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On an approximation property of
Pisot numbers II

par TOUFIK ZAIMI

RESUME. Soit ¢ un nombre complexe, m un entier positif et
lm(q) = inf{|P(q)], P € Zm[X],P(q) # 0}, ot Zm|X] désigne
Pensemble des polynomes a coefficients entiers de valeur absolue
< m. Nous déterminons dans cette note le maximum des quan-
tités 1, (¢) quand g décrit l'intervalle |m,m + 1. Nous montrons
aussi que si ¢ est un nombre non-réel de module > 1, alors q est
un nombre de Pisot complexe si et seulement si /,(g) > 0 pour
tout m.

ABSTRACT. Let ¢ be a complex number, m be a positive ratio-
nal integer and l,,(q) = inf{|P(q)|, P € Z»[X], P(q) # 0}, where
Z.,[X] denotes the set of polynomials with rational integer co-
efficients of absolute value < m. We determine in this note the
maximum of the quantities {,,(¢) when g runs through the interval
|m, m+1[. We also show that if g is a non-real number of modulus
> 1, then g is a complex Pisot number if and only if {,,(g) > 0 for
all m.

1. Introduction

Let ¢ be a complex number, m be a positive rational integer and l,,(q) =
inf{|P(q)|, P € Zn[X], P(q) # 0}, where Zy,[X] denotes the set of polyno-
mials with rational integer coeflicients of absolute value < m and not all
0. Initiated by P. Erdos et al. in [6], several authors studied the quantities
Im(q), where q is a real number satisfying 1 < g < 2. The aim of this note
is to extend the study for a complex number q. Mainly we determine in the
real case the maximum ( resp. the infimum ) of the quantities /;,(g) when
g runs through the interval |m, m + 1[ ( resp. the set of Pisot numbers in
Jm,m + 1[ ). For the non-real case, we show that if ¢ is of modulus > 1
then ¢ is a complex Pisot number if and only if /,,(¢) > 0 for all m. Re-
call that a Pisot number is a real algebraic integer > 1 whose conjugates
are of modulus < 1. A complex Pisot number is a non-real algebraic inte-
ger of modulus > 1 whose conjugates except its complex conjugate are of
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modulus < 1. Note also that the conjugates, the minimal polynomial and
the norm of algebraic numbers are considered here over the field of rationals.
The set of Pisot numbers ( resp. complex Pisot numbers ) is usually noted
S (resp. S¢ ). Let us now recall some known results for the real case.

THEOREM A. ( [5], [7] and [9] )

(i) If g €]1,00], then q is a Pisot number if and only if l,(q) > 0 for all
m;

(it) if ¢ €]1,2[, then for any € > O there exists P € Z1[X] such that
|P(q)] <e.

THEOREM B. ([15))
(i) If q runs through the set SN|1,2[, then infl1(q) = 0;
(it) if m is fized and q runs through the interval |1,2[, then maxly,(q) =

Im(A), where A = 1—"—'2—‘/5
The values of l;,(A) have been determined in [11].

In [3] P. Borwein and K. G. Hare gave an algorithm to calculate l,(q)
for any Pisot number ¢ ( or any real number q satisfying i (g) > 0 ). The
algorithm is based on the following points :

(i) From Theorem A (i), the set (g, €) = Ug>0Q4(g, €), where ¢ is a fixed
positive number and

Qa(g,€) = {|P(9)|, P € Zm[X],0P = d,0 < |P(q)| < e},

is finite ( OP is the degree of P );

(ii) if P € Zm[X] and satisfies |P(g)| < ;Z; and OP > 1, then P can be

written P(z) = Q(z) + P(0) where Q € Zm[X] and |Q(q)| < ;Z5;

(iii) if g €]1,m+1], then 1 € Q(q, 75) and l;(q) is the smallest element
of the set Q(q, E’_ﬂi) (if ¢ €]m + 1, 00|, then from Proposition 1 below we
have I, (q) =1).

