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Towards explicit description of ramification
filtration in the 2-dimensional case

par VICTOR ABRASHKIN

RÉSUMÉ. Le résultat principal de cet article est une description
explicite de la structure des sous-groupes de ramification du grou-
pe de Galois d’un corps local de dimension 2 modulo son sous-

groupe des commutateurs d’ordre ~ 3. Ce résultat joue un role
clé dans la preuve par l’auteur d’un analogue de la conjecture de
Grothendieck pour les corps de dimension supérieure, cf. Proc.

Steklov Math. Institute, vol. 241, 2003, pp. 2-34.

ABSTRACT. The principal result of this paper is an explicit de-
scription of the structure of ramification subgroups of the Galois
group of 2-dimensional local field modulo its subgroup of commu-
tators of order ~ 3. This result plays a clue role in the author’s
proof of an analogue of the Grothendieck Conjecture for higher
dimensional local fields, cf. Proc. Steklov Math. Institute, vol.
241, 2003, pp. 2-34.

0. Introduction

Let K be a 1-dimensional local field, i.e. K is a complete discrete valu-
ation field with finite residue field. Let T = Gal(Ksep/ K) be the absolute
Galois group of K. The classical ramification theory, cf. [8], provides IF

with a decreasing filtration by ramification subgroups r(v), where v &#x3E; 0

(the first term of this filtration r(O) is the inertia subgroup of T). This ad-
ditional structure on T carries as much information about the category of
local 1-dimensional fields as one can imagine: the study of such local fields
can be completely reduced to the study of their Galois groups together with
ramification filtration, cf. [6, 3]. The Mochizuki method is a very elegant
application of the theory of Hodge-Tate decompositions, but his method
works only in the case of 1-dimensional local fields of characteristic 0 and
it seems it cannot be applied to other local fields. The author’s method
is based on an explicit description of ramification filtration for maximal
p-extensions of local 1-dimensional fields of characteristic p with Galois
groups of nilpotent class 2 (where p is a prime number &#x3E; 3). This infor-
mation is sufficient to establish the above strong property of ramification
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filtration in the case of local fields of finite characteristic and can be applied
to the characteristic 0 case via the field-of-norms functor.

Let now K be a 2-dimensional local field, i.e. K is a complete discrete
valuation field with residue field I~~1~, which is again a complete discrete
valuation field and has a finite residue field. Recently I.Zhukov [9] pro-
posed an idea how to construct a higher ramification theory of such fields,
which depends on the choice of a subfield of "1-dimensional constants" Kc
in K (i.e. Kc is a 1-dimensional local field which is contained in K and
is algebraically closed in I~) . We interpret this idea to obtain the ramifi-
cation filtration of the group r = consisting of ramification

subgroups F(") , where v runs over the ordered set J = J1 U J2 with

Notice that the orderings on J1 and J2 are induced, respectively, by the
natural ordering on Q and the lexicographical ordering on Q 2, and by
definition any element from Ji is less than any element of J2. We no-

tice also that the beginning of the above filtration comes, in

fact, from the classical "1-dimensional" ramification filtration of the group
IF, = and its "2-dimensional" part gives a filtra-
tion of the group r = Notice also that the beginning
of the "J2-part" of our filtration, which corresponds to the indices from the
set ((0, v) v E Q&#x3E;o} C J2 comes, in fact, from the classical ramification
filtration of the absolute Galois group of the first residue field of K.

In this paper we give an explicit description of the image of the ramifica-
tion filtration in the maximal quotient of F , which is a pro-p-group
of nilpotent class 2, when K has a finite characteristic p. Our method is, in
fact, a generalisation of methods from [1, 2], where the ramification filtra-
tion of the Galois group of the maximal p-extension of 1-dimensional local
field of characteristic p modulo its subgroup of commutators of order &#x3E; p
was described. Despite of the fact that we consider here only the case of
local fields of dimension 2, our method admits a direct generalisation to
the case of local fields of arbitrary dimension n &#x3E; 2.

In a forthcoming paper we shall prove that the additional structure on r
given by its ramification filtration with another additional struc-
ture given by the special topology on each abelian sub-quotient of r (which
was introduced in [5] and [7]) does not reconstruct completely (from the
point of view of the theory of categories) the field K but only its composite
with the maximal inseparable extension of The explanation of this
phenomenon can be found in the definition of the "2-dimensional" part of
the ramification filtration: this part is defined, in fact, over an algebraic
closure of the field of 1-dimensional constants.
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1. Preliminaries: Artin-Schreier theory for 2-dimensional local
fields

1.1. Basic agreements. Let K be a 2-dimensional complete discrete val-
uation field of finite characteristic p &#x3E; 0. In other words, K is a complete
field with respect to a discrete valuation V1 and the corresponding residue
field K~l~ is complete with respect to a discrete valuation v2 with finite
residue field k rr No E N. Fix a field embedding s : - K, which
is a section of the natural projection from the valuation ring OK onto 
Fix also a choice of uniformising elements to E K and To E K(l). Then
K = and K(l) = k((fo)) (note that 1~ is canonically identified
with subfields in K(l) and I~). We assume also that an algebraic closure
Kalg of K is chosen, denote by Ksep the separable closure of K in Kalg, set
r = Gal(Ksep /K), and use the notation To = s(To).

1.2. P-topology. Consider the set P of collections where
for some E Z, one has Ji(w) E ~ if i  and -oo

if i &#x3E; I(w). For any w P, consider the set A(w) C K
consisting of elements written in the form EiEz where all bi E K{l~,
for a sufficiently small i one has b2 = 0, and bi E if -oo.

The family (A (w) w E ~~ when taken as a basis of zero neighbourhoods
determines a topology of K. We shall denote this topology by to)
because its definition depends on the choice of the section s and the uni-
formiser to . In this topology - 0 for i - +oc, where {bi} is an
arbitrary sequence in I~~1~. Besides, for any a E Z, we have 0 0 2013~ 0 if

j --~ and, therefore, s is a continuous embedding of into .K (with
respect to the valuation topology on K(l) and the PK(s, to)-topology on
K) . It is known, cf. [5], if t 1 is another uniformiser and s 1 is an an-

other section from to K, then the topologies PK(s, to) and PK(si, ti)
are equivalent. Therefore, we can use the notation PK for any of these
topologies. The family of topologies PE for all extensions E of K in .Kalg
is compatible, cf. [7, 5]. This gives finally the topology on Kalg and this
topology (as well as its restriction to any subfield of Kalg) can be denoted
just by P.

1.3. Artin-Schreier theory. Let a be the Frobenius morphism of K.
Denote by rib the maximal abelian quotient of exponent p of h. Consider



296

the Artin-Schreier pairing

This pairing is a perfect duality of topological Fp-modules, where

id)K is provided with discrete topology, and rib has the pro-finite
topology of projective limit rib = where E/K runs over the
family of all finite extensions in Kalg with abelian Galois group of exponent
P.

