
239-

On an approximation property of
Pisot numbers II

par TOUFIK ZAÏMI

RÉSUMÉ. Soit q un nombre complexe, m un entier positif et
lm(q) = inf{|P(q)|, P ~ Zm[X], P(q) ~ 0}, où Zm[X] désigne
l’ensemble des polynômes à coefficients entiers de valeur absolue
~ m. Nous déterminons dans cette note le maximum des quan-
tités lm(q) quand q décrit l’intervalle ]m, m + 1[. Nous montrons
aussi que si q est un nombre non-réel de module &#x3E; 1, alors q est
un nombre de Pisot complexe si et seulement si lm(q) &#x3E; 0 pour
tout m.

ABSTRACT. Let q be a complex number, m be a positive ratio-
nal integer and lm(q) = inf{|P(q)|, P ~ Zm[X], P(q) ~ 0}, where
Zm[X] denotes the set of polynomials with rational integer co-
efficients of absolute value ~ m. We determine in this note the
maximum of the quantities lm(q) when q runs through the interval
] m, m +1 [. We also show that if q is a non-real number of modulus
&#x3E; 1, then q is a complex Pisot number if and only if lm(q) &#x3E; 0 for
all m.

1. Introduction

Let q be a complex number, m be a positive rational integer and 
P E P(q) =I- 01, where denotes the set of polyno-

mials with rational integer coefficients of absolute value  m and not all
0. Initiated by P. Erdos et al. in [6], several authors studied the quantities

where q is a real number satisfying 1  q  2. The aim of this note
is to extend the study for a complex number q. Mainly we determine in the
real case the maximum ( resp. the infimum ) of the quantities when

q runs through the interval ] m, m + 1 [ ( resp. the set of Pisot numbers in
J m, m + 1[ ). For the non-real case, we show that if q is of modulus &#x3E; 1

then q is a complex Pisot number if and only if &#x3E; 0 for all m. Re-
call that a Pisot number is a real algebraic integer &#x3E; 1 whose conjugates
are of modulus  1. A complex Pisot number is a non-real algebraic inte-
ger of modulus &#x3E; 1 whose conjugates except its complex conjugate are of
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modulus  1. Note also that the conjugates, the minimal polynomial and
the norm of algebraic numbers are considered here over the field of rationals.
The set of Pisot numbers ( resp. complex Pisot numbers ) is usually noted
S ( resp. S~ ). Let us now recall some known results for the real case.

THEOREM A. ( [5], [7] and [9] )
(i) If q E ]1, oo[, then q is a Pisot number if and only &#x3E; 0 for all

m; ,

if q E ] 1, 2 [, then for any e &#x3E; 0 there exists P E Zi[X] such that
IP(q)1  e.

THEORENI B. ([15])
(i) If q runs through the set 2 [, then inf ll(q) = 0;
(ii) if m is fixed and q runs through the interval ~1, 2 [, then 

l", (A), where A = 1 2W *
The values of have been determined in [11].

In [3] P. Borwein and K. G. Hare gave an algorithm to calculate 
for any Pisot number q ( or any real number q satisfying &#x3E; 0 ). The
algorithm is based on the following points :

(i) From Theorem A (i), the set Q(q, e) = e), where e is a fixed
positive number and

is finite ( aP is the degree of P );
(ii) if P E and satisfies IP(q)1 ] and 1, then P can be

written P(x) = xQ(x) + P(0) where Q E Zm [X] and IQ(q)1  qr:::1;
(iii) if q E]l, m + 1 [, then 1 E and is the smallest element

of the set ( if q E~m + 1, oo[, then from Proposition 1 below we
have lm(q) = 1 ).
The algorithm consists in determining the sets Qd(q, for d ~ 0 and

the process terminates when q’~’1 ) = for some

( the first ) d. By (i) a such d exists. In this case, we have SZ(q, Q’’_’-’y ) =
q~"’1) by (ii). For d = 0, we have 52d(q, q’"-_’’1) = {1,...,

where E is the integer part function. Suppose that the
elements of S2d(q, have been determined. Then, every polynomial P
satisfying IP(q)1 ] E Qd+l(q, is of the form P(x) = xQ(x) -f- ri, where
IQ(q)1 E S2d(q, q’-"1 ) and 17 E {-m, ... 0, ... , 
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2. The real case

Let q be a real number. From the definition of the numbers L,", (q), we
have = and 0 ~ lm(q) x 1, since the polynomial
1 E Note also that if q is a rational integer ( resp. if Iql  1 ), then
lm(q) = 1 ( resp. where n is a rational integer, and lm(q) = 0).
It follows that without loss of generality, we can suppose q &#x3E; 1. The next

proposition is a generalization of Remark 2 of [5] and Lemma 8 of [7] :
Proposition 1. 