The algorithm consists in determining the sets Q4(q, E%) for d > 0 and
the process terminates when Ug<q$2%(q, q_T'I) = Ur<d+12%(q, le) for some
( the first ) d. By (i) a such d exists. In this case, we have Q(q, =) =
Ur<dS% (g, E'—'—m_l) by (ii). For d = 0, we have Q4(q, quI) = {1,...,
min(m, E(qL_nT))}, where F is the integer part function. Suppose that the
elements of Q4(q, 'qlf'T) have been determined. Then, every polynomial P
satisfying |P(q)| € Qat1(q, ;Z) is of the form P(z) = zQ(z) + 7, where
IQ(q)I € Qd(qv q_Tl-) and ne {_mv 0, m}
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2. The real case

Let g be a real number. From the definition of the numbers l,,(q), we
have I (q) = lm(—q) and 0 < lym+1(g) < lm(g) < 1, since the polynomial
1 € Zn[X]. Note also that if ¢ is a rational integer ( resp. if |g| < 1), then
Im(q) =1 (resp. Im(q) < |¢"|, where n is a rational integer, and l,(q) = 0).
It follows that without loss of generality, we can suppose ¢ > 1. The next
proposition is a generalization of Remark 2 of [5] and Lemma 8 of [7] :

Proposition 1.

(i) If g € [m + 1,00[, then lm(q) = 1;

(ii) if ¢ €]1,m+ 1], then for any € > 0 there exists P € Zp[X] such that
|P(g)] <e.
Proof. (i) Let ¢ € [m+1,00[ and P(z) = eoz? +e12% 1 +.. .+ €4 € Z[X],
where d = 9P > 1 (if d =0, then |P(g)| > 1 ). Then,

IP(9)] > [eod”| - [e14| = .. = leal > Fmala),
where the polynomial fy, 4 is defined by
fmd(@) =2 —m(z® 1+ 292+ 4z +1).
It suffices now to show that f, 4(¢g) > 1 and we use induction on d. For
d =1, we have fr, 4(q) =g—m >m+1—m = 1. Assume that fp, 4(q) > 1
for some d > 1. Then, from the recursive formula
fm,d+1(x) = zfm,d(w) —m
and the induction hypothesis we obtain
fmd+1(9) = ¢fma(g) —m 2 g-—m > 1.
(ii) Let ¢ €]1,m+1[. Then, the numbers ; = eo+e19+. ..+eng", wheren
is a non-negative rational integer and ¢ € {0,1,...,m}, 0 < k < n satisfy
0<¢& < mg% for all j € {1,2,...,(m + 1)"*'} From the Pigeonhole

principle, we obtain that there exist j and I such that 1 < j <! < (m+1)"*!

and
qn+1 -1

R < .
I VY
It follows that the polynomial P € Z,[X] defined by
Plg) =¢ —&

satisfies the relation |P(q)| < MG +1‘)1:Ll :i)( =D and the result follows by

choosing for any € > 0, a rational integer n so that
m -1
<eE.
(g—1) (m+1)ntl -1
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We cannot deduce from Proposition 1 (ii) that g is an algebraic integer
when ¢ satisfies g(q)(g) > 0 except for the case E(q) = 1. However, we
have :

Proposition 2. If lg)4+1(q) > 0, then q is a beta-number.

Proof. Let 2. be the beta-expansion of ¢ in basis q [13]. Then, q is
n20 ¢

said to be a beta-number if the subset {Fy(g),n > 1} of the interval [0, 1],

where

1 2

Fo(z)=2" —epz"  — 12" — ... —€p-1,

is finite [12]. Here, the condition lg(g)+1(g) > 0, implies trivially that g is
a beta-number ( as in the proof of Lemma 1.3 of [9] ), since otherwise for
any € > 0 there exists n and m such that n > m, 0 < |F,(¢) — Fn(q)| < ¢

and (Fn - Fm) € ZE(q)—H [X]

Remark 1. Recall that beta-numbers are algebraic integers, Pisot numbers
are beta-numbers, beta-numbers are dense in the interval |1,00[ and the

conjugates of a beta-number g are all of modulus < min(g, l—%ﬁ) (4], 12]
and [14]). Note also that it has been proved in [8], that if g €]1, lj-?@] and
lE(g)+1(g) > 0, then ¢ € S. The question whether Pisot numbers are the
only numbers g > 1 satisfying lg(g)(¢g) > 0, has been posed in [7] for the
case E(q) = 1.

