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RÉSUMÉ. Dans cette courte note, nous donnons une nouvelle ap-
proche pour prouver la modularité des représentations galoisiennes
p-adiques en utilisant une méthode d’approximations p-adiques.
Cela englobe quelques uns des résultats bien connus de Wiles et
Taylor dans de nombreux cas mais pas tous. Une caractéristique
de cette nouvelle approche est qu’elle travaille directement avec
la représentation galoisienne p-adique dont on cherche à établir la
modularité. Les trois ingrédients essentiels sont une technique de
cohomologie galoisienne de Ramakrishna, un résultat de montée
de niveau de Ribet, Diamond, Taylor et une version mod pn du
principe de descente de niveau de Mazur.

ABSTRACT. In this short note we give a new approach to prov-
ing modularity of p-adic Galois representations using a method of
p-adic approximations. This recovers some of the well-known re-
sults of Wiles and Taylor in many, but not all, cases. A feature of
the new approach is that it works directly with the p-adic Galois
representation whose modularity is sought to be established. The
three main ingredients are a Galois cohomology technique of Ra-
makrishna, a level raising result due to Ribet, Diamond, Taylor,
and a mod pn version of Mazur’s principle for level lowering.

Modularity lifting theorem

In the work of Wiles in (W~, as completed by Taylor and Wiles in [TW],
the modularity of many 2-dimensional p-adic representations of the absolute
Galois group GQ of Q was proven assuming that the mod p reduction of
the representation was irreducible and modular. The proof was via proving
the isomorphism of certain deformation and Hecke rings. A more naive
approach to proving the modularity of a p-adic representation, say
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assuming that its reduction p is modular, that works directly with p instead
of fitting it into a family (i.e., interpreting it as a point in the spectrum of a
deformation ring), and then proving modularity for the family as is done in
[W] and [TW], would be as follows: Starting from the assumption that p is
modular prove successively that the mod pn reductions pn of p occur in the
p-power torsion of the abelian variety J1(N) for a fixed N. In this note we
give a proof of modularity lifting results in this more direct style. Here like
in [K] we merely want to present a new method for proving known results,
and will illustrate the method by rederiving the following special case of
the results proven in [W] and [TW]. This is not the optimal result that can
be obtained by this method: see the end of the note for the statement of
some refinements.

Theorem 1. (A. Wiles, R. Taylor) Let p : GQ ---&#x3E; GL2(W(k)) be a conti-
nous representation, with W(k) the Witt vectors of a finite field k of residue
characteristic p &#x3E; 5.

Assume that the mod p reduction p of p has the following properties:
~ Ad°(p) is absolutely irreducible,
. p is modular.

Further assume that:

~ p is semistable at all primes,
~ p is of weight 2 at p and Barsotti- Tate at p if p is finite, flat at p,
. and that the primes ramified in p are ,finitely many and not mod

p.

Then p arises from S2(ro(N)) for some integer N.

Remarks:
1. The idea of such a proof was proposed in [K1], but at that time we

could not put it into practise. In [Kl] we had observed that for many p’s
(for examples the ones in the theorem), assuming p is modular one can show
that Pn arises from Jl(N(n)) for a positive integer N(n) that depends on
n. The new observation of the present note is that in many circumstances
using this we can deduce (see Proposition 1) that Pn arises from J1(N) for
a fixed N.

2. By semistable at we simply mean that the restriction
to the inertia at q should be unipotent, and at p semistable of weight 2 we
mean that p at p should either be Barsotti- Tate, i.e., arise from a p-divisible
group, or be ordinary and the restriction to the inertia at p should be of

the form E * with e the p-adic cyclotomic character. Note that the

determinant of such a p is E.
3. Ado (p) is absolutely irreducible in fact follows from the other assump-

tions of the theorem and the weaker hypothesis that p is irreducible.
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Proof 
°

The rest of the paper will be occupied with the proof of this theorem.
The proof will have 2 steps: We first prove that the reduction mod p" of p,
pn : GQ - GL2(Wn(k)) with Wn(k) the Witt vectors of length n of 1~, arises
in the p-power torsion of where Qn is the (square-free) product of
a finite set of primes that depends on n. For this we use the Ramakrishna-
lifts or R-lifts of [R] and the determination of their limit points in Theorem
1 of [Kl~. In the second step, we deduce from the first step that Pn arises
from Jo(N) for a positive integer N independent of n (see Proposition 1
below). From this we will deduce the theorem easily.