-

I I I I

where the polynomial f m,d is defined by

It suffices now to show that 1 and we use induction on d. For
d = 1, we have fm,d(q) = q - m &#x3E; m + 1 - m = 1. Assume that 1

for some d &#x3E; 1. Then, from the recursive formula
- , , - , ,

and the induction hypothesis we obtain

(ii) Let q E]1,m+1[. Then, the numbers ~
is a non-negative rational integer and

principle, we obtain that there exist j and 1 such that I

and 
-11 .~ 1 .1

It follows that the polynomial P E defined by

satisfies the relation I and the result follows by
choosing tor any E &#x3E; 0, a rational integer n so that
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We cannot deduce from Proposition 1 (ii) that q is an algebraic integer
when q satisfies 0 except for the case E(q) = 1. However, we
have :

Proposition 2. 0, then q is a beta-number.

Proof. Let be the beta-expansion of q in basis q [13]. Then, q is
said to be a beta-number if the subset {Fn(q), n ~ 11 of the interval ~0, 1~,
where

is finite [12]. Here, the condition lE~q~+1(q) &#x3E; 0, implies trivially that q is
a beta-number ( as in the proof of Lemma 1.3 of [9] ), since otherwise for
any 6 &#x3E; 0 there exists n and m such that n &#x3E; m, 0  I Fn (q) - I  F
and (Fn - Fm) E 0

Remark 1. Recall that beta-numbers are algebraic integers, Pisot numbers
are beta-numbers, beta-numbers are dense in the interval and the

conjugates of a beta-number q are all of modulus  min(q, 1+2 ) ( [4], [12]
and [14]). Note also that it has been proved in [8], that if q ] and

0, then q E S. The question whether Pisot numbers are the
only numbers q &#x3E; 1 satisfying 1E(q) (q) &#x3E; 0, has been posed in [7] for the
case E(q) = 1.

From Proposition 1 ( resp. Theorem B ) we deduce that inf lm(q) = 0
( resp. maY L1 (q) = ll (A) ) if q runs through the set sni 1, m + 1[ [ ( resp.
the interval ]1,2[ ). Letting A = Al, we have more generally :
Theorem 1.

(i) If q runs through the set + 1 ~, then inf l.,", (q) = 0;
(ii) if q runs through the interval ]m, m+ 1[, then maxlm(q) = lm(Am) =

m, where ’"’-+ ’m ~-4m,
Proof. (i) Let q E such that its minimal polynomial P E
Zm[X]. Suppose moreover, that there exists a polynomial Q E Z[X] satis-
fying Q(q) &#x3E; 0 and IQ(z)l  IP(z)l for Izl = 1 ( choose for instance q = Am
since m  A,"t  m + 1, P(x) = x2 - m and = x2 - 1. In this
case IP(z)12 -IQ(z)12 =2~-n2-1-~-m(m-1)(z+z)-(m-1)(z2+~) and
IP(z)12 - 2m2 - 1 - 2m(m - 1) - 2(m - 1) = 1 &#x3E; 0 ). 
From Rouch6’s theorem, we have that the roots of the polynomial

where n is a rational integer &#x3E; aP, are all of modulus  1 except only one
root, say Bn. Moreover, since Qn(q)  0, we deduce that On &#x3E; q and On
E S.
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Now, from the equation

we obtain

where CQ is a constant depending only on the polynomial Q. As q is

the only root &#x3E; 1 of the polynomial P, from the last relation we obtain
lim 0n = q and 0n  m + 1 for n large. Moreover, since 1

the last relation also yields

and the result follows.

