is mentioned in Titchmarsh
[24, IX.8.].
The last section of the paper deals with the zeros of an arbitrary Sonine

functions, and with the properties of the associated evaluators. We obtain
in particular a density result on the distribution of its zeros, with the help
of the powerful tools from the classical theory of entire functions [20].

4. Aspects of Sonine functions

Note 6. We let La be the vector space of right Mellin transforms of ele-
ments of La (and similarly for Ka). They are square-integrable functions
on the critical line, which, as we know from 2.2 are also meromorphic in the
entire complex plane. We are not using here the Gamma-completed Mellin
transform, but the bare Mellin transform f (s), which according to 2.2 has
trivial zeros at -2n, n &#x3E; 0, and possibly a pole at s = 1~ and possibly does
not vanish at s = 0.

Definition 7. We let 1HI2 be the Hardy space of the right half-plane Re(s) &#x3E;

1/2. We simultaneously view]HI2 as a subspace of L2(Re(s) = 2, and
as a space of analytic functions in the right half-plane. We also use self-
explanatory notations such as 

The right Mellin transform is an isometric identification of L2(1, oo; dt)
with this is one of the famous theorems of Paley-Wiener [21], af-
ter a change of variable. Hence, for 0  a and A = 1 /a, the right
Mellin transform is an isometric identification of with ASIHf2.
Furthermore, the right Mellin transform is an isometric identification of
C . loto, + L2( a, oo; dt) with This leads to the following char-
acterization of La:

Proposition 4.1. The subspace La of L2(Re(s) = consists of
the measurable functions F(s) on the critical line which belong to 
and are such that s) also belongs to Such a function
F(s) is the restriction to the critical line of an analytic function, meromor-
phic in the entire complex plane with at most a pole at s = 1, and with
trivial zeros at s = -2n, n E I~, n &#x3E; 0.

Proof. We know already from 2.2 that functions in La have the stated
properties. If a function F(s) belongs to viewed as a space
of (equivalence classes of) measurable functions on the critical line, then
it is square-integrable and is the Mellin transform of an element f (t) of
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C. 10ta + L2(a, oo; dt). We know that the Fourier cosine transform of f
has x(s)F(1- s) as Mellin transform, so the second condition on F tells us
that f belongs to La. 0

We recall that X(s) is the function (expressible in terms of the Gamma
function) which is involved in the functional equation of the Riemann zeta
function (8), and is in fact the spectral multiplier of the scale invariant
operator F+ - I, for the right Mellin transform.

Note 8. Abusively, we will say that X(s)F(1- s) is the Fourier transform
of F(s), and will sometimes even instead of x(s)F(l - s).
It is zcseful to take note that if we write F(s) = ~’(s)B(s) we then have
X(s)F(l - s) = ((s)O(l - s). 

’

Proposition 4.2. The functions (( s) / (s - p)’, 1  1  mp associated with

the non-trivial zeros of the Riemann zeta function belong to L1.

Proof. The function F(s) = ((s)/(s- p)l is square-integrable on the critical
line. And X (s) F (1 - s) = 1) 1 ( (s) / (s - (1- p)) 1. So we only need to prove
that s S 1 ~(s)/(s - p)l belongs to This is well-known to

be true of s-/((8)/8 (from the formula ((8)/8 = 11(s - 1) - It .rp:rSdt,
valid for 0  Re(s)), hence it holds also for If we exclude a

neigborhood of p then p)l is bounded, so going back to the definition
of]HI2 as a space of analytic functions in the right half-plane with a uniform
bound of their L2 norms on vertical lines we obtain the desired conclusion.

D

The following will be useful later:

Proposition 4.3. If G(s) belongs to La and vanishes

at s = w then G(s)/(s - w) again belongs to La. If G(s) belongs to Ka and
7r-S/2r()G(s) vanishes at s = w then G(s)/(s - iv) again belongs to Ka.2

Proof. We could prove this in the "t-picture", but will do it in the "s-

picture". We see as in the preceding proof that G(s)/(s - w) still belongs
The entire function s(s- vanishes at s = w

so s(s-1)~r’-s~2I~(2).~+(G)(s) vanishes at s = 1-w and the same argument
then shows that X(s)G(l - s)/(l - s - ~v) belongs to We then

apply Proposition 4.1. The statement for Ka is proven analogously. 0

Note 9. It is a general truth in all de Branges’ spaces that such a statement
holds for zeros w symmetry axis (which is here the critical line). This

is, in fact, almost one of the axioms for de Branges’ spaces. The possibility
to divide by (s - w) if w is on the symmetry axis depends on whether the
structure function E (on this, we refer to [3]) is not vanishing or vanishing
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at w. For the Sonine spaces, the proposition 4.3 proves that the structure
functions Ea(z) have no zeros on the symmetry axis. For more on the

Ea(z)’s and allied functions, see [8] and [9].
A variant on this gives:

Lemma 4.4. If F(s) belongs to ka then F(s)/s belongs to L~,.
Proof. The function F(s)/s (which is regular at s = 0) belongs to the space
AsH2, simply from Re(s) &#x3E; 2. Its image under the Fourier
transform is .~’+(F)(s)/(1 - s) which belongs to 0

Proposition 4.5. One has dim(La/Ka) = 2.

Proof. This is equivalent to the fact that the residue-evaluators Yo and Yl
are linearly independent in La, which may be established in a number of
elementary ways; we give two proofs. Evaluators off the symmetry axis
are always non-trivial in de Branges spaces so there is F(s) E Ka with
F’(0) ~ 0 (one knows further From [6, Th6or6me 2.3.] that any finite

system of vectors Za.,k in Ka is a linearly independent system). So we have
F(s)/s = G(s) E La not vanishing at 0 but with no pole at 1. Its "Fourier
transform" s) vanishes at 0 but has a pole at 1. This proves

dim(La/Ka) &#x3E; 2 and the reverse equality follows from the fact that the
subspace Ka is defined by two linear conditions.

