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Languages under substitutions and balanced
words

par ALEX HEINIS

RÉSUMÉ. Cet article est constitué de trois parties. Dans la pre-
mière on prouve un théorème général sur l’image d’un language
K sous une subsitution. Dans la seconde on applique ce théorème
au cas spécial prenant pour K le language des mots balancés et
la troisième partie concerne les mots bi-infinis récurrents de crois-
sance de complexité minimale ("minimal block growth" ) .

ABSTRACT. This paper consists of three parts. In the first part
we prove a general theorem on the image of a language K under a
substitution, in the second we apply this to the special case when
K is the language of balanced words and in the third part we deal
with recurrent Z-words of minimal block growth.

Definitions and notation

In this paper a word is a mapping w : I -~ {a, b} where I is a subinterval
of Z. We identify words which are shifts of eachother: hence we identify
wl : Ii -&#x3E; {a, b}, w2 : I2 --&#x3E; {a, bl if there exists an integer k with Il+k = 12

= zu2(i + k) for all i E I,. If I = Z we call w a Z-word or a
bi-infinite word.

If I is finite we call x finite and its length Ixl is defined as The usual
notation for a finite word of length n is x = xi ... zn where all xi E {a, &#x26;}.
We write {a, b}* for the collection of finite words and {a, b~+ for the non-
empty finite words. (The empty word will be denoted throughout by e).
The concatenation xy of two words x, y is defined by writing x in front of
y, which is only defined under the obvious restrictions. A finite word x is
called a factor of iv, notation x C w, if w = yxz for some words y, z. It
is called a left-factor (prefix) of w if w = xy for some y and a right-factor
(suffix) if w = y for some y. The factor-set of w will be denoted by F(w).
An n-factor of w is a factor of w of length n. The collection of n-factors

is defined by 13(w, n) and we write P(w, n) := The mapping
P(w, n) : N ~ N is known as the complexity function of w. A factor x C w
has multiple right extension (m.r.e.) in w if xa, xb C w. We also say that x
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is right-special in w and the collection of right-special factors is denoted by
MRE(w). We write for the collection of right-special n-factors
and similarly we define MLE(w) and MLEn(w). A factor x E MLE(w) n
MRE(w) is called a bispecial factor. The bispecials are usually divided into
three classes. We call a factor x weakly/normally/strictly bispecial if the
number of symbols o- for which Qx E MRE(iu) equals 0/1/2, respectively.
We follow the notation in [Ca] and write BF(w)/BO(w)/BS(w) for the
collection of weakly/normally/ strictly bispecials in w, respectively.
A language K is just a collection of words. Most of the notions above

can be generalised without problems to languages, e.g. F(K) := U2"EKF(w)
and MRE(K) = xb E F(K)}. All languages we consider in this paper
are closed under factors and extendible. This means 
and that are non-empty for any finite x E K. We
call this a CE-language. The following fundamental proposition can also
be found in [Ca].

Proposition 1. Let K be a CE-language with a, b E K. Then P(K, n) =

Proof. We have P(K,n+1)-P(K,n) = IMREn(K)1 and 
IMREn(K)I = IBFn(K)i [ for all n &#x3E; 0. Now perform a double
summation. D

Hence: to know P(K, n) we need only consider the weakly and strongly
bispecial factors of K. A substitution is a mapping T : la, b}* - {a, b}*
satisfying T(xy) = T(x)T(y) for all finite x, y. Obviously T is determined
by X := Ta, Y := Tb and we write T = (X, Y). Substitutions extend in
a natural way to infinite words and we will not distinguish between T and
this extension.

If T = (AB, AC), T’ _ (BA, CA) and a is a Z-word then To, = T’(a).
It follows that F(TK) = F(T’K) for any CE-language K. Now consider
a substitution T = (X, Y). Let x = X+°° := XXX ~ ~ ~ , y := Y+°° (right-
infinite words) and write ~X~ =: m, IYI =: n. If x = y then one can show,
for instance with the Defect Theorem [L, Thm 1.2.5], that X, Y are powers
of one word 1f, i.e. X = 7rk, Y = 1fl, and then we have TQ = 7r°° for any a.
In this case we call T trivial. If T is not trivial there exists a smallest i with

and then TQ = T’(u) where T’ :_ (~i ~ ~ ~ For
non-trivial T and K a CE-language we have therefore shown that F(TK) =
F(T~K) for some T’ where T’a, T’b have different initial symbols. From now
on we assume that T = (X, Y) is a substitution with Xl = a, Yi = b. We
call such T an a/b-substitution or ABS.
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1. A general theorem 
°

In the next theorem we write {X, for the image under T of all
left-infinite words, hence {X, Y}-°° := T({a, b}-°°).

