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Homology for irregular connections

par SPENCER BLOCH et HÉLÈNE ESNAULT

RÉSUMÉ. Nous définissons sur une courbe algébrique l’homologie
à valeurs dans une connexion avec des points singuliers éventuelle-
ment irréguliers, généralisant ainsi l’homologie à valeurs dans le
système local sous-jacent pour une connexion avec points sin-
guliers réguliers. L’intégration définit alors un accouplement par-
fait entre la cohomologie de de Rham à valeurs dans la connexion
et l’homologie à valeurs dans la connexion duale.

ABSTRACT. Homology with values in a connection with possibly
irregular singular points on an algebraic curve is defined, gener-
alizing homology with values in the underlying local system for
a connection with regular singular points. Integration defines a
perfect pairing between de Rham cohomology with values in the
connection and homology with values in the dual connection.

0. Introduction

Consider the following formulas, culled, one may imagine, from a text-
book on calculus:

Gamma function

Bessel function.

These are a few familiar examples of periods associated to connections
with irregular singular points on Riemann surfaces. Curiously, though of
course such integrals have been studied for 200 years or so, and math-
ematicians in recent years have developed a powerful duality theory for
holonomic D-modules (for dimension 1, which is the only case we will con-
sider, cf. ~4~,chap. IV, and ~5~), it is not easy from the literature to interpret
such integrals as periods arising from a duality between homological cycles
and differential forms. A homological duality of this sort is well understood
for differential equations with regular singular points, and for special rank
1 differential equations [2]. Our purpose in this note is to develop a similar
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theory in the irregular case. Of course, most of the "heavy lifting" was done
by Malgrange op. cit. We hope, in reinterpreting his theory, to better un-
derstand relations between irregular connections and wildly ramified f-asdic
sheaves. There are striking relations between E-factors for .~-adic sheaves
on curves over finite fields and determinants of irregular periods [8] which
merit further study. Finally, relations between irregular connections and
the arithmetic theory of motives remain mysterious.

Let X be a smooth, compact, connected algebraic curve (Riemann sur-
face) over C. Let D = C X be a non-empty, finite set of

points (which we also think of as a reduced effective divisor), and write
U : := X D -4 X . Let E be a vector bundle on X, and suppose given a
connection with meromorphic poles on D

Here w is the sheaf of holomorphic 1-forms on X and *D refers to mero-
morphic poles on D. Unless otherwise indicated, we work throughout in
the analytic topology. The de Rham cohomology HDR (X B D; E, V) is the
cohomology of the complex of sections

placed in degrees 0 and 1. These cohomology groups are finite dimensional
~1~, Proposition 6.20, (i).

Let E’ be the dual bundle, and let V~ be the dual connection, so

Define E = ker(V), and £v = ker(V ) to be the corresponding local systems
of flat sections on U. We want to define homology with values in these local
systems, or more precisely with values in associated cosheaves on X. For
~ E X B D, Ex will denote the stalk of E at x. Define the co-stalk at 0 E D

where x =A 0 is a nearby point, and is the local monodromy about 0. We
write Cn - Cn(E, V) for the group of n-chains with values in £ and rapid
decay near 0. Write On for the n-simplex and b E On for its barycenter.
Thus, Cn (E, V) is spanned by elements c(9,E with c : On -- X and e E 9,(b),
where b E On is the barycenter. We assume c-1 (o) = union of faces C An
and that E has rapid decay near D. This is no condition if D n c(,An) = 0.
If 0 E D n c(On), we take ei a basis for E near 0 and write E = E f2c*(ei).
Let z be a local parameter at 0 on A. We require that for all N E N,
constants CN &#x3E; 0 exist with CNlzlN on c-1 (o) . Note that if
V has logarithmic poles in one point, then rapid decay implies vanishing.
Thus in this case, we deal with the sheaf itS, where j : X ~ D --~ X .
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There is a natural boundary map

where cj are the faces of c. Note if bj is the barycenter of the j-th face
and 0, c determines a path from c(b) to which is canonical

upto homotopy on {0~. (As a representative, one can take c[bj, b~, the
image of the straight line from b to bj . By assumption, c-1(0) is a union of
faces, so it does not meet the line.) Thus E E 9,(b) determines cj E 
Similarly for 0 E D, if c(bj) = 0 there is corresponding to E a uniqueej E So
because we have taken coinvariants. If c : 0’~ - D is a constant simplex,
there is no rapid decay condition.

It is straightforward to compute that 9o9 = 0. Consider c06. If c(b) = 0,
where b E 02 is the barycentre, then c(A2) = 0 and E = Ei = E So for
all i and j involved, thus the condition is trivially fulfilled. If not, and some
c(bi) = 0, then (ej)j = E £o for all j, and if all 0, then one has
by unique analytic continuation in c(02) the relation (Ei)j = (Ej)i E Sedgeij
for all i, j, if edgeij 0 0, else in £o. 
We define

(The growth condition means this depends on more than just the topo-
logical sheaf £V, so we keep E~, V’ in the notation.)
We now define a pairing

by integrating over chains in the following manner. For * = 0, then
Ho (X, D; E’, ý7V) is generated by sections of the dual local system 6’ in
points E X while HDR (X B D; E, V) is generated by global flat sections in
~ with moderate growth. So one can pair them. For * = 1, since D ~ 0,
then

and since classes c Q9 E generating have rapid decay, the
integral Ie  &#x3E; is convergent, where 0152 e HO(X,wQ9E(*Ð)) and
 &#x3E; is the duality between E~ and E.
The rest of the note is devoted to the proof of the following theorem.