For the second proof we go back to the argument of [6] which identifies
the perpendicular complement to Ka in L2(0, oo; dt) to be the closed space
L2(0, a)+F+(L2(0, a)). It is clear that La is the perpendicular complement
to the (two dimensions) smaller space (L2 (0, a) f1 + .~+(L2(~, a) n

and this proves 4.5. D

The technique of the second proof has the additional benefit:

Proposition 4.6. The union Ub» Kb is dense in Ka, and Lb is dense
in Ld.

Proof. Generally speaking + Bb) = (nb&#x3E;aAb) + when we
have vector spaces indexed by b &#x3E; a with Abi C A62 and Bbl C Bb2 for
b1  b2 and Ab n Bb = 101 for b &#x3E; a. We apply this to Ab = L2 (0, b; dt) and
Bb = +L2 b, lt, as Ka = (Aa + Aa = nb&#x3E;aab, Ba = nb&#x3E;aBb,
and Aa + Ba is closed as a subspace of L2(0, oo; dt). 0

Proposition 4.7. The vector space Kb is properly included in Ka and
the same holds for the respective subspaces of Fourier invariant, or skew,
functions (and similarly for La).

Proof. Let g E Kb, with b &#x3E; a and g having the leftmost point of its
support at b. Then has the leftmost point of its support at a. If g
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is invariant under Fourier then we use + .jfg(atjb) to obtain
again an invariant function, with leftmost point of its support at a. D

Definition 10. We say that a function F(s), analytic in C with at most
finitely many poles, has the L-Property if the estimates F(Q + iT) _

+ hold (away from the poles), for -oo  a  a 
b  oo, E &#x3E; 0. 

-

Theorem 4.8. The functions in La have the L-Property.

Proof. Let g(t) be a function in La and let G(s) = Jooo g(t)t-S dt be its
right Mellin transform. The function g(t) is a constant a(g) on (0, a). An
expression for G(s) as a meromorphic function (in -1  Re(s)  1, hence)
in the right half-plane is:

We established in [6] a few results of an elementary nature about the func-
tions which are denoted there Ca(u,1 - s) (in particular
we showed that these functions are entire functions of s). For Re(s)  1

one has according to [6, eq. 1.3.]:

hence for 0  Re(s)  1:

This is bounded on 4  Re(s)  4 (using the well-known uniform esti-
mate IIm(s)/27rI-Re(s)+1/2 as lim(s)l - oo in vertical strips [24,
IV.12.3.~). We also have from integration by parts and analytic continua-
tion to Re(s &#x3E; 0 the expression:

-- ..
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which is O(lsl/u) on 1  Re(s)  4, 0  u. Combining all this we find the
estimate: 

-1 -

This (temporary) estimate justifies the use of the Phragmen-Lindelof prin-
ciple from bounds on Re(s) = -1 ±,E. On any half-plane Re(s) &#x3E; 2 + 6 &#x3E; 2
(excluding of course a neighborhood of s = 1) one has G(s) = O(ARe(s))
from the fact that (s - 1)G(s)ls belongs to AsH 2 and that elements of
H 2 are bounded in Re(s) &#x3E; 2 + E &#x3E; 2. And the functional equation

2 
2

G(1 - s) = X(1 - gives us estimates on the left half-plane.
This shows that the L-Property holds for G(s). In particular, the Lindel6f
exponents JIG (a) are at most 0 and at most 2 - Q for Q  2. D

Remark 11. In fact, the proof given above establishes the L-Property
for G(s) in a stronger form than stated in the definition 10. One has for
example G(s) = 0,7((l + for each q &#x3E; 0, on the strip! -1} 

G(s) = for each c &#x3E; 0 on 1  Re(s)  1 (away from the
allowed pole at s = 1), and G(s) = on Re(s) &#x3E; 2 + &#x3E; 0.

Definition 12. We let £1 to be the sub-vector space of L1 containing the
functions g(t) whose right-Mellin transforms G(s) are on all

vertical strips a  Re(s)  b, and for all integers N &#x3E; 1 (away from the
pole, and the implied constant depending on g, a, b, and N).
Theorem 4.9. The sub-vector space Ll is dense in L1.

Proof. From proposition 4.6 we only have to show that any function G(s) in
a Lb, b &#x3E; 1 is in the closure of Z-1. For this let 0(s) be the Mellin transform
of a smooth function with support in satisfying 0(i) = 1. The
function 0(s) is an entire function which decreases faster than any (inverse)
power of Isl as IIm(s)1 -&#x3E; oo in any given strip a ::; a G b. Let us consider
the functions = 0(,E(s - 1) + !)G(s) as e ~ 0. On the critical line they
are dominated by a constant multiple of so they are square-integrable
and converge in L2-norm to G(s). We prove that for 1  exp(-E)b  b
these functions all belong to G1. Their quick decrease in vertical strips is
guaranteed by the fact that G(s) has the L-Property. The function

on the critical line is the Mellin transform of a multiplicative convolution
on (0, oo) of an element in L2(b, oo) with a smooth function supported in

The support of this multiplicative convolution will be
included in if 1  exp(-E)b. So for those E &#x3E; 0 one has G,(s) E

Its image under .~’+ is 0(-E(s - 1) + ])7+ (G) (s) = OT(E(S - 2) +
2).~’+(G)(s) where 07’(w) = 0 (1 - w) has the same properties as 0 (w) (we
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recall our abusive notation = X(s)F(l - s).) Hence 
also belongs to s H2 and this completes the proof that G, (s) E £i . 0

Lemma 4.10. The subspace Ll is stable under Jc*+.