Theorem 1. Let T = (X, Y) be an ABS, let K be a CE-language and
L := F(TK). Let E := f X, and let S be the greatest common suffix
of elements of E. Then there exists a constant M such that for x E L with
Ixi &#x3E; M we have

Proof. Since X-oo =I y-oo as above we find that S is finite and well-
defined. From T we construct a graph G(T) as follows. We have a point
O E G(T), the origin, such that G(T) consists of two directed cycles 
from 0 to itself such that they only intersect in 0. Every edge has a label
in {a, b} in such a way that the labels from a, 13 (starting at 0) read X, Y,
respectively. As an example we have drawn G(T) when T = (abb, bba).

We call G(T) the representing graph for T. We let A be the collection of
finite paths in G(T) and define X : {a, b}* --&#x3E; 0 by X(a) = a,x(b) = /3 such
that X respects concatenation. We define the label-map A : A 2013~ {a, b~* in
the obvious way and set r equal to the collection of subpaths of X(FK).
Then L = We let o, be the symbol such that all words from EX have
suffix aS and then all words from EY have suffix 57S. (In this paper we
write a = b, b = a). If x is a finite word we write T(x) := E fIÀ(1’) 
and its elements are called representing paths for x (in r). For (~) we
assume that x E L is bispecial and we consider two cases.

a) All -y E r(x) have the same final vertex. This vertex is then 0
since x E MRE(L). Since x E MLE(L) we have ~S~ and x has
suffix S. If Ixl &#x3E; ~S~ and x has suffix then all 7 E r(x) end with
an edge in a//3. Since x E MLE(L) we even have that every 7 E r(x)
ends with a / /3. Continuing in this way one finds that every 7 E r(x) is

of the form y = where 0 is a path of length  ISI ending in 0
and where ~ depends only on x (not on -y). Using x E MLE(L) we find
101 = ISI, = S and x = ST(~) where ~ E K. (The last fact follows
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from X(~) E r). Now assume that V E r represents = Then

y = ’’’X(ç) where 7" ends in O. Since A(7") = aS we find that every Y
ends in wax(g) where wa denotes the final edge of a. This implies

Similarly we have E MRE(L) ~ b~ E MRE(K). We deduce that
x E BF(L) BF(K) and likewise for BO and BS. This proves (=»
in case a.

,3) Not all ~y E r(x) have the same final vertex.

Definition. A finite word x is called traceable from P if a, E exists

with initial vertex P. We write P E Tr(x). An infinite word T : N - la, b}
is called traceable from P if every Prefix of T is traceable from P. We write
P E Tr(T).

Definition. A finite word x is called distinctly traceable (dt) if,,8 E r(x)
exist with different endpoints. An infinite word T : N - {a, b} is distinctly
traceable if every prefix of T is distinctly traceable.

Suppose that x is dt of length n and Qn in
r(x) with Qn. Then induction shows that Pi 0 Qi for all 0  i  n.

In particular Pi =I 0 V 0 for all 0  i  n. It follows that x is com-

pletely determined by the triple (Po, Qo, n) and we call (Po, Qo) a starting
pair for x. If x, ~’ are dt with a common starting pair then it is easily seen
that x, x’ are prefix-related.

Corollary. There exists a finite collection fril of words (finite or right-
infinite such that every dt word x is prefix of some Ti.

Corollary. There exists a constant M and a finite collection T of dt
words TZ : N - la, b} such that every finite dt word x of length at least M
is prefix of exactly one TZ.

If w is a word we will write [w]n for its prefix of length n if it exists and 
for its suffix of length n (if it exists). Now let T be any right-infinite word.
Then there exists a constant car such that Tr(T) _ for all i &#x3E; car.

Indeed, is a decreasing sequence of finite sets. Such a sequence
is always ultimately constant and its ultimate value is Tr(T). Enlarging the
previous constant M if necessary we may assume that M &#x3E; c,r, car, for
all T E T.
To sum up, we assume that x E L is bispecial and dt M. We

let T E T be the unique element from which x is a prefix. We let tL be the
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symbol for which xtL is also a prefix of T and we denote by 8a, Jb the initial
edges of a, /3.
By extendibility a symbol v exists such that vzp E L. Choose 7 E

with initial vertex P. Then P E Tr(vx) = Tr(vT) = 
hence vx E MRE(L) and z g BF(L). Hence to prove (~) we need only
consider x E BS(L), which we do. Choose 7 E r(xll) with initial point
P. Then P E = Tr(T) = Tr(xJ-L), hence -y has final edge 6,-,. Since

xll E MLE(L) we find, as in a, that 7 = §x(g)) where = S and

where ~ depends only on ~, not on 7. Hence x = ST(~), any 7 E 
ends in and any 7 C- ends in Considering a
P E yields a~ E MRE(K) and similarly b~ E MRE(K). Therefore
g e BS(K) and this concludes the proof of (~).
Now assume that x = ST(~) M and ~ bispecial in K. Then

it is easily seen that x is bispecial in L and the previous arguments apply.
We may assume that x is dt since otherwise we are done. We define T, J-L
as before. Any 7 E = ends in and any
q E ends in We deduce

The reverse implications in this line are clear when x = ST(~). Hence

Remark. The given proof shows x E BO (L) x = ST(~), ~ E BO(K)
for M. We wondered if the reversed implication is also true. This is
not the case, as pointed out by the referee of this article. He kindly sup-
plied us with the next example. Let K = la, b}* and T = (aba, b). Then
BO(K) = 0 and BO(L) = a(baba)* U ab(abab)* U ba(baba)* U bab(abab)*.