Consider the set 7~2 with lexicographical ordering, where the advantage
is given to the first coordinate. Set

and A U {(0, 0)}.
Consider K/(Q - id)K with topology induced by the P-topology of K

(in this and another cases any topology induced by the P-topology will
be also called the P-topology). Choose a basis r  No} of the
IFp-module k and an element ao E k such that ao = I. Then the

system of elements

gives a P-topological basis of the Fp module id)K.
Let Q be the set of collections w = where I(w) E 7G&#x3E;o

and Ji(w) E N for all 0  i  I(c.~). Set

and n A = A°(w) B f (0, 0) 1 (notice that (0, 0) E 
Denote by U1(W) the Fp-submodule of K/(a-id)K generated by the images
of elements of the set

~ .. ,

where To = s(fo). This is a basis of the system of compact Fp-submodules
in id)K with respect to P-topology.

Let

be the system of elements of rib dual to the system of elements (1) with
respect to the pairing Ç1. For w E Q, set

Denote by Nli (resp., A4 I (c,~)) the F -submodule in rib generated by ele-
ments of Gi (resp., Notice that G1 (resp., G1(cv)) is an Fp-basis of
.Mi (resp., A4 i(w)).
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For any then

We shall use the identification of elements A

with their images in :

and r 1 (w )ab is identified with the completion of in the topology
given by the system of zero neibourghoods consisting of all Fp-submodules
of finite index. Denote by A4pf the completion of A4 ( in the topology
given by the system of zero neibourghoods consisting of Fp-submodules,
which contain almost all elements of the set G1(W). Then A4pf (cv) is the
set of all formal Fp-linear combinations

and we have natural embeddings A
We notice that rib is the completion in the topology given by the

basis of zero neibourghoods of the where for some w E Q, Vi
is generated by elements with I  r  No and and

Fp-module V2 has a finite index in A4 ( (w). Denote by the completion
of A4 I in the topology given by the system of neibourghoods consisting of
submodules containing almost all elements of the set Gi. Then Mil is the
set of all Fp-linear combinations of elements from Gl, and we have natural
embeddings Mf C rib C Mil.
1.4. Witt theory. Choose a p-basis i E 11 of K. Then for any
M E N‘ and a field E such that K C E C Ksep, one can construct a lifting

of E modulo pM, that is a fully faithful Z/pMZ-algebra OM(E)
such that OM(E) 0ZjpMZ Fp = E. These liftings can be given explicitly in
the form

where = (ai, 0, ... , 0) E The liftings OM(E) depend functo-
rially on E and behave naturally with respect to the actions of the Galois
group r and the Frobenius morphism a.

For any M e N, consider the continuous Witt pairing modulo pm

where Fj is the maximal abelian quotient of F of exponent pm considered
with its natural topology, and the first term of tensor product is provided
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with discrete topology. These pairings are compatible for different M and
induce the continuous pairing

where O(K) = limOm(K) 4 and r(p)ab is the maximal abelian quotient of
the Galois group T(p) of the maximal p-extension of K in Ksep.
Now we specify the above arguments for the local field K of dimension 2

given in the notation of n. 1.l. Clearly, the elements to and To give a p-basis
of K, i.e. the system of elements

is a basis of the KP-module K. So, for any and K c E C we

can consider the system of liftings modulo pm

where t = [to], T = [70] are the Teichmuller representatives.
Choose a basis {ar ~ 1 1 ~ r  of the Zp-module W(k) and its

element ao with the absolute trace 1. We agree to use the same notation
for residues modulo pm of the above elements ar, 0  r  No. Then the
system of elements

gives a P-topological of OM(K)/(Q - id)OM(K).
For w E Q, denote by the P-topological closure of the 

submodule of generated by the images of elements
of the set

This is a basis of the system of compact (with respect to the P-topology)
submodules of OM(K)/(Q - id)OM (K) (i.e. any its compact submodule is
contained in some As earlier, we introduce the system of elements
of rM° m 

, , , ,I I I I

which is dual to the system (4) with respect to the pairing ÇM. Similarly
to subsection 1.3 introduce the Z/pMZ-modules Mfw, A4Pf and for any
w E Q, the subset GM(W) C and the íZ/pMZ-submodules 

Apply the pairing Ç,M to defines the P-topology on 11M. By definition,,
the basis of zero neibourghoods of r~ consists of annihilators of

compact submodules UM(w), w E 0, with respect to the pairing ~m.
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We note that

Finally, we obtain the P-topology on : and note that

the identity map id : r(p )pb_top - ]p(p)ab is continuous. Equivalently, if
E/K is a finite abelian extension, then there is an M E N and an w E Q
such that the canonical projection r(p)ab --&#x3E; factors through the
canonical projection T(p)ab --&#x3E; rM(W)ab.
1.5. Nilpotent Artin-Schreier theory. For any Lie algebra L over Zp
of nilpotent class  p, we agree to denote by G(L) the group of elements
of L with the law of composition given by the Campbell-Hausdorff formula

Consider the system of liftings (3) from n.1.4 and set O(E) 
where K C E c Ksep. If L is a finite Lie algebra of nilpotent class  p
set LE = L 0zp O(E). Then the nilpotent Artin-Schreier theory from [1] is
presented by the following statements:
a) for any e E G(LK), there is an f E G(LKsep) such that af = f o e;
b) the correspondence T H (T f ) o (- f ) gives the continuous group homo-

IF G (L);
c) if el E G(LK) and fl E G(LKsep) is such that a fi = fl o el, then the ho-
momorphisms Of,e and of,,,, are conjugated if and only if e = c o ei o (-QC)
for some c E G(LK);
d) for any group homomorphism ’l/J : F 2013 G(L) there are e e G(LK) and
f E G(LKseP) such that ’l/JI,e.

In order to apply the above theory to study T we need its pro-finite
version. Identify T(p)ab with the projective limit of Galois groups 
of finite abelian p-extensions E/K in Ksep. With this notation denote by
G(E) the maximal quotient of nilpotent class  p of the Lie Zp-algebra
G(E) generated freely by the Zp-module rElK. Then G = is a

topological free Lie algebra over Zp with topological module of generators
r(p)ab and L = is the maximal quotient of E of nilpotent class
 p in the category of topological Lie algebras.