Proof. Clear from the estimates of x(s) in vertical strips ([24, IV. 12.3.]). 0

5. Completeness of the system of functions ((s)/(s - p)
We will use a classical estimate on the size of ((s)-l:

Proposition 5.1 (from [24, IX.7.]). There is a real number A and a strictly
increasing sequence Tn &#x3E; n such that 1((s)l-l  IslA on IIm(s)1 = Tn,
-1  Re(s)  +2.

Note 13. From now on an infinite sum ¿pa(p) (with complex numbers or
functions or Hilbert space vectors a(p)’s indexed by the non-trivial zeros of
the Rierraann zeta function) means a(p), where the limit
might be, if we are dealing with functions, a pointwise almost everywhere
limit, or a Hilbert space limit. When we say that the partial sums are
bounded (as complex numbers, or as Hilbert space vectors) we only refer to
the partial sums as written above. When zve say that the series is absolutely
convergent it means that we group together the contributions of the p’s with
Tn  lim(p) I  Tn+l before evaluating the absolute value or Hilbert norm.
When building series of residues we write sometimes things as if the zeros
were all simple: this is just to make the notation easier, but no hypothesis
is made in this paper on the multiplicities mp, and the formula used for
writing a(p) is a symbolic representation, valid for a simple zero, of the more
complicated expression which would apply in case of multiplicity, which we
do not spell out explicitely.

Theorem 5.2. Let G(s) be a functions in L1 which belongs to the dense
subspace G1 of functions with quick decrease in vertical strips. Then the
series of residues for a fixed Z =f. 1, not a zero:

converges absolutely pointwise to G(Z) on (C ~ 111. It also converges abso-

Lutely in L2-norm to G(Z) on the critical line.

This is a series of residues for f where s is the variable 1Z-s

is a parameter (with the exception of the residue at s = Z). We have
written the contribution of p as if it was simple (Titchmarsh uses a simlar
convention in [24, IX.8.]). In fact the exact expression is a linear combina-
tion of ( (Z) / (Z - p)l, 1  L  mp . We note that the trivial zeros and s = 1
are not singularities and contribute no residue.
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Proof of Theorem 5.2. Let us consider first the pointwise convergence. We
fix Z, not 1 and not a zero and consider the function of s

B/ 2013

We apply the calculus of residues to the contour integral around a rectangle
with corners 1 ± A :f: 2Tn where A &#x3E; 2 is chosen sufficiently large such
that both Z and 1 - Z are in the open rectangle when n is large enough.
Thanks to 5.1 and the fact that G(s) has quick decrease the contribution of
the horizontal segments vanish as n - oo. The contribution of the vertical
segments converge to the (Lebesgue convergent) integral over the vertical
lines and we obtain:

We prove that the vertical contributions vanish. The functional equation
~i~ ’B T 1-11 1

reduces the case Re(s) = 2 - A to the case Re(s) = 2 + A. That last

integral does not change when we increase A. We note that the L 2 -norms
of G(s) on Re(s) = Q &#x3E; 2 are uniformly bounded because this is true

with G(s) replaced with (s - 1)G(s)ls (which belongs to a Hardy space).
Also = 0(1) in Re(s) &#x3E; 2. The Cauchy-Schwarz inequality then
shows that the integral goes to 0 as A 2013~ oo. This proves the pointwise
convergence:

p

Going back to the contribution of the zeros with Tn  ~Im(p) ~ I  and

expressing it as a contour integral we see using G(s) E Gl and Proposition
5.1 that the series of residues is clearly absolutely convergent (with the
meaning explained in Note 13).
To show that the series converges to G(Z) in L2 on the critical line it

will be enough to prove it to be absolutely convergent in L2. We may with
the same kind of reasoning prove the absolute convergence of the series of
residues:

/""11 B

For this we consider G(s)/((s) along rectangles with vertical borders on
Re(s) = 2 ~ 2 and horizontal borders at the +Tn and :l:Tn+1. The functional
equation (to go from Re(s) = -1 to Re(s) = 2), the estimate 5.1 and
the fact that G(s) belongs to G1 then combine to prove that this series of
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residues is absolutely convergent. In fact it converges to 0 as we prove later,
but this is not needed here. So returning to the problem of L2-convergence
we need only prove the L2 absolute convergence on the critical line of:

And for this it will be smfhcient to prove the L2 absolute convergence of:

We note that the function to 

hence the same holds for each of the function above depending on p. In

case of a multiple zero its contribution must be re-interpreted as a residue
and will be as a function of Z a linear combination of the (Z-1)(Z)/(Z-
p)l(Z + 2)2, 1  1  mp, which also belong to JHI2(Re(s) -). It will

thus be enough to prove that the series above is L2-absolutely convergent
on the line Re(Z) = -), as the norms are bigger on this line than on the
critical Line. We may then remove one factor (Z - 1)/(Z + 2) and we are
reduced to show that

is L2-absolutely convergent on Re(Z) = -2. What we do now is to re-
express for each Z on this line the contributions of the zeros with T 
lim(p)l ]  Tn+1 as a contour integral on the rectangles (one with positive
imaginary parts and the other its reflection in the horizontal axis) bor-
dered vertically by Re(s) _ -4 and Re(s) = +4. This will involve along
this contour the function of s:

- I’" I -, , -’- ,

For a given fixed s Re(s)  + ( the function of Z on Re(Z) _ - 2
given by

has its L2 norm which is O ( 1 + Indeed:
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and ~(Z)/Z(Z+2) is square-integrable on Re(Z) _ -2. The integrals along
these rectangular contours of the absolute values give,
from the quick decrease of G(s) and the Proposition 5.1, a convergent series.
With this the proof of 5.2 is complete. D

This gives:

Corollary 5.3. The functions ((s)/(s - p)l, 1 G 1  mp associated with

the non-trivial zeros are a complete system in L1.