2.1. An application to balanced words. Again we start off with some
necessary definitions. The content c(x) of a finite word x is the number of
a’s that it contains.

Definition. A word w is balanced if I c(x) - c(y)~  1 for all x, y C w
with lxl = Iyl.

We denote the language of balanced words by Bal. One can show, see
[H, Thm 2.3], that K := Bal is a CE-language. The balanced Z-words
can be classified, see [H, Thm 2.5], [MH, Thms 5.1,5.2,5.3], [T, Thm 2],
and the bispecial factors in K are also known. More precisely, BF(K) = 0
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(there are no weakly bispecials) and BS(K) = 7-L, the class of finite Hed-
lund words. Finite Hedlund words can be introduced in various ways. In

[H, Section 2.3] we define them by means of infinite Hedlund words, in [H,
Section 2.4] we show BF(K) = 0, BS(K) _ 1t and we give an arithmetical
description of finite Hedlund words. To give this description we need some
more notation. Let A C I where I is a subinterval of Z. Then A induces a
word w : I --&#x3E; {a, b} by setting wi = a ~ i E A. By abuse of notation
we denote this induced word by A C I. The finite Hedlund words are then
given by

are integers with 0  k G r, 0  d  s and lr - ks = 1. See
[H, p. 27] where this word is denoted by per(s, r, 1). Note that (s, r) = 1.

Remark. A word w : I - {a, b} is called constant if Iw(I)1 I = 1 and
w is said to have period p if wi = wi+p whenever i, i + p E I. A famous
theorem by Fine and Wilf [FW, Thm 1] implies that a non-constant word
x with coprime periods s, r has length at most s + r - 2 and one can show
that such an x is unique up to exchange of a and b. See also [T, Thm 3].
De Luca and Mignosi define PER as the collection of such x and show that
BS(K) = PER. Hence the class PER in [dL/Mi] equals our class 7-l.

The word x := per(s, r, 1) satisfies c(x) = k ~- l - = r + s - 2 and
from this one easily deduces that the pair (s, r) is unique. It also fol-
lows from the above that a word x E ~-l with c(~) _ .~, lxl = n exists if
and only if 0  A  n, (A + 1, n + 2) = 1 and that such an x is unique.
We leave these details to the reader. As a direct consequence we have

!BSn(K)! = 0(n + 2), !BFn(K)1 [ = 0 and using Proposition 1 we find the
following formula for bal(n) := P(K, n) :

This formula is well-known and has a number of alternative proofs, see
(Be/Po~ ~dL/Mi, Thm 7] [Mi] . From this one can deduce the asymptotics
bal(n) = # + O(n2 ln n), see ~Mi~. We now investigate what happens when
K is subjected to a substitution T.

Theorem 2. Let T = (X,Y) be an ABS, let K = Bal and L = F(TK).
Then

-I- 1 -
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Proof. We define S as in Theorem 1 and BS*(L) = BF*(L) = 0.
Then Theorem 1 implies that the symmetric differences BS*(L)6BS(L)
and BF*(L)6BF(L) are finite. Combining Proposition 1 with this fact and

If x E BS*(L) then by definition we have x = ST(~) where ~ E ?-l. Writing

As we have seen above in a slightly different form, there exists a ç E 1i
with parameters (A, p) iff .~, ~, E N, (À+ 1, ~C + 1 ) = 1 and ~ is unique in this
case. We can now translate this into conditions for (p, q). Put d := (a, R).
Then obviously p E dZ and we write a = = = dP. Then

Choose integers k, l E Z with 0  1 ;~ and M+//3 = 1. Since
we have

/, " /n""’aI" , ;; "

It follows that IBSjsl+dP(L)I [ equals the number of integers t that satisfy
. Some calculation then

shows that IBSjsl+d1’(L)I equals the number of integers t with

We now need a small lemma on the Euler 0-function.

Proof. We will generalize the classical inclusion/exclusion proof for the
formula 0(n) = All statements in the proof will have fixed

n, a, {3. We write n = k-, for the prime decomposition of n and we
denote by N(i) the number of multiples of i in [an, By the principle
of inclusion/exclusion we have
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This implies

since the termwise difference is at most 1. Dividing by 0(n) we find
and we will now show that the final term has

and finally choose .

Since E was arbitrary it follows that

Applying this to the "formula" for I and using that

we find that To finish things off we have the
B’))/ / ,

following small Tauberian lemma.

Proof. Replacing ai by ai - abi we may assume A = 0. Fix c &#x3E; 0 and

choose N E N+ such that lanl ]  ebn for n &#x3E; N. For all i &#x3E; 0 we have

Choose

If we apply Lemma 2.2 not once but twice and use partial summation
In the following we write a =
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1~. Combining the previous material we find

D

Intermezzo. Theorem 2 relies heavily on the properties of Bal. To illus-
trate this we consider another example, K = b}*. The reader can skip
this part and continue with Section 2.2 if he wishes to continue directly
with applications to balanced words.