Define the "diagonal element" e E O(K)/(a - as

the element coming from the identity endomorphism with respect to the
identification

induced by the Witt pairing (here O(K) is considered with the p-adic topol-
ogy). Denote by s the unique section of the natural projection from O(K)
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to id)O(K) with values in the P-topological closed submodule
of O(K) generated by elements of the set (4). Use the section s to obtain
the element

such that e ~ e by the natural projection

For any finite abelian p-extension E/K in denote by eE the projection
of e to LK(E) = L(E) 0zp O(K), and choose a compatible on E system
of fE E G(E)Sep = £(E) 00(Ksep) such that afE = fE o eE. Then the
correspondences T H T fE o (- fE) give a compatible system of group ho-
momorphisms T(p) ---&#x3E; G(,C(E)) and the continuous homomorphism

induces the identity morphism of the corresponding maximal abelian quo-
tients. Therefore, 0 gives identification of p-groups
r(p)modCp(r(p)) and G(G), where Cp(r(p)) is the closure of the sub-

group of r(p) generated by commutators of order &#x3E; p. Of course, if

f = lim fE E then af = f o e and 1jJ(9) = (g f ) o (- f ) for any
g E T. Clearly, the conjugacy class of the identification 0 depends only on
the choice of uniformisers to and To and the element ao E W(k).

For w E S2 and M E N, denote by the maximal quotient of

nilpotent class  p of the free Lee Z/pMZ-algebra GM(w) with topological
module of generators We use the natural projections r(p)ab -

to construct the projections of Lie algebras L 2013 GM(w) and
induced morphisms of topological groups

Clearly, the topology on the group G(£ M (w) ) is given by the basis of neigh-
bourhoods of the neutral element consisting of all subgroups of finite index.

Consider ZjpMZ-modules and from n.1.4. Denote by
the maximal quotient of nilpotent class  p of a free Lie algebra over

Z /pZ generated and by GM(w) the similar object constructed
for the topological Z/pMZ-module Clearly, Lpf (w) is identified
with the projective limit of Lie sub-algebras of LM(w) generated by all
finite subsystems of its system of generators

Besides, we have the natural inclusions
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where is identified with the completion of GM(w) in the topology
defined by all its Lie sub-algebras of finite index. Let

Lemma 1.1. There exists

Proof. Denote by e~(w) the image of e in

The residues eomod(a - id)V and eo mod(a - id)V coincide because the
both appear as the images of the "diagonal element" for the Witt pairing.
But eo and eo are obtained from the above residues by the same section

id)V - V, therefore,

Because intersection of all open submodules Uo of .MM(w) is 0, one has
eM(w) and we can take as fM(cv) the image of f E G(£sep)

under the natural projection G(GseP) -~ The lemma is

proved. 0

By the above lemma we have an explicit construction of all group mor-
phisms qbM(w) with M E N and w E SZ. Their knowledge is equivalent to
the knowledge of the identification ~ mod Cp(r(p)), because of the equality

which is implied by the following lemma.

Lemma 1.2. Let L be a finite (discrete) Lie algebra over Zp and let 0 :
r(p) -&#x3E; G(L) be a continuous group morphisme. Then there are M E N,
w E Q and a continuous group morphism

such that

Proof. Let e E G(LK) and f E G(Lsep) be such that a f = f o e and for any
g E r(p), it holds

I , , , », , noB.
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One can easily prove the existence of c E G(LK) such that for

ei = (-c) o e o (ac), one has

where E Lk = L 0 W(k) and l(o,o),o = aol(o,o) for some L(o,o) E L.
If f 1 - f o c then a 11 = f 1 o e 1 and for any g E h, 

Let hl, ... , hu E L be such that for some mi E Z&#x3E;o with 1  i  u,

where all coefficients a(a,b),i E W(k), then

where all coefficients

with M = 1 1  i  ul. Clearly, there exists cv E S2 such that

a(a,b),i = 0 for i  u and (a, 
Let 131, ... , /3No be the dual W(Fp)-basis of W (k) for the basis 01521, ... ,00Na

from n.1.4. Consider the morphism of Lie algebras 0’ m (w) : £ M (w) - L
uniquely determined by the correspondences

for all (a, b) E A(cv) and 1 ~ r  No.
Clearly, 0’ m (w) is a continuous morphism of Lie algebras, which trans-

forms eM(w) to ei. Let f’ E G(Lsep) be the image of fM(w), then 
f’ o el. So, the composition

is given by the correspondence 0’(g) = (g f’~ o (- f’) for all g E r(p).

fore, for any g E r(p),

So, we can take such that for any 1 E LM(w),
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The lemma is proved. D

2. 2-dimensional ramification theory

In this section we assume that K is a 2-dimensional complete discrete
valuation field of characteristic p provided with an additional structure
given by its subfield of 1-dimensional constants I~~ and by a double valu-
ation t~ : ~ 2013~ Q2 U By definition Kc is complete (with respect
to the first valuation of K) discrete valuation subfield of K, which has fi-
nite residue field and is algebraically closed in I~. As usually, we assume
that an algebraic closure Kalg of K is chosen, denote by Esep the separable
closure of any subfield E of Kalg in Kalg, set hE - Gal(Esep /E) and use
the algebraic closure of Kc in E as its field of 1-dimensional constants Ec.
We shall use the same symbol v(°) for a unique extension of v(°) to E. We
notice that E 2013~ Q U gives the first valuation on E and

is induced by the valuation of the first residue field E(l) of E. The
condition v~°~ (E* ) - Z2 gives a natural choice of one valuation in the set
of all equivalent valuations of the field E.

2.1. 2-dimensional ramification filtration of hE Let E be a

finite extension of K in Kalg. Consider a finite extension L of E in Esep
and set rL/E = Gal(L/ELc) (we note that Lc = If limf LIE := rE

L

then we have the natural exact sequence of pro-finite groups

The 2-dimensional ramification theory appears as a decreasing sequence
of normal subgroups r(j) I o - where

jEJ2 
f FE,

Here Q 2is considered with lexicographical ordering (where the advantage is
given to the first coordinate), in particular, J2 = ({0~ x Q&#x3E;o) U (Q&#x3E;o x ~).
Similarly to the classical (1-dimensional) case, one has to introduce the
filtration in lower numbering for any finite Galois extension

L/E. Apply the process of "eliminating wild ramification" from [4] to
choose a finite extension Ec of Lc in Ke,alg such that the extension L := LE
over E := EEC has relative ramification index 1. Then the corresponding
extension of the (first) residue fields £(1) / E(l) is a totally ramified (usually,
inseparable) extension of complete discrete valuation fields of degree [L : E~.

if 0 is a uniformising element of £(1) then = °E(1) [0]. Introduce

the double valuation rings 0 E := ] v(°) (1) &#x3E; (0, 0) } and Oz :=
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for any lifting 0 of 0 to

Or. This property provides us with well-defined ramification filtration of
rLjE c RLIE in lower numbering

where j runs over the set J2.
One can easily see that the above definition does not depend on the

choices of and 9. The Herbrand function (2) : J2 -- J2 is definedL/E
similarly to the classical case: for any (a, b) E J2 take a partition

such that the groups are of the same order 9i for all j between
(ai-1, bi-1) and (ai, where 1  i C s, and set

Let E C L1 C L be a tower of finite Galois extensions in Esep. Then the
above defined Herbrand function satisfies the composition property, i.e. for
any j E J~2~, one has

This property can be proved as follows. Choose as earlier the finite

extension Ee of Lc, then all fields in the tower

where L = L1 = L1Ee, E = EEe (note that Le = Ee),
have the same uniformiser (with respect to the first valuation). If 0 is a

uniformiser of the first residue field of L and 0 E C~L is a lifting of 0,
then 01 = and 0- L = C~L1 (8~ . But we have also °L1 = 
because N is uniformizing element of Now one can relate the

values of the Herbrand function in the formula (8) by classical 1-dimensional
arguments from [8].