We also take note of the following:

Proposition 5.4. One has for each G(s) in the dense subspace 4:

where the series of residues is absolutely convergent.

Proof. We have indicated in the proof of 5.2 that the series is absolutely
convergent and its value is

We prove that the cr = 2 integral vanishes, and integral will
then too also from the functional equation

where also belongs to G1. Using on Q = 2 the absolutely convergent
expression f.-t(k)k-S it will be enough to prove:c IF,) - -

We shift the integral to the critical line and obtain

On the critical line we have in the L2-sense G(s) = for a
certain square-integrable function f (t) (which is with G(s) = g(s)).
The Fourier-Mellin inversion formula gives, in square-mean sense:

As G(s) is on the critical line for arbitrary N, we find that f (t) is
a smooth function on (0, oo) given pointwise by the above formula. From



82

the definition of L1 one has f (t) = c/t for t &#x3E; 1 with a certain constant

c. The function fo f(t)tS-1dt is analytic for Re(s) &#x3E; 2 so the residue

of G(s) comes from c - t,-2 dt. This is first for Re(s)  1 then by
analytic continuation the function -c/(s - 1) so Resi(G) = -c, and on
the other hand f (k) _ +c/k. Combining all this information the proof is
complete. D

Remark 14. The result is (slightly) surprising at first as we will prove
that the evaluators associated with the zeros are a complete and minimal
system.

Remark 15. These computations of residues are reminiscent of a formula
of Ramanujan which is mentioned in Titchmarsh [24, IX.8.]. For ab =

7r, a &#x3E; 0:

where the meaning of the sum over the zeros is the one from Note 13.

6. Completion of the proofs of 3.1, 3.2, 3.3

We also prove that the evaluators associated with the zeros are a com-

plete system in L1. This is a further application of the technique of [7,
Chap. 6] which uses the theory of Nevanlinna functions and especially that
part of a fundamental theorem of Krein [19] which says that an entire func-
tion which is Nevanlinna in two complementary half-planes is necessarily
of finite exponential type (see e.g. [17, I.§4~).

Proposition 6.1. Let a &#x3E; 1. The vectors associated with the non-
trivial zeros of the Riemann zeta function are complete in La.

Proof. If g E La is perpendicular to all those vectors (hence also ;=+(9))
then its right Mellin transform G(s) factorizes as:

with an entire function 0(s). We have used that G(s) shares with ~(s) its
trivial zeros and has at most a pole of order 1 at s = 1. This expression
proves that 0(s) belongs to the Nevanlinna class of the right half-plane (as
G(s) and ~(s) are meromorphic functions in this class). From the functional
equation:

we see that 0(s) also belongs to the Nevanlinna class of the left half-plane.
According to the theorem of Krein [19, 17] it is of finite exponential type
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which (if 0 is not the zero function) is given by the formula:

We know that G(s)/~(s) is O(ARe(s)) (with A = 1/a) in Re(s) &#x3E; 2 and
similarly So this settles the matter for A  1 (a &#x3E; 1) as
the formula gives a strictly negative result. For a = 1 we obtain that 0(s) is
of minimal exponential type. From the expression G(s)/~(s) on Re(s) = 2
it is square-integrable on this line. From the Paley-Wiener Theorem [21]
being of minimal exponential type it in fact vanishes identically. D

Proposition 6.2. Let a &#x3E; 1. The vectors associated with the non -

trivial zeros of the Riemann zeta function are not minimal: indeed they
remain a complete system in Ll even after omitting arbitrarily finitely many
among them.

Proof. We adapt the proof of the preceding proposition to omitting the
vectors associated with the zeros from a finite set R. The starting point
will be

for a certain entire function 8(s). The Krein formula for its exponential
type again gives a strictly negative result. So 0 vanishes identically. D

Theorem 6.3. Let a = 1. The vectors associated with the non-trivial

zeros of the Riemann zeta function are a minimal (and complete) system in
Li. The vectors, inverse Mellin transforms of the functions ((s)/(s - p)l,
1  L  are a minimal (and complete) system in L1.

Proof. The fact that the functions ~(s)/(s - 1 ::; belong to Li
implies that the evaluators are a minimal system. We know already
that they are a complete system. The system of the (( s ) / (s - p)l, 1 ::;
I  mp, is, up to triangular invertible linear combinations for each p the
uniquely determined dual system. As a dual system it has to be minimal.
And we know already from 5.3 that it is a complete system. D

This completes the proof of 3.3.

Proposition 6.4. Let a  1. The vectors are minimal and not com-

plete in La. 

Proof. If they were not minimal, their orthogonal projections to L1 which
are the vectors would not be either. And they are not complete from
the existence of the co-Poisson subspace Pa. D
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With this the proof of 3.1 is completed, with the exception of the iden-
tification of the co-Poisson space as the perpendicular complement to the
space spanned by the We refer the reader to [7, Chap.6] especially
to [7, Theorems 6.24, 6.25] which have all the elements for the proof, as it
does not appear useful to devote space to this here.