Theorem 3. Let T = (X, Y) be an ABS and let S be the greatest common
suffix of as in Theorem 1. We write a := := :=

(a, /.3), a := ~,,6 := := max(&#x26;, ,6), q := ,61. Let 0 be the unique
positive root of xP - xq - 1 (existence and uniqueness will be established
below). We write :_ ~ - Lx J for fractional parts, for n E N we write

Also let K = {a, b~* and
L = F(TK). Then there exists a constant 7 E R+ such that

Proof. We will use techniques similar to those in the proof of Theorem 2.
Note that BF(K) = 0, BS(K) = K and let BF*(L) = 0, BS* (L) = ST(K).
Formula (1) remains valid as it stands. It is clear that 0 when
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i + dN. We define f (P) := then f (P) _ {x E K :
ITxl = d-Pll. Dividing up with respect to the final symbol of x, we find
f(P) = f (P - a) + f (P - ~3) for P &#x3E; a, /3. Replacing P by P + p we find
f (P + p) = f (P) + f (P + q) for all P E N. The minimal polynomial of this
recurrence relation equals g = ~P - x9 - 1. Note p &#x3E; q &#x3E; 0 and (p, q) = 1.
We will now prove some relevant properties of g in order to establish the
asymptotics of f (P).

Lemma 3.1. Let g = 1 with p &#x3E; q &#x3E; 0 and (p, q) = 1. Then:

a) g has only simple roots;
b) g has exactly one positive root 0 and E (1, 2~;
c) g has another real root iff p is even in which case this other root lies

in (-1, 0);
d) Any circle C(0, r) with r &#x3E; 0 contains at most 2 roots of g. If it

contain two distinct roots x, y then x, y are non-real and conjugate;
e) 0 is the unique root of maximal length.

Proof. We assume q &#x3E; 1 since q = 0 implies p = 1, g = ~ - 2 and then the
statements are clear. We have g’ = xq-1(pxP-q - q).
a) If g has a double root x then = 1 and xp-q Substitution

yields xq = P and then multiplication yields xP = ~. Hence E Q
and from (p, q) = 1 we deduce x E Q. N ow x is an algebraic integer, hence
x E Z, and all integer roots of g must divide 1. But g(-1) - 1(2) and
g(1) _ -1.
b) This follows from g’ and g(0) = g(1) _ -1, g(2) = 2P-2q-1 &#x3E; &#x3E; 0.

c) From g’ one deduces that g has at most one root in R-. If N is the
number of real roots then N - p(2) since non-real zeroes appear in con-
jugate pairs. Hence another real root exists iff p is even. Then q is odd,
g(-I) = 1 and g(O) = -1.
d) Fix r and suppose g(x) = 0 with Ixl = r. Then 1 = ~ . Writing
T := xp-q we have T E C(0, rP-q) fl C(1, T ). Hence at most two T are pos-
sible. If roots x, y of g with [ z = y = r give the same T then xp-q = yP-q
and xq = yq . Hence x = y. It follows that C(0, r) contains at most two
distinct zeroes. If it contains a non-real root then T is also a root and the
number of zeroes is 2. If it contains a real root then also T E R. Since
C(0, rP-q ) and C(l, T ) have a real point of intersection they are tangent.
Hence for such r there is only one T and only one x.
e) = 0 ~ IxlP = Ixq + 1~ [  lxlq + 1 # 0 ~ Ixl 0. Hence 0
is indeed a zero of maximal length and its uniqueness follows from d). D

Proof of Theorem 3 (continued). We denote the roots of g by 
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where we suppose that IW11 ~ ... ~ lwpl. Since g has simple roots we have

for uniquely determined constants Ci E C. Note that wi = ~. We will
show that C1 &#x3E; 0. Suppose that C1 = 0 and let k be the minimal index
with 0. Then Wk 0 R since wk E R would imply I Wk  1 and

then limp,,, f(P) = 0. Since f : N ~ N this would imply f (n) = 0
for n large and the recursive formula for f (P) then shows f (N) = f 0~.
A contradiction. Hence Wk 0 R and by d) we have Wk+1 = a)7k-. We can
conjugate the above formula for f (P) and by unicity of the Ci we obtain
Ck+l = Ck~ With C := := := Iwl we find f (P) = 2Re( CwP) +
o(pP). Writing C =: =: peiO this implies t.g2 + BP) +p’l-

0(1). We can assume 0  0  1T, interchanging if necessary. Since

4# &#x3E; 0 for all P E N we deduce 0. This is
P - -

clearly impossible for 0  0  7r: the set f Cos (o + lies dense in

[-1, 1] if 7r Q and in the other case there exists an arithmetic sequence
kn = ko + nK such that cos(o + Okn) is constant and negative. This
contradiction shows that 0. Hence

and 01 &#x3E; 0. We now write f x5 g if f -g = o(~a). We now combine (1),(5),
Lemma 2.2 and the remark following that lemma. Then

Theorem 3 now follows with
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2.2. More application to balanced words. We now consider K = Bal
again. One can show that every balanced Z-word has a density in the
following sense. Let xn C w be a factor of length n for each n. Then

limn-m lxnl exists and only depends on w, not on (xn). Its value a(w)jxn)

is called the density of w. Note that a(w) E 0, 1. A Z-word w is called
recurrent if each factor x C w appears at least twice in w.