Similarly to classical case one can use the composition property (8) to
extend the definition of the Herbrand function to the class of all (not nec-
essarily Galois) finite separable extensions, introduce the upper number-

and apply it to define the ramification filtration

of the subgroup rE C rE .
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2.2. Ramification filtration of rE. The above definition of 2-dimen-
sional ramification filtration works formally in the case of 1-dimensional
complete discrete valuation fields K. Note that in this case there is a

canonical choice of the field of 0-dimensional constants Kc, and we do not
need to apply the process of eliminating wild ramification. This gives for

any complete discrete valuation subfield E C Kalg, the 

of the inertia subgroup rE C rE. Note also that this filtration depends on
the initial choice of the valuation v~~~ : ~C 2013~ Q U (oc) and coincides with
classical ramification filtration if v(°) (E*) = Z.

Consider the 2-dimensional ramification filtration r(j) lj"2 and theL E JjeJ2
above defined 1-dimensional ramification filtration for the (first)
valuation Kr - Q U 

-

Let J = Ji U J2, where Ji = ~(v, c) v &#x3E; Introduce the ordering on
J by the use of natural orderings on J1 and J2, and by setting j,  j2 for

any jl E Jl and j2 E J2. For any j = (v, c) E Ji , set = pr-1 
where pr : rE is the natural projection. This gives the complete
ramification filtration ]P(i)l E jEJ of the group TE. For any finite extension
L/E, we denote by

its Herbrand function given by the bijection p (2)E: J2 J2 from n.2.1L/E
and its 1-dimensional analogue 1 Jl 2013 Tl (which coincides withL.lEr 

*

the classical Herbrand function if v° (E*) - 2). We note also that the
above filtration contains two pieces coming from the 1-dimensional theory
and the both of them coincide with the classical filtration if v(o) (E*) = Z2.
The first piece comes as the ramification filtration of given by the

groups = rw’) ,(o,o) for all v &#x3E; 0. The second piece comes from theEc E E -

ramification filtration of the first residue field E(1) of E. Here for any v &#x3E; 0,

2.3. n-dimensional filtration. The above presentation of the 2-dimen-
sional aspect of ramification theory can be generalised directly to the case
of n-dimensional local fields. If K is an n-dimensional complete discrete
valuation field, then we provide it with an additional structure by its (n-1 )-
dimensional subfield of "constants" Kc and an n-valuation ) : 2013
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~n U For any complete discrete valuation subfield E of K, the n-

dimensional ramification filtration appears as the filtration E ofL 
the group rE = Gal (Esep/Ec,sep) with indexes from the set

(where Ee is the algebraic closure of K, in E) . The process of eliminating
wild ramification gives for any finite Galois extension Lj E a finite extension
Ec of Le such that for the corresponding fields L = LEe and E = EEe, the
ramification index of each residue field of L with respect to the first
r  n - 2 valuations over the similar residue field of E is equal to 1.
Then one can use the lifting O of any uniformising element of the residue
field L~n-1~ to the n-valuation ring I v~°~ (l) &#x3E; (o, ... , 0) to
obtain the property 

-- ,- - ..

This property provides us with a definition of ramification filtration of

filE C rLIE in lower numbering. Clearly, if Li is any field between E and
L, and L 1 = then one has the property

This provides us with the composition property for Herbrand function, and

gives finally the definition of the ramification filtration of F E inE .7

upper numbering.
One can choose a subfield of (n - 2)-dimensional constants Kee C K

and apply the above arguments to obtain the ramification filtration of
Gal(Kc,sep/Kcc,sep). This procedure gives finally the ramification filtra-
tion of the whole group FE, which depends on the choice of a decreasing
sequence of fields of constants of dimensions n - 1, n - 2, ... , and 1.

3. Auxiliary facts

In this section K is a 2-dimensional complete discrete valuation field
given in the notation of n.l.l. We assume that an additional structure
on K is given by its subfield of 1-dimensional constants Kc and a double
valuation such that Kc and v ~°~ (K* ) _ Z2 (or, equivalently,

(1, 0) and v~°~ (T°) _ (0,1)). As in n.1.4 we use the construction
of liftings of K and Ksep, which corresponds to the p-basis (to, To) of K.
We reserve the notation t and T for the Teichmuller representatives of to
and To, respectively. For any tower of field extensions K C E C L C Kalg,
we set
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where is the ramification subgroup of rE = Gal(Esep/E) with the
upper index j E J. Similarly to the 1-dimensional case, j (L/E) is the

value of the Herbrand function of the extension L/E in its maximal " edge
point" . Then the composition property (8) from n.2.1 gives for arbitrary
tower of finite extensions E C L1 C L,

If a E W(k), then as usually

3.1. Artin-Schreier extensions. Let L = K(X ), where

with ao E 1~* and

Proof. The above examples can be found in [9]. The property a) is a well-
known 1-dimensional fact. The property b) follows directly from definitions,
we only note that one must take the extension Me = = to, to
kill the ramification of L/K and to rewrite the equation (10) in the form

The proposition is proved. D

3.2. The field K(N*, j*). Let N* E I~, q and let j* = (a*, b*) E J2
be such that A* := E N[I/p], B* := b* (q -1) E ~ and (B*, p) = 1.
Set s* maxf 0, -vp(a*) and introduce t10, t20 E Kalg such that tqo = to

s
and t20 - 
Proposition 3.2. There exists an extension Ko = K(N*, j*) of K in Ksep
such that

a) Ko,c = Kc and [Ko : = q;

b) for any j E J2, one has
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(what implies that j(Ko/K) = j*);
c) if K2 := KO(t2O), then its first residue field K’(1) equals k((TIO)), where

(here tf; := and E is an analogue of the Artin-Hasse exponential
from the beginning of this section).

Proof. We only sketch the proof, which is similar to the proof of proposition
of n.1.5 in the paper [2].