Proposition 6.5. The vectors are not minimal in K1. In fact K1
is spanned by these vectors even after omitting _~ and Zp12 ’ m P2 _~

p2), or and (mp &#x3E; 2), from the list. This shortened

system is then a minimal system.

Proof. If f in K1 is perpendicular (for the form ( f, g~ - to

this shortened list of evaluators then its right Mellin transform factorizes
as 

, ~, LI’ ,

where we have used that F(0) = 0 and that F(s) has no pole at s = 1.
In this expression we have the two cases p2 and pi = p2. The proof
then proceeds as above and leads to F(s) = 0. To prove minimality for the
shortened system one only has to consider the functions

associated with the remaining zeros (and remaining multiplicities), as they
are easily seen to be the right Mellin transforms of elements from the Sonine
space Kl. 0

Proposition 6.6. Let a &#x3E; 1. The vectors Za span Ka even after omitting
arbitrarily finitely many among therra. 

Proof. They are the orthogonal projections to Ka of the vectors in

La . 
~ 

D

Theorem 6.7. Let a  1. The vectors Za are minimal in Ka.
Proof. Let 0(t) be a smooth non-zero function supported in [a, A] (A =
1/a &#x3E; 1). Its right Mellin transform is then O(AlRe(8)1) on C. And if
P(s) is an arbitrary polynomial, then P(8)0(8) = BP(s) for a certain smooth
function BP, again supported in [a, A], so 0p (s) = Hence 
decreases faster than any inverse polynomial in any given vertical strip,
in particular on -1 G Re(s)  2. From this we see that the function

G(s) = 8 ( 8 - 1) O( 8) (( s) is square-integrable on the critical line and belongs
to (one may write G(s) = s38(s)(s - 1)~(s)/s2, and use the fact that
(s - 1)((s)/s2 belongs to We have x(s)G(I - s) = 8( S - 1)W(l - ~(~)
so again this belongs to ASJHI2. This means that G(s) is the right Mellin
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transform of a (non-zero) element g of Ka. Let us now take a non-trivial
zero p, which for simplicity we assume simple. We choose the function 0(t)
to be such that 0, which obviously may always be arranged. Then,
using 4.2, G(s)/(s - p) is again the Mellin transform of a non-zero element
gp in This element is perpendicular (for the bilinear form [f, g]) to all
the evaluators except which it is not perpendicular. So can

not be in the closed span of the others. The proof is easily extended to the
case of a multiple zero (we don’t do this here, as the next section contains
a proof of a more general statement). D

The three theorems 3.1, 3.2, 3.3 are thus established.

7. Zeros and evaluators for general Sonine functions

Let us more generally associate to any non-empty multiset Z of complex
numbers (a countable collection of complex numbers, each assigned a finite
multiplicity) the problem of determining whether the associated evaluators
are minimal, or complete in a Sonine space Ka or an extended Sonine space
La. To be specific we consider the situation in Ka, the discussion could be
easily adapted to La. From the fact that the Sonine spaces are a decreasing
chain, with evaluators in Ka projecting orthogonally to the evaluators in
Kb for b &#x3E; a, we may associate in [0, +00] two indices al(Z) and a2(Z) to
the multiset Z E C. The index will be such that the evaluators are a
minimal system for a  and not a minimal system for a &#x3E; and
the index a2(Z) will be such that the evaluators are complete for a &#x3E; a2(Z)
but not complete for a  a2(.~). Let us take for example the multiset to
have an accumulation point w (there is for each E &#x3E; 0 at least one complex
number z in the support of Z with 0   E): then the system is never
minimal and is always complete so that a1 = 0 and a2 = 0. As another
example we take the multiset to have finite cardinality: then the evaluators
are always minimal and never complete so al = +oo, and a2 = +oo. For
the zeros of the Riemann zeta function we have a1 = a2 = 1. There is a

general phenomenon here:
Theorem 7.1. The equality ai(Z) = a2(Z) always holds.

Let us thus write a(Z) for either a1(Z) or a2(~). We will prove that a(Z)
does not change from adding or removing a finite multiset to Z (maintaining
Z non-empty):
Theorem 7.2. If 0  a  a(Z) then the evaluators associated to Z remain
not complete, and minimal, in Ka, after including arbitrarily finitely many
other evaluators.

Theorem 7.3. If a(Z)  a  oo then the evaluators associated to Z
remain completes, and not minimal,, in Ka after omitting arbitrarily finitely
many among them.
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We will say that g(t) is a Sonine function if it belongs to Ua&#x3E;oKa C
L2(0, 00; dt). We also say that G(s) is a Sonine function if it is the right
Mellin transform of such a g(t).
Lemma 7.4. If the system of evaluators associated in a given Ka to a
(non-empty) multiset Z is not complete, then it is minimal. Alternatively,
if it is not minimal, it has to be complete.

Proof. Let us assume that the system is not complete. Then we have a

non zero Sonine function G(s) in Kd such that ~r-s~2r(2)G(s) vanishes
on Z. From the proposition 4.3 we know that if = 0

then G(s)/(s - w) is again a Sonine function in Ka. Let us now proceed
to take p in the support of Z, and divide G(s) by powers of (s - p) to
construct functions which vanish exactly to the k-th order at p, for 0  k 
mz (p) (this is after incorporating the Gamma factor). From suitable linear
combinations we construct further an a-Sonine function whose 1-th
derivative for 0 G l  (again with the Gamma factor incorporated)
vanishes at p, except for 1 = 1~ for which it does not vanish, and with 
vanishing on the remaining part of the multiset Z. This proves that the
evaluators in Ka associated with Z are minimal. 0

We note that this provides an alternative route to our statement from [6]
that finitely many evaluators are always linearly independent in Ka, once
we know that Ka is infinite dimensional.