Theorem 0.1. The process of integrating forms over chains is comPati-
ble with homological and cohomological equivalences and defines a perfect
pairing of finite dimensional vector complex spaces
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FIGURE 1. c0 e-tts represents a class in Hl

Example 0.2. (i). If V has regular singular points, there are no rapidly
decaying flat sections, so H* (X B D; ~~ ) . Also,
HDR(X B D; E, ~) ~’ H*(U,£) (cf. [1], Th6or6me 6.2), and the theorem
becomes the classical duality between homology and cohomology.
(ii). Suppose X = p1, D = f 0, Let E = Opi with connection
B7(I) = for Then .6 C Eu = Ou
is the trivial local system spanned by ett-S, so £v C Ev = Ou is spanned
by e-tts . We consider the pairing HDR x C from theorem 0.1. Note

first that has dimension 1, spanned by This can either be checked

directly from (0.l), using

or by showing the de Rham cohomology is isomorphic to the hypercoho-
mology of the complex w ((0) -f- 2(00)), which is easily computed. To
compute H, (X, D; E’, ~~), the singularity at 0 is regular, so there are no
non-constant, rapidly decaying chains at 0. The section E’ := e-tts of £v
is rapidly decaying on the positive real axis near oo, so the chain c in

fig. I above represents a 1-cycle. We have

which is a variant of Hankel’s formula (see ~10~, p. 245).
(iii). Let X, D, E be as in (ii), but take = 2 (d(z~cc) - d(~)) for some
z E C B {0}. Here the connection has pole order 2 at 0 and oo and it

has trivial monodromy. Arguing as above, one computes dim H1R = 2,
generated by p E Z, with relations uPdu up-2du.
The GauB-Manin connection on this group is

Assume Im(z) &#x3E; 0. Then the vector space is gen-
erated by

, , , ,
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(If 0, then the second path must be modified.) The integrals

are periods and satisfy the Bessel differential equation

The function Jn is entire. To show that Hn is linearly independent of Jn,
it will then be sufficient to show that Hn is unbounded on the positive
part of the imaginary axis Re(z) = 0 as z - 0. Making the coordinate
change v = ~, and replacing y by ly one is led to show that 
fo exp(-y(v + v ) ) dv is unbounded for y &#x3E; 0, y - 0. Writing En (v) =

f100, and making the change of variable v v in the integral f01, one
obtains

For I, then this expression is 2:: which is obviously
unbounded. For n = 0, one has

where in the last inequality, we have assumed that 2y  1. This last

integral is, up to something bounded, equal to 2 1 dv = -2 log(2y) , whichg q v g( J) 
is unbounded, &#x3E; 0, y - 0.

Usually, for integers nEZ, one considers Jn as one standard solution,
but not Hn (see [101, p.371 ) . Finally, to get Bessel functions for non-integral
values of n, one may consider the connection
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1. Chains

Let D = ~ x 1, ... , be as above, and let Ai be a small disk about x2
for each i. Let 6j be the boundary circle. Define

(Note, for a set like 8i which is closed and disjoint from D, our chains
coincide with the usual topological chains with values in the local system
S. The group V) consists of constant chains c : On 2013~ with
values in

for some x near x2 as in (0.3), where pj is the local monodromy around xi.)
In the following theorem, ~(!7,~*) is the standard homology associated to
the local system on U = X B D.

Theorem 1.1. With notation as above, there is a long exact sequence

be the complex calculating

be the subcomplex calculating H* (U, E), i.e. the subcomplex of chains
whose support is disjoint from D. Of course, one has C* (U; E, ~) -
C* (U; E), which justifies the notation.

Write B = C* /C* ( U) . There is an evident map of complexes

which must be shown to be a quasi-isomorphism. Let

Obviously the map a : EBiB( i) ~ 13 is an inclusion. We claim first that a
is a quasi-isomorphism. To see this, note that all these complexes admit
subdivision maps subd which are homotopic to the identity. Given a chain
c E B, there exists an N such that subd~’(c) E Taking c with
Be = 0, it follows that EBH*(B(i)) surjects onto H*(13). If a(z) = ay, we
choose N such that = a(z). Since a is injective and commutes
with subd, it follows that a is injective on homology as well, so a is a

quasi-isomorphism.
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It remains to show the surjective map of complexes

is a quasi-isomorphism. The kernel of j3 is

which is acyclic as Ji ~ Ai B admits an evident homotopy retract.
The next point is to show

The assertion for Ho is easy because any point y in can be attached

to ði by a radial path r not passing through xi - Then E E Ey extends
uniquely to E on r and 8( r 0 E) = Y 0 E mod chains on 6i. Vanishing in
(1.4) when i = 2 will be proved in a sequence of lemmas. For convenience
we drop the subscript i and replace zi with 0.