Proposition 2. Let w be a recurrent balanced Z-word of density a. If
a = 0 then w = b°°. Otherwise we set ( := 1 and we define the set W C Z
by wi = a ~ i E W . Then W = + 01 liEZ for some 0 E R or
W = for some 0 E R.

Proof. This follows from the classification of balanced Z-words in [H,
Thm 2.5] by considering which Z-words are recurrent. D

The Z-words in Proposition 2, including b°°, are called Beatty Z-words
(BZW). They can also be obtained as the coding of a rotation on the unit
circle, see for instance [H, Section 2.5.2] for details. If S is the collection
of all BZW’S, then Bal = F(S). This is well-known and can be seen, for

instance, by combining Theorems 2.3, 2.5, 2.8 in [H]. We now investigate
what happens when we put restrictions on the density a. It turns out that
balanced words are, in some sense, uniformly distributed w.r.t. density.
We would like to thank Julien Cassaigne from IML Marseille for suggesting
that this might be the case.

Theorem 4. Let I C [0,1] be given and let SI be the collection of BZW’s
Q with a(Q) E I. Also let bali(n) := P(SI, n) and denote Lebesgue measure
on [0, 1] by A. Then

In particular we have when = 0. To prove
Theorem 4 we show (*) directly for a particular class of intervals, the so-
called Farey intervals.

2.3. Sturmian substitutions and Farey intervals. A BZW Q with ir-
rational density is called a Sturmian Z-word. We write ~S’ for the class
of sturmian Z-words. Let L = (ba, b), R = (ab, b), C = (b, a). Since sub-
stitutions form a monoid (halfgroup with unit), we can consider the sub-
monoid Nl := L, R, C &#x3E; generated by {L, R, C}. We call it the monoid
of Sturmian substitutions. The name is explained by the next well-known
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proposition.

Proposition 3. For a substitutions T we have T e M - E S’

for some a E S’ ~ Ta E S’ for all Q E S’.

Proof. See ~Mi/S~. It also follows from [H, Thm 3.1]. D

Now let T = (X, Y) E Nl with c(X) =: 1, ~X~ _: s, c(Y) =: k, IYI =: r. An
easy induction argument shows that lr - ks e ~-l,1~. Hence CH(), k),
where CH denotes convex hull, is a Farey interval.

Definition. A Farey interval is an interval I = ~~, ~ ~ with a, 7 E E

N+, 0 G ~  s  1 and a6 = 1. Also F is the collection of all Farey
intervals.

We define the density of a finite non-empty word x as a(x) := ~~. Then
we have shown that there exists a mapping r, : ./1~1 -&#x3E; .~’ sending T = (X, Y)
to := CH(a(X), a(Y)). We define .M* C .M as the submonoid gen-
erated by A = (a, ba) = CRC and B = (ab, b) = R. We call it the monoid
of distinguished sturmian substitutions. In fact we have M*= MnABS,
the proof of which we leave as an exercise to the reader. With induc-
tion one shows a(X) &#x3E; a(Y) when (X, Y) E .M*. It is easy to see that
.M* := A, B &#x3E; is freely generated by A, B. Indeed, suppose that A-4~ =
BiY where -4~, I@ E ./vl*. Then ba C ~(ba) since [,D(a)]l = a, = b.

Applying A we find aa C A~(ba) = a contradiction. To proceed
we introduce some more structure on ,F’. If I = [B, i] is any interval with

E N,{3,ð E N+, (a, ,C3) = J) = 1 we define £1 = I- - ( a , a+ c ~ N,/3 e N+,(/?) = (y) = 1 we define 7=7-=  a
and RI = I+ _ , Direct calculation shows .’ anda+a s 1.
G(.’) U U {(0,1} _ .f’. Hence .F’ is the smallest collection of intervals
containing (0,1~ which is closed under C, R. It follows that each I has
a unique notation I = C1 ... Cg([0,1]) where all Ci E f G, IZI

Lemma 4.1.

a) Let r, : ,M ---&#x3E; F be the mappings described in the preceding paragraph
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larly K(TB) = .c",,(T). Part a) now follows since it is true tor i ’ = (a, b).
b) Immmediate.
c) See [H, Lemma 2.14.1].
d) Suppose the statement is true for T = 01 ... Os, I = Ds ... Dl((0, 1]) and
write T = (X, Y). Suppose that Q is a BZW with a(a) E I. Then Q = T(T)

, , , --

for some BZW T and with a(T) =: a we have

Proof of Theorem 4. First let I = [~~, -1 E .~’ with all fractions in reduced
form. Let T = (X,Y) := r~-1(I), then Lemma 4.1d tells us that SI = T(S).

and all fractions are in reduced form, we have

Applying Theorem 2 we find

which is (*). We define the level of an interval 1 = D~"’ Di([0,1]) E F
as the integer t and we denote the class of Farey intervals of level t by Ft.
Then it is easy to show with induction that À(1)  t+1 when 1 EFt.