Lemma 7.5. If the system of evaluators associated in a given Ka to a
(non-empty) multiset Z is minimal, then it is not complete in any Kb with
b  a.

Proof. We pick a p in the support of Z, with multiplicity mP. As the system
is minimal, we have the existence of at least one Sonine function G(s) in Ka
which vanishes on the other part of Z but vanishes only to the 
order at p. Let us now consider a function F(s) = 0(s)G(s) where 0(s) is
the Mellin transform of a non-zero smooth function supported in an interval
[exp( -E), exp( +E)]. We know from Theorem 4.8 that Sonine functions have
the L-Property, so using the arguments of the smoothing technique in the
proof of Theorem 4.9 we obtain easily that any such F(s) is a non-zero
element of Lb for any b  exp(-E)a. Replacing 0(s) by (s - p)O(s) we
may impose 0(p) = 0. Then F(s) (with the Gamma factor) vanishes on Z
and this proves that the evaluators associated with Z are not complete in
L6. D

At this stage we have completed the proof of Theorem 7.1: Lemma 7.4
implies a2(~)  and Lemma 7.5 implies G a2(~).
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Lemma 7.6. If the system of evaluators associated in a given Ka to a
(non-empty) multiset Z is minimal, then it is not complete in any Kb with
b  a, even after adding to the system of evaluators associated with Z
arbitrarily finitely many other evaluators.

Proof. We only have to replace the function 0(s) from the preceding proof
by P(s)O(s) where P(s) is an arbitrary polynomial. 0

This, together with Lemma 7.4, clearly implies Theorem 7.2. It also

implies the Theorem 7.3: let us suppose a(Z)  a  oo. Let us imagine
that after removing finitely many evaluators we do not have a complete
system. Then this remaining system, being not complete, has to be minimal
from Lemma 7.4. We just proved that in these circumstances the system
in a Kb with b  a can not be complete, even after including finitely many
arbitrary evaluators. This gives a contradiction for a(Z)  b  a, as we

may reintegrate the omitted evaluators. So Theorem 7.3 holds.
Let g be a non-zero Sonine function. We write A(g) &#x3E; 0 for the minimal

point of the support of g and J.L(g) &#x3E; 0 for the minimal point of the support
of F+ (g). And we let a(g) be VÀ(g)J.L(g).

To each non-zero Sonine function g we associate the multiset ~9 (which
will be proven to have infinite cardinality) of its non-trivial zeros: these are
the zeros of the completed Mellin transform 7r 2 so 0, -2, ... ,

might be among them but they are counted with multiplicity one less than
in g( s) .

Before proceeding further we need to recall some classical results from the
Theory of Nevanlinna functions and Hardy Spaces. We refer the reader for
example to [3, Chap. 1] and [17,1.§4] for proofs and more detailed statements
(see also [15, 16, 18]). A Nevanlinna function F(s) in a half-plane (we
consider here Re(s) &#x3E; 2 ) is an analytic function which may be written
as the quotient of two bounded analytic functions. To each non-zero F is
associated a real-number h(F), its mean type (in the terminology from [3]),
which may be obtained (in the case of the half-plane Re(s) &#x3E; 2 ) from the
formula h(F) = lim sup,,+. log The mean-type of a product is
the sum of the mean types. The mean-type contributes a factor e 2 to
the Nevanlinna-Smirnov factorization of the function F(s), in particular,
for the specific case of the Smirnov-Beurling factorization of an element in
JHI2, , it gives the special inner factor (here h  0). The other factors have
mean type 0. In the particular case when F(s) is the right Mellin transform
of a square-integrable function f (t) supported in [A, +oo), A &#x3E; 0, then the
mean-type of F is also log( f/)-1) where .~( f ) &#x3E; A &#x3E; 0 is the lowest point
of the support of f . To see this, we may after a multiplicative translation
assume that A (f ) = 1. We want to prove that the mean-type of F is 0.
One has h G 0 as F is bounded, say for Re(s) &#x3E; 1. In the canonical
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factorization of F, the outer factor is still an element of the Hardy space.
The inner factor is bounded by 1. So F(s) belongs to ehsJHI2, which is the
subspace of Mellin transforms of L2(e-h, oo; dt), so h = 0. We conclude
this brief summary with Krein’s theorem [19], which we have already used
in the previous proofs. This important theorem (see [17, I.~4~) states in
particular that an entire function 0(s) which is in the Nevanlinna class
in two complementary half-planes is necessarily of finite exponential type.
Furthermore the exponential type is the maximum of the mean-types for
the two half-planes. Hence, if 0 is not the zero function, at least one of the
two mean-types has to be non-negative.
We will also need some classical results from the theory of entire func-

tions [20]. Let F(z) be an entire function. Then F is said ([20, 1.§12]) to
have normal type with respect to the (Lindel6f) refined (proximate) order
r log(r) (which is the one useful to us here) if

If this holds, the generalized Phragmen-Lindelof indicator function is de-
fined as:

_ ._....

One proves that the indicator function of the entire function F(z) of normal
type is finite valued and is a continuous "trigonometrically convex" function
of 0 ([20, I.g18]).
Remark 16. The indicator function for F(z - a) is the same as the one
for F(z): to see this one may use the upper estimate [20, 1.§18, Thm 28]
log IF (r  (hF(~9) + E)r log(r) for r &#x3E; r, in a given open angular sector
I  q, and the continuity of hF at 0. The parallel ray starting
at a is contained in this sector except for a finite segment, so the indicator
function based at a is bounded above by the one based at the origin, and
vice versa.