It is easy to see that [Li : Ki] = q and the "2-dimensional component" of
the Herbrand function is given by the expression from n.b) of ourL1/W i
proposition. Then one can check the existence of the field K’ such that
K C K’ C L 1, ~K’ : K] = q and Li We notice that K~ = Kc and
one can assume that K’ Now the composition property of the
H b d fu t.. I. h /f (2)Herbrand function implies that cp2) = (P (2)er ran nc Ion Imp les t at 

i i 
= 

To verify the property c) of our proposition let us rewrite the above
equation for U in the following form

where U’ 
~* 
= U and t2 = t1 (notice that t10). . This im p lies the

existence of T2 E L1 such that = T2 - b* (q- 1) i,e. the last equation
can be written in the form

_ .. , ..n -  ..n’ _... ,

One can take T2 in this equality such that Ti-1 = Tfo E K’ and after taking
the - (I /b*)-th power of the both sides of that equality, we obtain

This gives the relation

where A E is such that vO (A) &#x3E; (0, 0). Then a suitable version of the
Hensel Lemma gives the existence of B E K’(t2o) such that (0, 0)
and the equality of n.c) of our proposition holds with
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3.3. Relation between different liftings. Choose j* E J2 and N* E N,
which satisfy the hypothesis from the beginning of n.3.2 and consider the
corresponding field Ko - K(N*, j*). Let K’ = KO(t,o), then K’ is a

purely inseparable extension of Ko of degree q and Clearly,
K’ = K’~1~ ((t10)), where K’(1) = 

Consider the field isomorphism T/ : K -- K’, which is uniquely defined
by the conditions T/lk = a-N*, 77(to) = 10 and q(To) = Tlo. Denote by Tls,,p
an extension of q to a field isomorphism of Ksep and Ksep.

For M &#x3E; 0, denote by OM+1 (K’) and respectively, the lift-
ings modulo of K’ and with respect to the p-basis of K’.
We reserve now the notation t1 and Tl for the Teichmuller representatives of
elements ~10 and Tlo, respectively. Clearly, OM+1 (K’) and

= 
· On the other hand, by n.c) of Prop. 3.2,

K2 : = K’ (t2o ) = Ko (t2o ) is a separable extension of K2 : = K (t2o ) . We note
that KK2,sep = KsepK2 and K2,sep = K sepK2. · Denote by OM+1(K2) and

respectively, the liftings modulo pM of K2 and K2,sep with
respect to the p-basis ft20, To) of K2 (as earlier, t2 and T are the Teichmuller
representatives of elements t2o and ro, respectively) .

Clearly, one has the natural embeddings

*

With respect to these embeddings we have t = t2ps . Denote by ~M+1 (K2)
and the liftings of I~2 and with respect to the p-basis
{~20? of ~"2 (as usually, t2 and T1 are the Teichmuller representatives of
elements t20 and T10, respectively) . Clearly,

With respect to these embeddings we have t2s = tl.
The first group of the above liftings can be related to the liftings of the

second group by the following chain of embeddings

Similarly, one has the embedding 
above embeddings correspond to the relation

which follows from the basic equation given by n.c) of Prop. 3.2.

3.4. A criterion. Let L be a finite Lie algebra over Zp of nilpotent class
 p and let be such that pM+1 L = 0. Consider the group homomor-
phism ~o : r ---· G(L). By the nilpotent Artin-Schreier theory there exists
an e E G(LK) = L00M+1(K) and an f E G(Lsep) = such
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that of = f o e and for any g E r, (g f ) o (- f ) . Let K ( f ) = 
be the field of definition of f over K. Note that for jo E J, the ramification
subgroup r(jo) C Keroo if and only := j (K( f )/K)  jo.

dings trom n.3.3

such that

Let r2 = and let be the ramification filtration

of r2 related to the additional structure on I2 given by the valuation v (()) K2
and the subfield of 1-dimensional constants K2,, = 

Let K2 (X ) be the field of definition of X over K2 . Set
, , I

acts non-trivially on

Proposition 3.3. j2 (X/K2) = 

Proof. One has the natural identification F = F2, because K2,sep = KsepK2
and K2 is purely inseparable over K. With respect to this identification
for any j e J2, we have = r~), because the extension K2 / K is in-
duced by the extension of 1-dimensional constants This implies

j2(K/2) j* * r.= Ko/K 2(K2/K2) _ * an)2 2 -) .
E J1, then K ( f ) c Kc,sep, C Kc,sep and, therefore, X

is defined over K2,c,sep and j2(X/ K2) = ~2(~2/~2) = .7*? i.e. in this case
the proposition is proved.
Now we can assume that A = j ( f /K) E J2. Let r’ = Gal(Ksep/K’) and

let be the ramification filtration corresponding to the valuation
~(0) ~ r~(v~°~) and K§ = Kc (tio). Then j‘( fl/K‘) - A, where j‘( fl,~K‘) is

defined similarly but with the use of the filtration 
Because K2 - K’(t20) is obtained from K’ by extension of its field of

constants, there is an equality

But the relation v’(0) = qv(°) implies that

This gives
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= j* and remains to consider the
2 2 0 /K

following two cases:

The proposition is proved. 0

Corollary 3.4. Suppose that jo &#x3E; j*. Then the following three conditions
are equivalent:

3.5. First applications of the above criterion. Corollary 3.4 can be
applied to study ramification properties of the homomorphism 1/;0. This
criterion has been already applied in the case of 1-dimensional local fields
to describe the structure of the ramification filtration modulo commutators
of order &#x3E; p [1, 2], and will be applied in section 5 to the description of
2-dimensional ramification filtration modulo 3rd commutators. It can be
used to prove also the following two propositions.

Proposition 3.5. Let M E Z~o and let f E OM+1 (Ksep) be such that

Proof. First, consider the case s = vp (b) = 0. We are going to reduce the
proof to the case M = 0, where the statement of our proposition has been
already known by Prop. 3.1.

Choose a* = m*/(q - 1 ), where (m*, p) - 1, q = pN * for some N* E N,
and 

-

One can take, for example,
..L. I ~" I -

Take b* = 1 / (q - 1 ), j * = (a*, b* ) and consider the field Ko = 
and all related objects introduced in n. 3.4. Consider 11 e 
such that
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then I and satisfies the equation
, 11 ’"’ v

I I

. It can be easily seen that for some h = h(T) E
Zp[[T]], one has

11/1 , , .

Therefore, &#x3E; ..* where

By the choice of a* we have the inequality -apMq + 2a* (q - 1 ) &#x3E; 0, which

by Prop.3.l. By Corollary 3.4 we conclude that ,
the case s = 0 is considered.

and consider the valuation v

In the ramification theory, which corresponds to
the valuation via) and the field of constants Lc, we have already known

V(O) (a) = (p8a’,b’). Because the field of constants of L is the same in theL

both ramification theories, one has

It remains only to note that j (f’ / L) = j ( f K). The proposition is proved.
r-1

Proposition 3.6..