Lemma 4.2.

a) Let A, B c (0, l~ be disjoint and compact Then BaIA(n) 
0 for n large;

b) If A, B c ~0,1~ are closed intervals with AfIB = ~a} then 
BaIB(n)I _ ~(n3 ) ~

Proof. a) If a is a BZW of density a c w is a non-empty finite fac-

tor, then it is well-known that al  ~. See [H, Lemma 2.5.1]. Let
d := d(A, B) &#x3E; 0 and suppose that a e SA, T e SB have a non-empty factor
~ in common. Thend~ ~a(~)-a(T)~  ~a(Q)-a(x)~+~a(x)-a(T)~ _ ~, &#x3E;

~.
b) We assume A to the left of B. If a e SA, T E SB have a non-empty
finite factor x in common then, as before, la(o-) - a(7)1 ::; fxr. Hence
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la(r) - and n BalB(n) C Let t &#x3E; 1 and let

It be the right-most element of J’t containing a. Then we have f1

BaIB(n) c Ballt(n) for n &#x3E; N(t). Hence :
since (*) holds for It. Now let

Using Lemma 4.2 we find (*) for any finite union of Farey intervals and
we denote the collection of such sets by Q’. Now let I be any interval and
fix 6 &#x3E; 0. We can choose 11,12 c Q’ with 7i C I C 12 and A(I2 B Ii)  6.

For n large we then have

This proves (*) for I and using Lemma 4.2 one finds (*) for any finite union
of closed intervals. We denote the collection of such sets by SZ. Now let
I C [0, 1] be any subset. Then 1° is a countable union of disjoint open
intervals. Approximating 1° from the inside by elements of Q one finds

Approximating [0,1] B7 from the inside by elements

of Q and applying Lemma 4.2a) we find lim sup

3. Recurrent Z-words of minimal block growth

If w is any Z-word then P(w, n) = as in the proof of
Proposition 1. Also it is clear that 0 implies MREi+1(W) = 0.
Hence P(m, n) is strictly increasing in n, in which case P(w, n) &#x3E; n + 1 for
all n, or P(w, n) is ultimately constant. In the last case it is well-known

that is periodic. This, in a sense, explains the following terminology
introduced in [CH].

Definition. Let w be a Z-word. Then w has minimal block growth (MBG)
if there exist constants k, N with P(w, n) = n + k for n &#x3E; N.

We have 1~ &#x3E; 1 and k = k(w) is called the stiffness of w. A word m is

called k-stiff if P(n)  n + k for all n. Hence a Z-word w has MBG if
it is not periodic and k-stiff for some k. The minimal such k then equals
k(w). In this paper we concentrate on recurrent Z-words of minimal block
growth. For the non-recurrent case we refer the interested reader to [H,
Thms A,B of Section 3.1]. The situation for k = 1 is classical.

Proposition 4. The Sturmian Z-words are precisely those recurrent Z-
words with P(n) = n + 1 for all n.
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Proof. This follows from the classification of stiff Z-words in [H, Thm
2.5, 2.6] by considering which ones are recurrent and not periodic. D

In a sense Sturmian words form the basis of general recurrent Z-words
of MBG. We will see this in Proposition 5. An ABS T = (X, Y) is

called reduced if X, Y satisfy no suffix relations, i.e. if none is a suffix
of the other. Then T = (AoC, B2"C) for uniquely determined A, B, C, a
(where Q is a symbol). Conversely, any substitution of this form with
[Au] = a, [BO=]l = b is reduced. The stiffness of such a T is defined as
k(T) JABCI + 1. The name is explained by the following proposition.

Proposition 5. Let w be a recurrent Z-word. Then P(w, n) = n + k
for large n iff zu = T(a) where T is a reduced ABS of stiffness k and a a
Sturmian Z-word.

Proof. This follows from [H, Thm 3.1] after noting that every ABS T
is of the form T = with TRED reduced and -(D E J~t*. D

We denote the collection of reduced substitutions of stiffness k by Tk.
Since = l~ - 1 one immediately finds that Tk is finite and in fact
17k1 I = (k2 + k + 2)2k-3. . See [H, Lm 3.6.1~ for a proof. We write Sk for
the class of Z-words which are k-stiff but not (k - 1)-stiff. Also we write

those Z-words in Sk which are periodic/ recurrent but
not periodic/ non-recurrent, respectively. Then Skr represent the Z-
words of MBG of stiffness l~. It has been shown that F(Srer) = 
See [H, Prop 3.3]. Hence on the level of finite factors we need not distin-
guish between Sker and Sknp. This is the reason why we concentrate on
S rnpk

For T an ABS and K := Bal we define LT := F(TK). Then 
UTETkLT by Proposition 5 and n) = UtETkB(LT, n). If T = (X, Y)
is an ABS then by Theorem 2. We will show, in

- ,- _’Itr. -

a sense to be made precise, that the languages LT (1’ E 7k) can be con-
sidered pairwise disjoint. This can be used to calculate the asymptotics of
p(Srnp, n) and the result is the following.