A ray Lo =  r  00} is a ray of completely regular growth
(CRG-ray, [20, III~ ) for F if

where the excluded set EB C (0, oo) has vanishing upper relative linear
density. The set of CRG-rays is closed. The entire function F(z) is said to
be of completely regular growth if all the rays are CRG-rays. A fundamental
theorem [20, III. §3] which applies to CRG-functions states that the number
n(r, a, {3) of zeros of modulus at most r in the open angular sector a  0  {3
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has the following asymptotic behavior:

under the condition that hF admits derivatives at a and ~3 (from the
trigonometrical convexity right and left derivatives always exist).
Theorem 7.7. Let g(t) be a non-zero Sonine function, with Mellin trans-
form G(s), and Gamma-completed Mellin transform 9(s). The entire func-
tion 9(s) is of normal type for the Lindelöf refined order rlog(r). Its in-
dicator function is 1 The entire function is a functions of
corrapletely regular growth. The number of its zeros of modulus at most T
in the angular sector arg(z - 2) - 2 ~  E  7r is asymptotically equivalent
to T log(T), and similarly for the angular sectors containing the lower-half
of the critical line. The number of zeros of 9( s) with modulus at most T in
] arg(+z)]  ~ - E is o(T).
Proof. We know from Theorem 4.8 that G(s) has the L-property, and in
particular it is 0(l + Isl) in 0  Re(s)  1, and furthermore it is O(ARe(s))
in Re(s) &#x3E; 1. On the other hand the Stirling formula easily leads to

so certainly

As further lim sup,-. log is finite (it is the mean-type of G in the
right-half plane) we have

In Re(s)  1 we have the identical result as g(l- 8) is the completed Mellin
transform of .~+(g). So the entire function G(s) is of normal type 1 for the
refined order r log(r). The argument using the Stirling formula which has
led to the inequality above gives on any given ray with I  2 that
its indicator function is bounded above by 2 cos( 0) (we use again that for
B = we have G(s) = 0(181), and for ]0]  we have G(s) = 2 2
We show the property of complete regular growth on a ray with 8  and

at the same time identify the value of the indicator for this ray to be  cos( 0)
(by continuity we will then have the value of the indicator for ~B~ = -~). The
Gamma factor gives the correct limit and there are no excluded values for r;
so we only need to show that log I G(s) I /r log(r) goes to 0 as r - oo while
avoiding an exceptional set EB C (0, oo) having vanishing upper relative
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linear density (r = ~s- 2 ~). Actually this holds with r replacing r log(r) and
a finite (not necessarily zero) limit, as A-sG(8) belongs to the Hardy space
of the right half-plane (and then we can invoke [20, V.§4, Thm 6]; it is all
a matter of understanding the CRG-behavior of a Blaschke product, as the
other factors in the canonical factorization are easily taken care of). Going
back to 9 (s) we thus have its CRG property (for the refined order rlog(r))
on the rays arg(s - 1) = 0, ~B~  7r/2. Hence also in the left half-plane
as 9(1 - s) is the completed Mellin transform of and the indicator
function is As the set of CRG-rays is closed, we conclude
that g(s) is a CRG entire function. The central result from [20, III] leads
then to the stated asymptotic densities of zeros in open sectors containing
either the upper half or the lower half of the critical line. Concerning the
sectors ]  2 - E, the vanishing asymptotic linear density of the
zeros follows again from [20, V.§4, Thm 6], or more simply from the fact
that £ § converges for the zeros in such a sector (the zeros of the Blaschke
product satisfy )
Remark 17. In particular the function g(s) is an entire function of order
one (and maximal type for this order) which admits a representation as an
Hadamard product slp)e’IP-
Remark 18. The entire function G(2 + iz) is a function of the "class A"
as studied in [20, V].
Remark 19. In [8] we have produced explicit formulae for some even dis-
tributions Aa(t) and Ba(t) having the Sonine property for the cosine trans-
form. We proved that their complete Mellin transforms Aa(s) and are

the structure functions of the de Branges Sonine-cosine spaces (no explicit
formula had been known prior to [8]): and this has the interesting corollary
that the Riemann Hypothesis holds true for them. We have presented in
[9] a summary of further results of ours. The Note contains formulae for
some second order differential operators intrinsically associated with the
Fourier Transform. Under suitable boundary conditions these operators
are self-adjoint with discrete spectrum, and the squared imaginary parts
of the zeros of Aa(s) and Ba(s) are their eigenvalues (this proves in an-
other manner that Aa ( s) and L3,,(s) satisfy the Riemann Hypothesis). If p
is a fixed chosen zero then Aa(s)/(s - p) is the complete Mellin transform
of a square-integrable even function with the Sonine property. We may
then apply Theorem 7.7 with the result that ,Aa(s) (or ,Cia(s)) share with
7r-s/2r( ~ )(( s) the principal order of its asymptotic density of zeros.
Theorem 7.8. For each non-zero Sonine functions there holds: a(Zg) =
a(g). This means in particular that g has infinitely many (non-trivial)
zeros, that the evaluators associated to Z9 are minimal but not complete in
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Ka if a  a(g) and that they are complete, even after omitting arbitrarily
finitely many among them, in Ka if a &#x3E; a(g).
Proof. Let g(t) be a non-zero Sonine function in Ka, with Mellin transform
G(s). Let us consider the multi-set ~y of the non-trivial zeros of G(s) and
the associated evaluators in Sonine spaces Kb. Replacing g by a multiplica-
tive translate we may arrange that the lowest point of its support coincides
with the lowest point of the support of F+ (g), hence with the number we
have denoted a(g), so we may assume a = a(g). The system of evaluators
in Ka is not complete, as all are perpendicular to g, hence a. Let
b &#x3E; a and let us prove that the evaluators are complete in Kb. If not, there
is a non-zero function f (t) in Kb such that its Mellin transform F(s) factor-
izes as F(s) = G(s)O(s) with an entire function 0(s). In particular 0(s) is a
Nevanlinna function in the right half-plane. We know that the mean types
are related through h(F) = h(G) + h(O). We know that h(G) _ - log a
and that hence h(8)  log(a/b)  0. On the other hand
we have X(s)F(1 - s) = x(s)G(1 - s)B(1 - s). Repeating the argument for
B(1 - s) we obtain that its mean type is also  0. According to Krein’s
theorem 0(s) has finite exponential type given by the formula