Proof. First, consider the case 1
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and we can assume that

Therefore,
Therefore,

This implies that

Consider now the case s = 0 and Set a* = and choose
b* E Z such that (b* ,p) = 1 and bpM  b*  bpM + cpM . Consider the field
Ko = K (I, (a*, b*)) from n. 3.2 together with all related objects. Introduce
f l, 91 E (Ksep) such that

Set

then

In the notation from the proof of Prop. 3.5 we have

Therefore, ~ and Y1 is the
element from modp = Ksep such that

Therefore,

and for some . one has
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One can check up that

and

p 
is such that

then j2(X/K2) = Now we can apply the case M = 0 of our
proposition to obtain that

This gives immediately that (pMa, pM(b+c)). The case s = 0
is considered.
The case of arbitrary s E can be reduced now to the case s = 0 in

the same way as in Prop. 3.5. The proposition is proved. D

4. Filtration of mod 

In this section we fix cv = and M E N. We set

Clearly, the set

consists of non-negative rational numbers and has only one limit point 0.
Therefore, for any a E Q&#x3E;o, we can define the positive rational number

We also agree to use the notation

-algebras from n. 1.5. We also
set
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4.1. Special system of generators. Let

This is a set of rational pairs which are either of the form (0, b), where
= 1, or - (a, b), where b E Z, (b, p) = I, a &#x3E; 0 and a E 

Set l31 = Al, i.e. Bi is the family of pairs (a, 0) such that a E N and
(a, p) = 1. We also L32UBI and = S U {(0,0)}.

For j = (a, b) e Z, let

Then the correspondence (a, b) H (aps, bp’), where s = s(a, b), induces the
bijection f2 : 132 - A2 and the identical map f, : 131 - Al. One can set
by definition fo : (0, 0) H (0, 0) and apply these maps fo, fl, f2 to obtain

We set also D(o,o),o = aoD(o,o) and for any (a, b) E and 

D(alb),n = Clearly, D(a,b),n+No = so we can assume if

necessary that n E Z mod No.
It is easy to see that the family

is the set of free generators of the WM(k)-Lie algebra lM(W)1 (D Wm (k) (or
the set of free generators modulo deg p of the Lie algebra 
We shall agree to use the notation for all i E by setting = 0

4.2. Elements . Define the elements

where the sum is taken under the restrictions 1
and pnla1 = )’1 (notice that n2 =
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If’l E Z, then ,1 = ap"2, where m E N and (a, p) = 1. In this
case we set

where the sum is taken under the same restrictions as in the case of non-

integral ,1 and
i .1 -

where the sum is taken under the restrictions

where a = s 1 = s(j1),s2 = s ( j2 ), the sum is taken under the
same restrictions as in the case of non-integral ~2 (notice that everywhere
Dj,n = 0 if j E B(w)).
One can easily verify that the above definition gives elements 7q from
but, in fact, one has the following more strong property.

Proposition 4.1. For E J, .~~, E Lj[.
Proo f . The only non-obvious case appears when q - J2,
qi &#x3E; 0. We must prove the finiteness of the set of collections of the

form (.7i~ij2~2)? where ji = = (~2~2) ~ B(w), nl, n2 Z,
0  M, n1 - n2 - S2, ~1 and pn1b1 = 72.

Let a~ = ag = then a° and ag are integers from the interval
[0, ~(~)] and we can assume that they are fixed.
Assume that a°, 0. Then the equality a1pn1 + a2pn2 = ~1 implies

that

therefore, there are such that
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So, we can assume that the values nl - s, and n2 - s2 are fixed. The

equality + b2p’22 = q2 implies the double inequality

Together with the obvious inequality nl &#x3E; nl - sl it implies the finiteness
of the set of all different collections (bl, nl). All other components of the
collection can be recovered uniquely from and the

values sl, n2 - s2, which were fixed earlier. Therefore, our
proposition is proved in the case a~, a2 0 0.

Suppose now that ao = 0. Then s 1 = 0, bl &#x3E; 1 and the relation

determines uniquely the value of n2 - s2. The inequalities

imply the finiteness of the set of different collections (b1, n1). As earlier,
this gives the finiteness of the set of all collections n2) such that
a°=0.

Suppose, finally, that ag = 0. Then S2 = 0, b2 &#x3E; 1 and the value of

si is determined uniquely. The finiteness of the set of all collections
(b2, n2) follows from the inequalities

This gives the finiteness of the set of all collections (j1, n2) such that
a~ = 0. The proposition is completely proved. D

4.3. Ideals L~(j~ ~ E J. For any j e J, define the ideal Lk ( j ) of Lk as its
minimal a-invariant ideal containing the elements 7q for all ’Y &#x3E; E J.

jEJ is a decreasing filtration of ideals of L ( .
For a e Q&#x3E;o, set

Notice that for a given a and all sufficiently large b, the ideals L~ ( j ), where
j = (a, b), coincide.

Proposition 4.2. (a1, b1) E J2, m E and p"2a1 = a. Then

for any j2 = (a2, b2) E J2, where a2 &#x3E; 0, and any holds

Proof. We can set nl = m because the statement of our proposition is

invariant under action of ~. By induction we can assume, that our propo-
sition holds for all j’ = (a’, b’) E J2 and m’ E Z&#x3E;o, such that p’ ,a’ = a

&#x3E; p"2bl (notice that &#x3E; pMJ(cv), then D j1 m = 0). Because
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depends only on the residue n2 mod No we can assume also that n2
is a "sufficiently big" negative integer such that

(where, as usually, si = s(al) and s2 = s(a2)).
Let 1 = (71~2)? where 11 = a + pn2a2 and q2 = pn1 b1 + pn2b2. Consider

the expression for Jlq E This expression is a linear combination of
commutators of second order of the form

where m1 E Z&#x3E;o, rn2 E Z, (cl, di), (C2, d2) E L3(w), m1 - s’ &#x3E; m2 - s~ with
si = s(ci), s2 = s(c2), and c1pml + )’1, d1pm1 + d2pm2 = 72.

First, notice that m2 = = n2 .

Ifc1pm1 &#x3E; a, then the term (11) belongs to C L’(a+). Oth-
erwise, the inequality  ~1 (cv, a) implies that

cipml = a. If d1pm1 &#x3E; pmbi, then the term (11) belongs to L’(a+) by
the inductive assumption. If d1pm1 = pmb1, then the term (11) coincides
with the term from our proposition multiplied by bi E Z~. If d1pml  p"2b1,
then the equality dlpml + d2pm2 = pnl bi -~- pn2 b2 implies that

This gives &#x3E; J(w), i.e. D(~2,d2),~.,.L2 - 0 and the term ( 11 ) is equal to
0. 

~ 

It remains only to note that E L~(a+). The proposition is proved. D

4.4. Elements B, and their properties. For any j =

(a, b) e J2, define the elements = Dj,o

4 I - iv a iy r

where the sum is taken for all m1, m2 E Z and jl = (al, bi), j2 = (a2, b2) E
B(w) such that b1pm1 + b2pm2 = b and + a2pM2 = a. One can easily
verify that the above expression gives the element from L~f .