Theorem 5. we have
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Proof of Theorem 5. Let ’_

Taking "disjointness" for granted for the moment we find

Setting we have

We have

Inserting this we find = £ and since a1 = 0 we find ak = b.
The theorem follows. We thank the referee of this article who suggested
the shorter formula for ak. We now turn to the problem of disjointness.
We outline the remainder of the proof in a few lemmata.

Lemma 5.1. Let Tl, T2 be ABS, let K be a CE-language and let Li :=
F(TiK). There exist a finite of N-words and a finite collection V of
finite words such that Li n L2 C Pref(E) U V(Ti (K) n T2(K))V.

Lemma 5.2. Let T1,T2 be ABS and let S2 := {a, b~*. There exist unique

In the setting of Lemma 5.2 we can obviously write C = T1 (A) = T2(A’),
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T2(y) ~ 3z : x = ~(z~, y = ~(z~. Hence the pair (4D, w) parametrizes
the solutions ofT1(x) = T2 (y) and we call it the pair associated to (T1,T2).
Note that = T2,Q. We call Tl, T2 compatible if the words C, D from
Lemma 5.2 are non-empty or, equivalently, if (b, T are non-erasing. (A
substitution T is non-erasing if 1 for each symbol 07). We write
Ti&#x26;T2 if Tl, T2 are compatible and Tl&#x26;T2 if they are not. The following
two properties have easy proofs which are left to the reader.

Proposition 6.

The set ,/vl* of distinguished substitutions can be seen as a rooted binary
tree where the successors of T are TA, TB. The root is then T = (a, b).
If T = Cs E NI* with all Ci E {A, B}, then s is called the level of
T. It is well-defined since A, B generate M* freely and we denote the set
of elements of M1* with level s by Now let $ be an ABS. We write

gep :_ ~T E By Proposition 6a this is a rooted subtree of M*.

Lemma 5.3. Let (D 54- (a, b) be a reduced ABS. Then gep has at most
one branchpoint and igp 2 for all s E N.

Lemma 5.4. Let Tl, T2 be distinct reduced ABS, let K := Bal and

Li := F(TiK). Then P(L1 nL2, n) = o(n3).

It is clear that the itemized computations, together with Lemma 5.4, imply
Theorem 5. Having said this we conclude the proof of Theorem 5 and turn
to the lemmata. D

Proof of Lemma 5.1. We set Gi := G(Ti), the representing graph of Ti.
We form the directed graph G = G1 x G2 where (P, Q) - (R, S) is an arrow
in G iff .P 2013~ R, Q -&#x3E; S is an arrow in Gl, G2, respectively. We define ri as
in the proof of Proposition 1, hence as the collection of subpaths of Xi (FK).
We let T be the collection of paths "1 = ("11, q2) in G satisfying 7i E ri and

~2~rY2~~ In that case we call x := ~z(’Y2) the label of y.
Conversely we call, a representing path for x and we write T(x) for the col-
lection of paths in r representing x. Note that x E £1 n L2 ~ 0.
Now let x E £1 n L2 and choose a 7 = ~y(0) ~ ~ ~ y(n) E r(x). We consider
two cases.

7i ~ 0 := (01, 02) for 0  i G n. In that case 7i+l is completely
determined by 7i for 0  i  n, hence "1 is completely determined by
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y(0) and its length. It follows that can find a collection E of N-words,
with ~E~ I  IGI, such that each E Pref(E). Of course we consider
only those, that do not hit 0.
9 = O for some 0  i  n. We can write uniquely 7 = where

hit 0 only in their last/first vertex, respectively. Since ~y’ is

determined by ~y (0) we have lGl I and similarly f ~y"’ ~ ~  ~ 
Now let V := and note that A (7") E 

0

Proof of Lemma 5.2. We use the same notation as in the previous
proof. Let x E T1(O) n T2(Q) and choose a 7 = ~(0)’ "~(~) E r (x) with
7(0) = ,(n) = O. Let 0  s  t  n be consecutive elements of ~y-1(O).
Then ~y(s) ~ - ~ -y(t) is completely determined by It is a path from 0
to itself that does not hit 0 inbetween and we call this a primitive cycle.
We have at most two primitive cycles. We define C = A(-y) if a primi-
tive cycle 7 exists with initial label a and C = E otherwise. Similarly we
define D. Then it is clear that C E {E} U aQ, D E {E} U bSl and that
T1(O) = {C,D}*. Now suppose that C, D have these properties.
Then C equals the element of Tl(S2) n T2 (Q) n aS2 of minimal length if this
set is non-empty and C = E otherwise. Hence C is unique and so is D. 0