(ii) Note first that m  Am = ~+ 2 2+4m  and A5 - mAm - m =
0. Let q E m, m + 1 [ Then, q - m  Am - m
when q  Am. Suppose now q &#x3E; Am and lm(q) &#x3E; 0 ( if lm(q) = 0, then
lm(q)  Am - m). Then, from Proposition 1 (ii), we know that for any
E &#x3E; 0, there exists a polynomial P E Zm [X] such that I  E. Letting
E = lm (q), we deduce that there exist a positive rational integer d and d + 1
elements, say of the set I-M, ... , 0, .m I satisfying qoqd =A 0 and

Let t be the smallest positive rational integer such that 7/t ~ 0. Then,
from the last equation, we obtain

I I I-- I - -

and

To prove the relation lm(Am) = Am - m, we use the algorithm explained
in the introduction. With the same notation, we have A’~’z 1 ) 

Corollary. If q runs through the interval ] 1, m + 1 [ and is not a rational



244

Proof. From the relations A we have

and the sequence is increasing with m (
v fft

follows that when q E 1, m + 1[. From Theorem 1
(ii), we have 1E(q) (AE(q)) if q is not a rational integer. Further-
more, since we deduce that lm (q) :~ lm (Am) and the result
follows. D

Remark 2. From Theorem B ( resp. Theorem 1 ) we have max l m,+k (q) _
lm+k (Am) when q runs through the interval ] m, m + 1 [, m = 1 and k ~ 0
( resp. m ~ 1 and k = 0 ). Recently [1], K. Alshalan and the author
considered the case m = 2 and proved that if k E 11, 3, 4, 5,6} (resp. if

k E {2, 7, 8, 9}), then = L2+k (1 + J2) (resp. 
12+k ( §£±Nj)) 2 .

3. The non-real case

Let a be a complex number. As in the real case we have lm (a) = 0 if
lal  1. Since the complex conjugate of P(a) is P(a) for P E we

have that lm (a) = Note also that if a is a non-real quadratic algebraic
integer and if P E Zm[X] and satisfies 0, then ~P(a)~ ~ 1, since

IP(a) 12 = P(a)P(a) is the norm of the algebraic integer P(a). It follows in
this case that lm (a) = 1.

Proposition 3.
(i) If lal E [m + l, oo~, then lm(a) = 1;

if I a12 E [1,,m + 1(, then for any Positive numbers 6’~ there exists
P E such that IP(a)B  ~.

Proof. (i) The proof is identical to the proof of Proposition 1 (i).
(ii) Let n ~ 0 be a rational integer and an = Xn + iyn, where xn and yn

are real and i2 = -1. Then, the pairs of real numbers

(Xj, Yy) = (Eoxo + + ... + enxn, eoyo + + ... + £nYn) ,
where Ek E f 0, 1, .. - , m} for all k E {0,1, ... , n}, are contained in the rec-

--_ ,- 
- 

,-_

[m Yk] into N subintervals of equal length, then R will
be divided into N2 subrectangles.

Letting N = (m + 1) n21 - 1, where n is odd, then N2  (m + 1)n+1
and from the pigeonhole principle we obtain that there exist two points
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(Xj, I Yi) and (Xk, Yk) in the same subrectangle. It follows that there exist

77o, I1, ... Tln E -m, ... , 0, ... , m} not all 0 such that
- I I

and the polynomial P E Zm [X] defined by

satisfies

Since

( resp.

when = 1 ( resp. when &#x3E; 1 ), from the last inequality we obtain

( resp.

and the result follows by choosing for any £ &#x3E; 0 a rational integer n so that

( resp.

Remark 3. The non-real quadratic algebraic integer a = satisfies
= m + 1, = 1 and is not a root of a polynomial E Zm[X], since

its norm is m + 1. Hence, Proposition 3 (ii) is not true for lal 2 = m + 1.
Now we obtain a characterization of the set Sic.

Theorem 2. Let a be a non-real number of modulus &#x3E; 1. Then, a is a
complex Pisot number if and only if l", (a) &#x3E; 0 for all m.
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Proof. The scheme ( resp. the tools ) of the proof is ( resp. are ) the same
as in [5] ( resp. in [2] and [10] ) with minor modifications. We prefer to
give some details of the proof.

Let a be a complex Pisot number. If a is quadratic, then l-"t (a) = 1 for
all m. Otherwise, let B1, 02, ... , 0s be the conjugates of modulus  1 of a
and let P E satisfying P(a) ~ 0. Then, for k E {I, 2, ... , sl we have

Furthermore, since the absolute value of the norm of the algebraic integer
P(a) is &#x3E; 1, the last relation yields

and

To prove the converse, note first that if a is a non-real number such that
0 for all m, then a is an algebraic number by Proposition 3 (ii) . In

fact we have :

Lemma 1. Let a be a non-real number of modulus &#x3E; 1. If &#x3E; 0 for
all m, then a is an algebraic integer.