From Proposition 1 ( resp. Theorem B ) we deduce that infl,(q) = 0
( resp. maxl;(q) = l1(A) ) if g runs through the set SN|1,m + 1[ ( resp.
the interval |1,2[ ). Letting A = A;, we have more generally :

Theorem 1.

(i) If q¢ runs through the set SN|m, m + 1|, then inf l,,(gq) = 0;

(i) if ¢ runs through the interval |m, m+1[, then max l,(q) = ln(An) =
Am —m, where Ap, = DEVmHAm
Proof. (i) Let ¢ € SN]m, m + 1], such that its minimal polynomial P €
Zm[X]. Suppose moreover, that there exists a polynomial Q € Z[X] satis-
fying Q(q) > 0 and |Q(2)| < |P(2)| for |z| = 1 ( choose for instance ¢ = A,,
since m < A, < m+1, P(z) = 22 — mz — m and Q(z) = 22 — 1. In this
case |P(2)]* — |Q(2)* = 2m? =1+ m(m —1)(2 + 1) — (m — 1)(2* + %) and
PR - 1Q(z)>=2m?2—1-2m(m—1)—2(m—1)=1>0).

From Rouché’s theorem, we have that the roots of the polynomial

Qn(z) = 2"P(z) - Q(),

where n is a rational integer > 0P, are all of modulus < 1 except only one
root, say 0,. Moreover, since Qr(q) < 0, we deduce that 6, > q and 6,
€s.



On an approzimation property of Pisot numbers 243
Now, from the equation

0nP(6n) — Q(0n) =

|Q(6r) _  Coq Ce
|P( n)l = or S 77;—8@ S qn—BQ’

we obtain

where Cg is a constant depending only on the polynomial Q. As q is
the only root > 1 of the polynomial P, from the last relation we obtain
lim#@, = q and 6, < m + 1 for n large. Moreover, since l,,(6,) < |P(6,)],
the last relation also yields

limly,(6n) =0
and the result follows.

(i) Note first that m < Ay, = BN 4 1] and A2, —mAp—m =
0. Let ¢ € J]mym + 1] and ¢ # Ap. Then, l,(q) < ¢—m < Ap —
when ¢ < Ap,. Suppose now q¢ > A, and l(q) > 0 ( if l,(g) = 0, then
Im(q) < Ay, — m ). Then, from Proposition 1 (ii), we know that for any
e > 0, there exists a polynomial P € Z,[X] such that |P(g)| < €. Letting
€ = ly(q), we deduce that there exist a positive rational integer d and d+ 1
elements, say 7;, of the set {—m,...,0,...,m} satisfying nong # 0 and

Mo +mq+ ...+ nag® = 0.

Let t be the smallest positive rational integer such that n, # 0. Then,
from the last equation, we obtain

- 0
Im(q) < 77t+77t+1(I+...+17dqd t'—_— % <

m_.m
q Anm
and

m

To prove the relation l,,(Ap) = Am —m, we use the algorithm explained
in the introduction. With the same notation, we have Qo(Am, z777) = {1},

since z 7 = m_2+f/mm2+4m < 2. Let P € Zy[X]. IfOP = 1 and |P( Am)| €
01(Am, 7--7), then P(z) = z —¢, where e € {-m,...,0,...,m}. A short

computation shows that if € #m, then Ap, —e > Ap, — ( -1) > £
It follows that Q1(Am, z7) = {Am —m} and if OP = 2 with |P(A m)l €
Qo(Am, g047), then P(:c) z(x —m) —e. Since Ap(Am —m) = m
and the inequality |m —¢| < g holds only for € € {m — 1,m},we deduce
that P(Am) = £1, Q2(Am, 7757) = {1}, UAm, 707) = Qo(Am, z07) U
N(Am, 17) = {1, A — m} and In(Am) = Am — m. a