Proof of Lemma 5.3. Suppose that T2 are branchpoints. We
can see Ti as words in A, B and we define T := gcp(T1, T2), the greatest
common prefix. Without loss of generality, T2 # T. Let (~, T) have asso-
ciated pair (R, S). Since we have S&#x26;A, B by Proposition 6b.
We will show the following two statements about S:

Let Gs, GA, GB be the representing graphs for ,S’, A, B, respectively. We
write for the vertex set of A and 2} for the vertex set of G(B).
Hence

Since S&#x26;A we know that Sa, Sb E Pref(A(Q) ) . Hence S = (A(au)v, A(w)x)
where v, x E {E, b}. Since S&#x26;A we can define -y = ~(0)’’’ ~(~) in Gs x GA as
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the primitive cycle with initial label a. First suppose that v = b. The initial
path ~’ = y(0) ~ ~ ~ 7(i) of 7 with label A(au)v then ends in y(i) _ (Os, 1).
Let P be the unique point of Gs for which A(OSP) = a. Note that P ~ Os
since I Sa I &#x3E; 1. Then = + 1) = (P, OA). Hence ~(1),... , q(n) has
period i and since O g {7(1), ~ ~ - , q(I) ) we find ~(~) 7~ 0, a contradiction.
Hence v = E and

S = (A(au), A(v)w) where w E {e, b}.
Similarly, S = where y E 1,E, al. If y = E there would
exist a primitive cycle -y = 7(0) -. - -y(n) in GA x GB with initial label
a. Since ~y(0) _ (OA, OB) we obtain ~(1) = (OA, 2),7(2) = (1, OB) and
q(3) = (OA, 2). Hence 7(n) has period 2 and does not hit 0, a
contradiction. Therefore y = a and tracing 7 as above we find u = b’"’~.

Similarly w = b, z = a’~ and substitution yields S = (ba)nb). If
m = n = 0 then S = (a, b) and (DR = TS then implies ~R = T. We can
write R = RRED R’ where RRED is reduced and R’ E M* . Then is

also reduced with =: k. We have = T(S’) C S’
and also C C SkrnP. Hence = 1, (DRRED -

(a, b) and (D = RRED = (a, b), contradicting the hypotheses of the lemma.
Hence m + n &#x3E; 0 and a) is proved.
The pair (S, A) has associated pair (A, (ab’"’, and the pair (S, B)

has associated pair (B, (am+~a+1, ba,n~~, as can be easily verified by trac-
ing the primitive cycles in GS x GA and GS x GB, respectively. Let
S’ := we will calculate 9 s’. We have for all t E N
since If (S’, B’) has associated pair
(§, 1b) then Ø(b) = Since m+~+1~2we have 
hence BtA&#x26;S’ by Proposition 6b. Combining all this with Proposition 6a
we find 9s’ = B*. Hence S&#x26;AD ~ Ç=} 0 E B* when o E M*.

Similarly S&#x26;BO - D E A*. This proves b).

We can write T2 = TT3 where T3 E .M*. Since TT3A, we have

T3A, T3B&#x26;S and by b) we have T3 = (a, b). Hence T2 = T, contradicting
our initial hypothesis. This proves the first part of Lemma 5.3 and the
second part is a direct consequence. D

Proof of Lemma 5.4. If Ti&#x26;T2 then an element of T1(0) is

completely determined by its length. Hence P(T1 (0) n T2 (Q), n) E {O, 11
for all n and P(L1 n L2, n) = O(1) by Lemma 5.1. Hence we may assume
that Ti &#x26;T2. Let (T1,T2) have associated pair BII). We note that, by
Lemma 5.1, it is sufficient to show that P(T1(K) n T2(K), n) = o(n3). We
will show that also ~, W are reduced.

Suppose, for instance, that 4D = (RS, S) for some R, S. Then 
Tl(S) is a suffix of T1(RS) = Since T2 is reduced we find that ~b



171

is a suffix of Ta, hence IF = for some U, V. We have T1(RS) =
T2(UV), T1(S) = T2(V), hence T1(R) = T2(U). This implies R = ~(~), U =
T(() for some (, hence R E {RS, S~*. Since IRI  IRSI we find R E S*,
a contradiction since Rl = a, Sl = b. The other cases are dealt with in
a similar way and we conclude that &#x26;, W are indeed reduced. We assume
wlog (a, b). Let t E N. Since ~(.Mt ) _ covers [0, 1] we have
K = = UTE.A4 t * LT - We note that T1(X) = T2 (y), x, y E Bal
implies x = ~(z), y = for some z. Then of course 4D (z) E Bal. Hence

assume by Lemma 5.3 this can hold for at most two T E We
have

Hence

It follows that lim

Final remark. We would like to finish with the following nice but
impractical characterization of Z-words of MBG: A Z-word w has MBG iff
/BS(w)/ = IBF(w)l  00.
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= It is clear that the proof above also works in the opposite
direction. D
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