For set = an Dj,o. Clearly, the family

generates the algebra £1/. Notice that if j E then E 

Proposition 4.3. For any j = (a, b) E J, Dj,o E L’k.
Proof. We must prove the finiteness of the set of all collections of the form

where j1 = = (~2~2) ~ and m1, m2 E Z
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are such that and

and ao are integers from the interval [0, 1(w)] and we can assume that they
are fixed.

Suppose a~, 0. Then the relation alp"21 + a2p~2 = a gives that

This implies the existence of a), a) E Z such that

Therefore, we can fix the value of m 1 - We have also

Because this implies the finiteness of the set
of all different collections (bl, m1). As in the proof of Prop. 4.1 any such
collection determines uniquely the collection (jl, ml, j2, m2). This proves
our proposition in the case a~, ag =1= 0.

Let ao = 0, then sl = 0, 1  and m2 - s2 is uniquely
determined. If ml = m2 then vp(b). If m1  m2 then m2 = vp(b). In
the both cases vp(b) and

Besides, we have m1 2:: m2 - 82 and b1pml 2:: This implies the
finiteness of all collections of the form (bl, This proves our proposition
under the assumption ao = 0.

If ao = 0, then S2 = 0, 1  b2  J(w) and the value of ml - sl is

determined uniquely. Here we have the inequalities

Apart from the trivial boundary bl  b, we have also a lower boundary

This gives the finiteness of the set of all collections (bi, ml) and we can
finish the proof as earlier. The proposition is proved. D

For 7 E J2, define the elements = E L~f as follows.

’ 
- 

’- ’ i ’ 

I I

If q2 e Z, then q2 = for m E and (b, p) = 1. In this case we set
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where a = and the sum is taken for all and j1 =
(~&#x26;i)j2 = (a2, b2) e such that = and +

b2pm2 = "/2 (one can verify that this expression gives an element from L~f ).
Proposition 4.4. For any ~y E J, .~.y E 

This proposition can be proved in the same way as Prop. 4.I and Prop. 4.3.

Proposition 4.5. For any j E J2, L~ ( j ) is the minimal a-invariant ideal
o f L~ such that f or an~ 7 2:: j, ,~.y E 

Proof. It is sufficient to prove that for any y = ("/1, q2) e J,

We can assume that 7 = pm(a, b), where m E and (a, b) E L32 (W) -
Then

where rr

and pm1b1 + pm2b2 =
Notice that if m1  0, then rni = m2 and, therefore, either a1pm1

or a2pm2 is bigger than apm. Therefore, if we assume in addition that

m1, m2 2:: 0, then the right-hand side of the above equality will not be

changed modulo L~(~i+), L~ and can be rewritten in the form

(we substitute pm1 b1 +p"’2b2 instead of pmb and interchange indexes I and
2 in the second group of terms). The relation (12) can be obtained then by
the use of the relations = 

1 - Sl, m2 - ~2)’ D

Proposition 4.6. Let m E Z&#x3E;o and j = (a, b) E ,t32(c~). If a &#x3E; 0 is such

that pnii &#x3E; 2(a - a)), then for one has pmÎ5j,n E Lf k (a+).
Proof. The statement of the proposition is invariant under action of a,
therefore, we can assume that m = n.

Notice that is the only a first order term in the expression of
E Lk(pmj) C Lk(a+). Therefore, it is sufficient to verify that any
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commutator of second order from that expression belongs to Lk(a+). Any
such commutator is of the form

In the second case the inequality ~n,2  ml implies a2P" &#x3E; a - 81(w, a)
and we finish the proof in the same way. The proposition is proved. D

5. Ramification filtration modulo 3rd commutators

As usually, K is a complete discrete valuation field of dimension 2 given
in the notation of n. 1.1. It has an additional structure given by a dou-
ble valuation v~~~ and a subfield of 1-dimensional constants satisfying the
agreements from the beginning of n. 3. Consider the corresponding ramifi-
cation filtration of f = Gal (Ksep/ K). Fix w E Q, M E Z&#x3E;o, set
L = £M+1 (cv) mod C3(£M+1 (c~) ), and consider the group epimorphism

1/J = r - G (L),
cf. n. 1.5. This gives the decreasing filtration of ideals of L such

that 1/J(r(j)) = L~~~. For any j E J, denote by L(j) the ideal of L generated
by elements of the ideal Lf (j) from n. 4. The following theorem gives an
explicit description of the image of the ramification filtration of r in its
maximal p-quotient of nilpotent class 2.

Theorem 5.1. For any j E J, L(j) = L(i).

The rest of section deals with the proof of this theorem.

5.1. The cases j = (v, c) E Ji and j = (0, v) E J2.

Then Q f = f o e and for any g E r, one has 0(g) = (g f ) o (- f ).
Let Ie be the minimal ideal of L such that contains all

D(,,,b),O with indexes (a, b) E with b ~ 0.
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Consider the natural projection prc : L - L /Ic := L~.
Denote by the same symbol extensions of scalars of that projection. Then

we obtain the elements

Here and OM+1(Ke,sep) are liftings modulo pM+1, , constructed
via the p-basis of K determined by uniformising element to E K,. Notice
that

where a runs over the set {~ E N I (a, p) = 1, a  I(w)} U f 0 1. There is also
an equation a fc = f, o e, and a group epimorphism

such that for any ,
Notice in addition, the composition

coincides with the composition

(where the first arrow is the natural projection from n. 2.1).
One can easily see that for any v &#x3E; 0,

where is the ramification subgroup of the Galois group fe of the I-
dimensional field K.. The case j = (v, c) of our theorem follows now from
the description of ramification filtration for 1-dimensional local field from
[1,2].
The case j = (o, v), v &#x3E; 0, can be considered similarly, because the

ramification subgroup appears from the ramification subgroup r(1)(v),
where = is the Galois group of the first residue field

of K.

5.2. Abelian case. (a°, b° ) E J2 . The ideal 
is the minimal ideal of Lk mod containing all elements of the form

where s e Z~o and the indexes (a, b) E J are such that b) 2::
j°. We can apply Prop. 3.1 to deduce that

what gives the assertion of our theorem modulo 2nd commutators.
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5.3. Application of the criterion. Until the end of the paper we assume
that j° = (a°, b°) E J2 is such that a° &#x3E; 0. Consider the rational number

61(w, aO) defined in the beginning of n. 4. Define similarly b2 (w, bo) as
the minimal value of all positive differences of the form b° - pnb1, where
(0, b1) E BO(w) and n E Z.