Corollary. If q runs through the interval |1,m + 1[ and is not a rational
2

integer, then maxln(q) = lm(Am) = -—7-=
1+4/1+2
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1+ 1+i
Proof. From the relations A,, = m

4
—_1+\/1+—>1+,/1+
m(A +1 m+1(Am+1)

and the sequence l;,(Ay) is increasing with m ( to 1 = lim . = ). It

and Uy, (Am )=Aﬂ— we have

follows that lg(g)(Ag(g)) < lm(Am) when g € ]1,m + 1[. From Theorem 1
(ii), we have lg(g)(q) < lg(q)(AE(g) if ¢ is not a rational integer. Further-

more, since Im(q) < lg(q)(q) we deduce that ly,(q) < lm(Am) and the result
follows. O

Remark 2. From Theorem B ( resp. Theorem 1 ) we have max ly1x(q) =
lm+k(Am) when g runs through the interval [m,m+ 1, m=1and k> 0
(resp. m > 1 and k = 0 ). Recently [1], K. Alshalan and the author
considered the case m = 2 and proved that if k € {1,3,4,5,6} (resp. if
k € {2,7,8,9}), then maxily,x(q) = loyx(1 + v2) (resp. maxlo i(q) =
k(2572)).

3. The non-real case

Let a be a complex number. As in the real case we have l,(a) = 0 if
la| < 1. Since the complex conjugate of P(a) is P(a) for P € Zpy[X], we
have that I;,(a) = I, (@). Note also that if a is a non-real quadratic algebraic
integer and if P € Z,;,[X] and satisfies P(a) # 0, then |P(a)| > 1, since
|P(a)|?> = P(a)P(a) is the norm of the algebraic integer P(a). It follows in
this case that l,(a) = 1.

Proposition 3.

(i) If |a| € [m + 1, 00|, then Iy (a) = 1;

(i) if la|* € [1,m + 1], then for any positive number €, there ezists
P € Zp[X] such that |P(a)| < €.

Proof. (i) The proof is identical to the proof of Proposition 1 (i).
(ii) Let n > 0 be a rational integer and a™ = z, + iy,, where z, and y,
are real and i = —1. Then, the pairs of real numbers

(X;,Y}) = (eoTo + €171 + ... + €nTn, €Yo + €191 + - . . + EnYn),
where ¢ € {0,1,...,m} for all k € {0,1,...,n}, are contained in the rec-
tangle R = [m} . <%k M D o<z, Tkl X [M Doy, <0 Yk ™ D 0gy, Ykl If we
subdivide each one of two intervals [m} . oZk,m> o, k] and
[m 32, <o Yk ™ ) oy, Yk into N subintervals of equal length, then R will
be divided into N2 subrectangles.

n+1
Letting N = (m + 1)";— — 1, where n is odd, then N2 < (m + 1)**+!
and from the pigeonhole principle we obtain that there exist two points
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(X;,Y;) and (Xg,Yk) in the same subrectangle. It follows that there exist
M0, M1,---Mn € {-m,...,0,...,m} not all 0 such that
m Zogkgn ||
N b
™ Yogksn Yl
N

|X; — Xi| = |nowo + mz1+ ... + Nazn| <

Y; — Yi| = [moyo + my1 + - .. + Mnyn| <
and the polynomial P € Z,[X] defined by
P(a) = (Xj — Xi) +i(Y; = Yi) =m0+ ma+ ... +1na”,

satisfies
|P(a)| < (Y Izl + () lwwl)?
0gksn 0gk<sn
Since
max( > fzel, 30 I < Y |at| =n+1
0<k<n og<k<n 0<k<n
( resp.
X |a|’n+1_1
max( Y loel, Y lw)< D 'a ’:—W—:l_)’
o0<k<n 0<k<n 0<k<n

when |a| =1 ( resp. when |a| > 1), from the last inequality we obtain

P@) < ™2+ 1)
( resp. 3 ol
Pl < SR

and the result follows by choosing for any £ > 0 a rational integer n so that

n+1
(m\@)(m_l)<e

( \/’) |a|n+1 1
la| — 1 \/m+1)“+1—1

( resp.