Proof. As in the proof of Proposition 2, we look for a representation a =
the number a in basis a where the absolute values of the rational

integers En are less than a constant c depending only on a. In fact from
Lemma 1 of [2], such a representation exists with
where a = lal eit. Then, the polynomials

, , - ... - n

where n &#x3E; 1, satisfy Fn E and

It follows that if l2~(a) &#x3E; 0, then the set 1} is finite. Conse-

quently, there exists n and m such that n &#x3E; m and Fn(a) = so that
a is a root of the monic polynomial (F~ - E D

To complete the proof of Theorem 2 it suffices to prove the next two
results.
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Lemma 2. Let a be an adgebraic integers of modulus &#x3E; 1. If lm(a) &#x3E; 0 for
all m, then a has no conjugate of modulus 1.

Proof. Let I",, = {F E F(x) = P(x)Q(x), Q E 7G~X~~, where P is
the minimal polynomial of a. Let F E I,,", and define a sequence F~~~ in

by the relations F(o) = F and p(k+1) (x) = (X) x F (k) ° ,where
k is a non-negative rational integer. Then, the polynomials F~k~ sat-

Indeed, we have I

RF~ E be the remainder of the euclidean division of the polynomial
by P. Since P is irreducible and  the set of polynomi-

als {R~F~,1~ ~ 0, F E is finite when the complex set (a), k ~ 0,
F E is finite.

Suppose now that a has a conjugate of modulus 1. Then, from Propo-
sition 2.5 of [10], there exists a positive rational integer c so that the set
{ RF~~ , k ~ 0, F E 7J is not finite. Hence, the bounded set (a) =
F~~~ (a), l~ ~ 0, F E 7c} is not finite and for &#x3E; 0, there exist Fi e 7c
and F2 E Ie such that 0   ê, where k and j are

non-negative rational integers. Hence, = 0, and this contradicts the
assumption &#x3E; 0 for all m. D

Lemma 3. Let a be an algebraic integer of 1. If &#x3E; 0

for all m, then a has no conjugate of 1 other than its complex
conjugate.

Proof. Let Jm be the set of polynomials F E Zm[X] satisfying F(a) =
as, for some S E 7G."X ( the set of formal series with rational integers
coefficients of absolute value fi m ). If the polynomials and are

defined for F E Jm by the same way as in the precedent proof ( 1m c Jm ),
we obtain immediately F(k) e Jm and ~F(a)~ I = 2013~- ~ Therefore,

by the previous argument, the set k ~ 0, F E is finite when
&#x3E; 0.

Let a be a conjugate of modulus &#x3E; 1 of a and let S(x) _ ¿n snxn E
Zm[[X]] satisfying = 0. Then, S(a) = 0. Indeed, if F(x) = +

~.1 1 .2013-2013.. _rm, , ,

since the coefficients of the polynomial are bounded ( 
J~ &#x3E; 0, F E J~-,2 ~) . It suffices now to find for a ~ ~a , a~ a positive rational



248

integer m and an element S of satisfying S( a ) = 0 and S( a ) # 0.
In fact this follows from Proposition 7 of [2]. D

Now from Theorem 1 we have the following analog :

Proposition 4. 
___

Proof. First we claim that if q is a real number &#x3E; 1, then = 

Indeed, let P E Zm [X] such that

Then,

where Q E and 8Q = 2aP. It follows that and

Conversely, let P E Zm [X] such that

Then, the polynomial R ( resp. I ) E U 101 defined by
- ... -, - - -,

where 0  2s  aP, satisfies
( resp.

where 0  2t + 1  aP, satisfies I
Since P(I@) # 0, at least one of the quantities R(q) and I(q) is ~ 0. It

follows that and 
Note also that if q E S, then e Bc and conversely if E where

q is a real number, then q E S. Hence, by Theorem 1 we have

( resp.

when a runs through the set and q runs
through the set S’flJm, m + II [ ( resp. when a runs through the annulus

 and q runs through the interval ]m, m + 1[). D
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Remark 4. The question of [7] cited in Remark 1, can also be extended to
the non-real case : Are complex Pisot numbers the only non-real numbers
a satisfying lE(la21) (a) &#x3E; 0, a2 + 1 # 0 and a2 - a + 1 54 0?
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