Choose j* = (a*, b* ) E J2 and N* E N satisfying the assumptions from
the beginning of n. 3.2, and the following conditions: a* = ao, b*  b°, and

Consider the fields from

the field isomorphisms
and the elements

Then we can use the equations

to obtain for the element

the following equation

where

The criterion from n.3.3 implies that the ideal L(lo) is the minimal ideal

in L such that the element is invariant with respect to the2,sep
.W / - 

&#x3E;

action of r2 ~ , where . By n. 5.2 one can
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assume that Ll’°) contains [L(jO), L]. We are going to prove our theorem
by decreasing induction on jo. For this reason introduce the ideal

Then it will be natural to look for the ideal L(3°) in the family of all ideals
of L containing the ideal L(j~+) + [L(jO), L]. In order to realise this idea
we shall simplify the relation (13) in nn. 5.4-5.5 below modulo the ideal

generated by elements of

5.4. Auxiliary statements. Let

where E is an analogue of the Artin-Hasse exponential from the beginning
of n. 3.

Clearly, for all 0  r  M and b, b’ E ~p, one has

where the sum is taken for all 0  i, j  r, such that either i = 0 or j = 0.
For 0  r  M and (a, b) E such that s(a)  N* + r, set

Lemma 5.2. There is an £ &#x3E; 0 such that

where in the right-hand = s(a), r runs from 0 to M and (a, b) runs
over the set 

Proof- The terms of the expression for ,A from the end of n. 4.4, which do
not appear in the right-hand sum, can be written in the form
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All those terms

belong to for some 6’ &#x3E; 0, because

Denote by Nlo(cv, j*) the subset of all W(k)-linear combinations of ele-
ments from of the form

where (

Lemma

Proof. Consider the decomposition

where (it follows easily
from the definition of the Artin-Hasse exponential). This decomposition
induces the decomposition of b) into 2 summands. Consider the first
summand

cf. the beginning of n. 5.3. If I

Consider the second summand

cf. the beginning of i
The lemma is proved.
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Denote by the set of all W(k)-linear combinations of elements
of L2,sep of the form

one has

This W(k)-module coincides with the W(k)-submodule of L2,Sep generated
by all Z such that Z - ~Z E Mo(w,j*). One can easily verify that

where by using that

Directly from the preceding lemma we obtain the following property.

Lemma 5.4. If M - r + s  N*, then

Lemma 5.5.

Proof. This lemma follows from estimates of Lemma 5.3. We only notice
that

by Prop. 4.2, and for

where
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Remark. We note that if Z E LK2,sep is such that with the notation of the
above lemma one has

Lemma 5.6. If for any
an element Z E L2,sep satisfies the relation

Proof. It is sufficient to use the estimates from Lemmas 5.3 and 5.4 and

that a is nilpotent on , what follows from

Lemma 5.7. In the notation of nn. it holds

Proof. This follows from Lemma 5.2 because I

Lemma 5.8. In the notation of nn. I 
is such that

Proof. We notice first that for some E &#x3E; 0, it holds

This is implied by the relation

which follows from Lemma 5.2.

So, it is sufficient to prove that if Z’ (a, b) E L2,Sep is such that
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By Lemma 5.4 this

can be reduced to the following property: if U E L2,Sep is such that

We have also
r

So, the proof of lemma is reduced to the following statement.

In other words, cf. n. 3.4, j2(V  jo or, equivalently,

The case M = 0 of Prop. 3.6 gives

It remains only to notice that

because The lemma is proved. D

5.5. Simplification of relation (13). Consider S = S1 + S2 C L2,sep)
with

..

where the first sum is taken for 0  n  M and (a, b) E 8° (w) such that
M - n + s  N* with s = s(a); and the second sum is taken for all

0  M, n2 &#x3E; -N* + M - s2, ~l = (ai, bi), j2 = (cz2, b2) E 13°(w) with
sl = s(al) and s2 = s(a2) (cf. the definition of n2) in n. 4.2).
Proposition 5.9. Suppose X E L2,sep satisfies relation (13). Then there

is X’ E L2,sep such that

and
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Proof. From Lemmas 5.2, 5.7 and 5.8, we conclude that the right-hand
side of the relation (13) is equivalent modulo

to the expression

where the summation indexes satisfy the conditions 0  M,
E E M - r + s and 0  u  N* -

(M - ri + si) (with s = s(a) and si = s(a2))-
By changing the above expression modulo and setting rl = nl

and n2 = (s2 - u) - (sl - ri) we transform it to S. The proposition is
proved. 0

By the use of the identity 1 = +~(~2? ni) we obtain the decom-
position SZ = S21 + 522, where S2, =

and 622 is given by the same expression with replaced by ~(~2? ni).
By the use of the decomposition, cf. the proof of Lemma 5.3, £n1 (b1) =

set 621 = where ,S’21 is given by the
expression

Prove that

It is sufficient to verify that the element of the form

belongs to
‘’’ --z

If pnl al &#x3E; a°, then our element belongs to I
If a2 &#x3E; 0, then our element belongs to .

- .

then it belongs 1 2

The case pnl a2 &#x3E; ao can be considered similarly.
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, then it remains to note that

because qSl (cv, ao) &#x3E; aO, cf. n. 5.3.

Thus we have obtained

b = bl consider the identity from n. 5.4

With respect to three summands of the right-hand side of the above identity
decompose S22 in the form S221 + S222 + 8223. Then

belongs to by Lemma 5.5, because one

can repeat the arguments of the proof of Lemma 5.3 to obtain its estimate
for the element given by the expression

By the use of the identity

and the arguments we have used above to estimate we obtain

Now we notice that



331

By the use of the decomposition En(b) = pnb0* + and

Prop. 4.6 we obtain 

We summarize the above relations by the use of the identity

and expressions for elements

In order to simplify this equivalence modulo

consider the set

It is easy to see the existence of 6(w, ao) E Q&#x3E;o such that if 1 E g2 (w) and
7  ao, then ~y  a~ - 6(w, ao).
Now suppose in addition to conditions for q from n. 5.3 that q satisfies

also the equality
, I n, n ~.~~

If  a° then

by inequality (15) and, therefore, X~ E LKg. If Î’1 &#x3E; a°, then (cf. the

relation (12) in the proof of Prop. 4.5) I and
the proof of Prop. 4.6). This implies that

With the above notation we obtain the following proposition.
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Proposition 5.10.

5.6. The end of the proof of theorem. It is sufficient to prove that if
LO is a finite Lie algebra and p° is a projection of L to Lo, then for any
j E J, one has 

It is easy to see that the both 

are left-continuous, have jumps only in "finite points" j° E J and have
trivial terms for a sufficiently large j. Therefore, we can use in the proof
a transfinite decreasing induction on j, i.e. we can assume the existence of
j° E J such that for all j &#x3E; jo it holds

and must prove under this assumption that = 

By arguments of n.5.1 we can assume that jo = (ao, bo) with ao &#x3E; 0. By
Prop. 5.10 and inductive assumption, is the minimal ideal in the

family of all ideals I of Lo such that

and

It remains only to note that p°(7,o) ~ Ik if and only if

, and this is equivalent to the
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