<e).
O

Remark 3. The non-real quadratic algebraic integer a = iv/m + 1 satisfies
la> =m +1, l;m(a) = 1 and is not a root of a polynomial € Zy,[X], since
its norm is m + 1. Hence, Proposition 3 (ii) is not true for |a|> = m + 1.

Now we obtain a characterization of the set S,.

Theorem 2. Let a be a non-real number of modulus > 1. Then, a is a
complex Pisot number if and only if l,(a) > 0 for all m.
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Proof. The scheme ( resp. the tools ) of the proof is ( resp. are ) the same
as in [5] ( resp. in [2] and [10] ) with minor modifications. We prefer to
give some details of the proof.

Let a be a complex Pisot number. If a is quadratic, then ln(a) = 1 for
all m. Otherwise, let 61,05, ...,60s be the conjugates of modulus < 1 of a
and let P € Zp,[X] satisfying P(a) # 0. Then, for k € {1,2,...,s} we have

1— I0k|3P+1 m
1—10k] 16kl

Furthermore, since the absolute value of the norm of the algebraic integer
P(a) is > 1, the last relation yields

1POk)] < m(I6x]° +16x°7 7 + .. 4 [0 +1) = m

<(1—10
IPa)f? = |P(a)] |P(@)] > Hisks Til 16k 1)

and

116
%@>¢m@¢s|m>a
m

To prove the converse, note first that if a is a non-real number such that
lm(a) > 0 for all m, then a is an algebraic number by Proposition 3 (ii). In
fact we have :

Lemma 1. Let a be a non-real number of modulus > 1. If ly,(a) > 0 for
all m, then a is an algebraic integer.

Proof. As in the proof of Proposition 2, we look for a representation a =
Y n>0 & of the number a in basis a where the absolute values of the rational
integers €, are less than a constant ¢ depending only on a. In fact from
Lemma 1 of [2], such a representation exists with ¢ = E(3 + |a2| JI%I;I%),
where a = |a| €. Then, the polynomials

2

n—1 n—
— €1T — ...~ En-1,

Fo(z) = 2" — g0z

where n > 1, satisfy F,, € Z.[X] and

_ Entk C
|Fn(a)| = E ak+1 < la| — 1°
k>0
It follows that if lo;.(a) > 0, then the set {Fy,(a),n > 1} is finite. Conse-

quently, there exists n and m such that n > m and F,(a) = F,(a), so that
a is a root of the monic polynomial (F,, — Fp,) € Zo [ X]. O

To complete the proof of Theorem 2 it suffices to prove the next two
results.
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Lemma 2. Let a be an algebraic integer of modulus > 1. If lm(a) > 0 for
all m, then a has no conjugate of modulus 1.

Proof. Let I, = {F € Zn[X],F(z) = P(z)Q(z),Q € Z[X]}, where P is
the minimal polynomial of a. Let F' € I, and define a sequence F&) in
Z[X] by the relations F©© = F and F*+1 (z) = &@%F—(k!m,where
k is a non-negative rational integer. Then, the polynomials F®) sat-
isfy |F®) (a)| < ral-1- Indeed, we have FO (a) = 0 and |F*+D (a)| <

F&) (a)|+|F&) (0)
JF¢ |a|| | < oy B = oy, when |[F® (a)] < 2y Let

Rgc) € Z[X] be the remainder of the euclidean division of the polynomial
F® by P. Since P is irreducible and BR;{“) < 0P, the set of polynomi-
als {Rgf),k: > 0,F € I} is finite when the complex set {Rgc) (a),k >0,
F € Ip,,} is finite.

Suppose now that a has a conjugate of modulus 1. Then, from Propo-
sition 2.5 of [10], there exists a positive rational integer ¢ so that the set

{ Rgc) ,k > 0,F € I.} is not finite. Hence, the bounded set {Rgc) (a) =
F(k)(a),k > 0,F € I} is not finite and for any ¢ > 0, there exist F} € I,
and Fy € I, such that 0 < ‘Fl(k)(a) —Féj)(a)‘ < €, where k and j are
non-negative rational integers. Hence, lo.(a) = 0, and this contradicts the
assumption [, (a) > 0 for all m. O

Lemma 3. Let a be an algebraic integer of modulus > 1. If l,(a) > 0
for all m, then a has no conjugate of modulus > 1 other than its complex
conjugate.