Step 1. Let S be the set of ramification of p. We repeat the following
lemma from [Kl] and its proof for convenience. To explain the notation
used, by R-primes we mean primes q that are not mod p, unrami-
fied for the residual representation p and for which p(FrobQ) has eigen-
values with ratio with Frobq an arithmetic Frobenius element at q.
We say that a finite set of R-primes Q is auxiliary if certain maps on
Hl and H2, namely and

H2(GSUQ, Ad°(p)) ~ Ado (;5)) considered in [R] are isomor-
phisms. We refer to [R] for the notation used: recall that Nv for v E Q is the
mod p cotangent space of a smooth quotient of the local deformation ring
at v which parametrises special lifts. These isomorphisms result in the fact
that there is a lift i GQ --&#x3E; GL2(W(k)) of p which is furthermore
the unique lift of p to a representation to (with C~ ring of integers
of any finite extension of Qp) that has the properties of being semistable
of weight 2, unramified outside S U Q, minimally ramified at primes in S,
with determinant ~’, and special at primes in Q. Here by special at q we
mean that the restriction of the representation to a decomposition group

Dq at q should up to twist be of the form 6 1 J : : we use this definition
even for representations into GL2(R) with R a W(k)-algebra.
Lemma 1. Let Q~ be any finite set primes that includes the primes of
ramification such that Q~~S contains only R-primes and such that

special for q E Q’ n BS. Then there exists a finite set of primes Qn
that contains Q~, such that is special for q E contains

only R-primes and auxiliary.

Proof We use [R] and Lemma 8 of [KR] (that latter being a certain mutual
disjointness result for field extensions cut out by Pn and extensions cut out
by elements of and with the
dual of Ad°(p)) to construct an auxiliary set of primes Un such that 
is special for q E Then as Q£)S contains only R-primes, it follows from
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Proposition 1.6 of [W] that the kernel and cokernel of the map

have the same cardinality, as the domain and range have the same cardi-
nality. Then using Proposition 10 of [R], or Lemma 1.2 of [T], and Lemma
8 of [KR], we can augment the set S U Vn U Q~ to get a set Qn as in the
statement of the lemma.

Remark: We can choose Q~ as in the lemma such that Q~ is independent
of n (as p is ramified at only finitely many primes). But the set Qn that the
lemma produces depends much on n, and can be chosen to be independent
of n only if p is itself a R-lift. Further note that just like the auxiliary
primes in [TW], the sets Qn have no coherence property in general.

We choose a finite set of primes Qn as in Lemma 1 and use the lemma to
complete Qn to a set Qn such that is auxiliary and PnlDq is special
for q E Then we claim p mod pn. The claim is

true, as the set being auxiliary, there is a unique representation
GQ - GL2(W(k)/(pn)) (with determinant E) that reduces to p mod p and
is unramified outside Qn, minimal at S and special at primes of It

is of vital importance that p is as otherwise we would
not be able to invoke the disjointness results that are used in the proof of
Lemma 1 (Lemma 8 of [KR]).

Because of the uniqueness alluded to above, it follows from the level-

raising results of [DT] (see Theorem 1 of [K]) that arises from

JO(QN) (where abusively we denote by Qn the product of primes in Qn),
and hence because of the congruence p mod p’~, we deduce
that Pn arises from (i.e., is isomorphic as a GQ-module to a submodule of)
the p-power torsion of Jo (Qn) and for primes r prime to Qn, T, acts on pn
via tr(p(Frobr)).
Step 2. Let Wn be the subset of Qn at which Pn is unramified (note that
the set is independent of n for n » 0 as p is finitely ramified).
Then we have the proposition:

Proposition 1. The representations Pn arises from the Wn-old subvariety
of JO(Qn), and furthermore all the Hecke operators Tr, for r a prime not
dividing Qn, act on pn by tr(Pn(Frobr)).
Proof: This is a simple application of Mazur’s principle (see Section 8 of
[Ri]). The principle relies on the fact that on torsion points of Jacobians
of modular curves with semistable reduction at a prime q, which are un-
ramified at q and which reduce to lie in the "toric part" of the reduction
mod q of these Jacobians, the Frobenius action is constrained. Namely,
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on the "toric part" the Frobenius Frobq acts by -wqq where Wq is the