hence we obtain a strictly negative result. This is impossible, and the
function f E Kb does not exist. So the evaluators associated to Z are

complete in Kb for b &#x3E; a(g) and a(~)  a = a(g). We know already
a(~) &#x3E; a(g) so we have an equality, as was to be proven. The other
statements are just repetitions of previously proven assertions. D

We extract from the proof above the following:

Proposition 7.9. If f and g are two non-zero Sonine functions such that
Zg C Zf then the entire function F(s)/G(s) has finite exponential type and
a~f~ ~ a(g) .
Proof. We replace g by a multiplicative translate so that 9 E Ka with
a = a(g). And we similarly assume f E Kb with b = a( f ). Krein’s theo-
rem is applied to the entire function 0(s) with F(s) with the
conclusion that 0(s) has finite exponential type. Furthermore exactly as
in the previous proof if we had b &#x3E; a we could prove that the mean types
of 0(s) in the left and right half-plane are both strictly negative, which is
impossible. So b  a, that is a( f )  a(g). D

We also mention:

Proposition 7.10. If f and g are two non-zero Sonine functions such that
Zf = Zg then f and g are multiplicative translates of one another, up to
multiplication by a non-zero complex number.



92

Proof. The Hadamard product representation leads to an equality !( s) =
But Wiener’s theorem [21] on the gain of a causal filter tells us

that log I and log I are both integrable against a Cauchy weight
on the critical line, and this implies that p has to be real. The equation
then says exactly that f is, up to a multiplicative constant, a multiplicative
translate of g. D

8. Conclusion

Our theorems from [7, Chap. 6] concerning the completeness of the
evaluators associated to the Riemann zeta function and the Dirichlet L-
functions have been shown here to be special instances of a more general
statement. Does this mean that these theorems from [7] are not specific
enough to tell us anything interesting?
To discuss this, we shall, briefly, mention a few basic aspects of the gen-

eral theory of Hilbert spaces of entire functions, and thus see why it is rea-
sonable to be hopeful of some connections with the problem of the Riemann
hypothesis, at the technical level at least (it is in the exact same manner,
no more no less, that the, more widely known, basic aspects of the Hilbert
theory of self-adjoint operators may be thought of bearing some relevance
to the technical aspects of the Riemann hypothesis). We include this short
paragraph despite the prolonged existence of ethically unfortunate claims.
To each de Branges space are associated (up to some normalizations) a
function .A(z) and also a function which both have all their zeros on
the symmetry axis. This is a corollary to the way the functions .A(z) and

are related to the Hilbert space structure, hence participates of the
general idea of thinking about the Riemann Hypothesis in Hilbert space
and operator-theoretical terms. We mention that the work of de Branges is
closely related to the vast investigations of M.G. Krein [17] on problems of
extrapolation of stationary processes, problems of scattering theory, prob-
lems of moments, canonical systems, ... , where the operator theoretical
aspects are quite explicitely in the foreground. The zeta function is not
entire, but has only one pole. Its functional equation involves Gamma
factors, to which de Branges associates the two-parameter family of the
Sonine spaces for the Hankel transforms of parameter v, and the support
conditions of parameter a. We focus on the spaces associated with the
cosine and sine transforms. De Branges [4, 5] uses in his constructions
the other Sonine spaces, even "double-Sonine" spaces: the idea of using 2-
dimensional constructs to study a Riemann Hypothesis in dimension 1 is a
familiar one from other contexts. The structure functions Aa(z) and Ba (z) ,
especially for the Sonine spaces associated with the cosine transform, have
analytic properties and symmetries quite close to what is known to hold
for with one interesting bonus: they are proven to satisfy
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the Riemann Hypothesis. Explicit representations for these functions, as
completed Mellin transforms, have been obtained recently ([8]). We proved
here (7.7) that they have to first order the same density of zeros as the
Riemann zeta function. We have obtained ([9]) a spectral interpretation
of their zeros, in terms of some Dirac and Schr6dinger operators which we
have associated to the Fourier Transform.
We explained in [7] the path which has led to our own interest in all this:

the path from the explicit formula to the co-Poisson formula and beyond.
The co-Poisson formula leads to the association with the zeta function
of certain quotient spaces of the Sonine spaces. We saw in the previous
section that some of the theorems originally proven for the zeta function or
the Dirichlet L-functions have more general validity, as some aspects hold
true for all Sonine functions. The Riemann Hypothesis of course does not
hold for all Sonine functions (we may always add arbitrarily chosen zeros;
it is also easy to construct an example of a Sonine function with no zeros in
the critical strip). Nevertheless it might be that some other aspects, known
or expected to hold for the Riemann zeros, do have some amount of wider
validity; further investigations of the zeros of Sonine functions are needed
to better understand the situation.

Acknowledgments. I thank Michel Balazard and Eric Saias, for discussion on Sonine
spaces, and especially on the functions (( s) / (s - p).
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