Proof. Let Jp, be the set of polynomials F € Z,,[X] satisfying F(a) =
1

i(‘f—), for some S € Zp,[[X]] ( the set of formal series with rational integers

coefficients of absolute value < m ). If the polynomials F(*) and Rgc) are

defined for F' € Jp, by the same way as in the precedent proof ( I, C Jy, ),
1
we obtain immediately F*) € J,, and |F(a)| = ’f%all < ]El"i—l Therefore,

by the previous argument, the set {Rgc) ,k > 0,F € Jy} is finite when
Let a be a conjugate of modulus > 1 of a and let S(z) = ), spa™ €
Zn[[X]] satisfying S(2) = 0. Then, S(1) = 0. Indeed, if F(z) = soz" +
512" 1+ ...+ sp, then F € Jp, F(a) = Rg,?)(a) and
(0)
tim 22 _ iy B (@)

1 . s s
S(a)=hm(so+gl+...+—n)= im

=0
an o a” ’

since the coefficients of the polynomial RE;(?) are bounded ( R;(-)) € {R;’f) ,
k> 0,F € Jy}). It suffices now to find for o ¢ {a ,a} a positive rational



248 Toufik ZAIMI

integer m and an element S of Zy,[[X]] satisfying S(1) = 0 and S(2) #0
In fact this follows from Proposition 7 of [2]. a

Now from Theorem 1 we have the following analog :

Proposition 4.

(i) If a runs through the set ScN{ z, Vm < |z| < vym+1 }, then
infly(a) =0;

(i) if a Tuns through the annulus { z, Vm < |z| < vVm+1 }, then
suplm(a) = ln(ivAm) = Am — m.

Proof. First we claim that if g is a real number > 1, then iy (q) = lm(i1/q).
Indeed, let P € Zmy[X] such that
P(q) =mo+mgq+...+nopg’" #0.
Then,
P(g) =m0 — m(iva)® + ... £mop(iv@)**" = Q(iva),

where Q € Zp[X] and 0Q = 20P. It follows that |P(q)| > lm(i,/q) and
Im(q) = lm(i,/q). Conversely, let P € Zy,[X] such that

P(i/g) = no + m(iv/q) + m2(iv/@)* + . .. + nap(iv/0)°" # 0.
Then, the polynomial R ( resp. I ) € Z,,[X]U {0} defined by
g = P00+ PCivD

where 0 < 2s < 0P, satisfies |R(q)| < |P(z\/6)|
( resp.

=m0 —1m2q + ... £ 124",

I(g) = (\/—)21\2( Y9
where 0 < 2t + 1 < 0P, satisfies |I(q)| < ‘P(z‘/—)| |P(l\/_)|

Since P(i,/q) 74 0, at least one of the quantities R(q) and I(q) is # 0. It
follows that l;m(q) < |P(i/q)| and Im(q) < lm(i/3).

Note also that lf q € S, then i,/q € S; and conversely if i,/q € S, where
q is a real number, then g € S. Hence, by Theorem 1 we have

0 < infly(a) < infln(iv/q) = infln(g) =0,

=m — Mg+ ... £n241¢"

( resp.
L (iv/Am) = ln(Am) = max Iy (q) = max by, (i1/g) < suplm(a),

when a runs through the set S, N {z,v/m < |z| < v/m + 1} and ¢ runs
through the set SNjm, m + 1[ ( resp. when a runs through the annulus
{z,/m < |z| < v/m + 1} and q runs through the interval jm,m +1[). O
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Remark 4. The question of [7] cited in Remark 1, can also be extended to
the non-real case : Are complex Pisot numbers the only non-real numbers
a satisfying lg(j42))(a) > 0, a’+1#0and a?—a+1#0?
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