Atkin-Lehner involution. We flesh this out this below.
Consider a prime q E Wn. Then decompose (which is unramified

by hypothesis) into W (k) / pn E9 W (k) /pn where on the first copy Frobq acts
by a scalar that is not ±q: this is possible as q2 is not 1 mod p and p~, is
special at q. Let en be a generator for the first summand. We would like
to prove that Pn occurs in the q-old subvariety of Jo(Qn). Note that using
irreducibility of p, Burnside’s lemma gives that p(k[GQ]) = M2(1~) and
hence by Nakayama’s lemma = M2(Wn(k)). Thus using
the fact that the q-old subvariety is stable under the Galois and Hecke
action, the fact that Pn occurs in the q-old subvariety of is implied
by the claim that en is contained in the q-old subvariety of Jo(Qn). Let J
be the N6ron model at q of Note that as Pn is unramified at q it

maps injectively to under the reduction map. Now if the claim

were false, as the group of connected components ,7 is Eisenstein (see loc.
cit.), I we would deduce that the reduction of en in maps non-q lFq
trivially (and hence its image has order divisible by p) to the FQ-points of
the torus which is the quotient of by the image of the q-old subvariety
(in characteristic q). But as we recalled above, it is well known (see loc. cit.)
that Frobq acts on the F9-valued points of this toric quotient (isogenous
to the torus T of JFq 0 the latter being a semiabelian variety that is an

extension by T) by -wQq which gives the contradiction that
q2 is 1 mod p. This contradiction proves the claim. Now taking another
prime q’ E Wn and working within the q-old subvariety of Jo(Qn), by
the same argument we see that pn occurs in the subvariety of

and eventually that pn occurs in the Wn-old subvariety of 
Furthermore by inspection the last part of the proposition is also clear.

p is modular. From the above proposition it is easy to deduce that pn
arises from Jo(N) for some fixed integer N that is independent of n Let T
be the Hecke algebra for Jo(N), generated by the Hecke operators TT with
r prime and prime to N. We claim that the Pn give compatible morphisms
from T to the To get these morphisms, let Yn denote a
realization of the representation p.~ in Jo(N) which exists by the above 
proposition. Then Vn is GQ-stable, and hence T-stable (because of the
Eichler-Shimura congruence relation mod r, that gives an equality of corre-
spondences Tr = FrobT + r.Frobr-1 where Frobr is the Frobenius morphism
at r). So Vn is a T-module, and because of the aboslute irreducibility
(only the scalars commute with the GQ-action) T acts via a morphism
7rn : T ~ W(k)/pnW(k) as desired, and the -xn’s are compatible again
because of the congruence relation. This gives a morphism 1f : T 2013~ W(k)
such that the Eichler-Shimura representation associated to 1f is isomorphic
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to p which finishes proof of Theorem 1. We owe this efficient argument to
Bas Edixhoven: in an earlier version we had given a clumsier argument.

Remarks:
1. In [K], the R-lifts of [R] were used to give new proofs of modularity

theorems that did not use TW systems but nevertheless generally relied
on the set-up in [W] of comparing deformation and Hecke rings and the
numerical criterion for isomorphisms of complete intersections of [W].

2. By cutting the Jacobians we work with into pieces according to the
action of the Atkin-Lehner involutions we can make the proof of Proposition
1 work when the prime q is not 1 mod p.

3. It is possible to prove the following more refined theorem using the
methods here.

Theorem 2. Let p : GQ ~ GL2(k) be a continous, odd representation,
with k a finite field of characteristic bigger than 3, such that is

irreducible. Assume that p is modular, and at p is up to twist neither the
trivial representation nor unramified with image of order divisible by p.

Let p : GQ - GL2(W(k)) be a continuous lift of p that has the following
properties:

~ p is minimally ramified at the primes of ramification Ram(p) of p,
~ p is of weight 2 at p, and Barsotti- Tate at p if p is finite, flat at p,
~ the set of primes Ram(p) ramified in p is finite,
~ p is serraistable at all the primes of 
~ for the primes q in Ram(p) that are not in Ram(p~, not a

scalar.

Then p arises from a newform of weight 2.

It will be of interest to have a less restrictive theorem accessible by
the methods of this paper, for instance be able to treat (many) 3-adic
representations. Conditions ensuring minimality of ramification of p at
Ram(p) U ~ seem essential.
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