Lemma 1.2. C A be a radial line meeting J at p. be the space
of sections of the local system along f B with rapid decay at 0. Then

....

Proof of lemrraa. Let C* (£) be the complex of chains calculating this homol-
ogy, and let C* (£ ) {0}) C C* (P) be the subcomplex of chains not meeting 0.
Then C,, (f B ~0~) is contractible, and

where C* denotes classical topological chains. The result follows. 0

One knows from the theory of irregular connections in dim 1 [4] that
A B ~0~ can be covered by open sectors V C A such than

(1.5) 
where Li is rank I and Mi has a regular singular point. Let W C V U ~ 0 ~
be a smaller closed sector with outer boundary 6w = 6 n W and radial
sides £1, £2. Recall the Stokes lines are radial lines where the horizontal
sections of the Li shift from rapid decay to rapid growth. We assume
W contains at most one Stokes line, and that £1, £2 are not Stokes lines.
Writing W = Wi U W2, where Wi are even smaller sectors, each of which
containing the Stokes line if there is one, one may think of the following
lemma as a Mayer-Vietoris sequence.
Lemma 1.3. With notation as above, let w be a basepoint in the interior
of W . Then
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Proof of lemma. One has

and of course the assertion of the lemma is that this coincides with e3

,Et2 -~ ££1 +’Ef2 . To check this, by (1.5) one is reduced to the case E = 
where L has rank 1 and M has regular singular points.

If W does not contain a Stokes line for L then Efl =’Et2 = +’Ef2, and
the argument is exactly as in lemma 1.2.

Suppose W contains a Stokes line for L. Then (say) = Sw and
.6,2 = (0). Let C* (W ) be the complex of chains calculating the desired
homology, and let C* (W ) (0)) c C* ( W ) be the chains not meeting 0. As
in the previous lemma, C* (W B {0}) is acyclic. We claim the map

is a quasi-isomorphism. If we choose an angular coordinate 0 such that

then rotation re(1-t)i8 provides a homotopy contraction of the in-
clusion of .~1 C W. This homotopy contraction preserves the condition of
rapid decay, proving the lemma. D

Let 7rd : A 2013~ A be the ramified cover of degree d obtained by taking the
d-th root of a parameter at 0. By the theory of formal connections [4], one
has, for suitable d, a decomposition as in (1.5) for the formal completion
of the pullback 7r*E 0 Mi. Let m2 be the degree of the pole of the
connection on Li when we identify Lj -£ 8, i.e. = gi (z)dz for a local
parameter z, and mi is the order of pole of gi .

Lemma 1.4. We have

Proof of lemma. Assume first that we have a decomposition of the type
(1.5) on E itself, i.e. that no pullback 7r~ is necessary. We write A as a
union of closed sectors Wo, ... , where Wi has radial boundary lines
ti and Ri+1. We assume each Wi has at most one Stokes line. Using excision
together with the previous lemmas we get

By lemma 1.3, the map v above is given by
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An element in the kernel of v is thus a section e which has rapid
decay along each £i . Since each Wi contains at most one Stokes line, such
an e would necessarily have rapid decay on every sector and thus would be
trivial. This proves vanishing for H2 (A, 8; E, V). Finally, to compute the
dimension of Hl, note that if Li has a connection with pole of order m2,
then it has a horizontal section of the form ef , where f has a pole of order

1. (The connection is 1 ~ df .) Suppose f = az1-mi + .... Stokes
lines for this factor are radial lines where azl-mi is pure imaginary. Thus,
there are 2(mi - 1) Stokes lines for this factor. Consider one of the Stokes
lines, and suppose it lies in Wk. If the real part of changes from
negative to positive as we rotate clockwise through this line, say we are in
case +, otherwise we are in case -. We have

since the two cases alternate, we get a contribution of (mi - 1 ) dim(Mi ) . If
mi  1 there are no rapidly decaying sections, so that case can be ignored.
Summing over i with 2 gives the desired result.

Finally, we must consider the general case when the decomposition ( 1.5)
is only available on 7r*E for some d &#x3E; 2. By a trace argument, vanishing
of the homology upstairs, i.e. for 7r*E, in degrees 1 implies vanishing
downstairs. Since A B f 01 --+ A ) (0) is unramified, an Euler charac-
teristic argument (or, more concretely, just cutting into small sectors over
which the covering splits) shows that the Euler characteristic multiplies by
d under pullback, proving the lemma. D

In particular, we have now completed the proof of theorem l.l. D

2. de Rham Cohomology
In this section, using differential forms, we construct the dual sequence to

the homology sequence from theorem 1.1. (More precisely, we continue to
work with E, V, so the sequence we construct will be dual to the homology
sequence with coefficients in E~, V~). Consider the diagram of complexes

A result of Malgrange [6] is that B7 an/mero is surjective. Define N := e3iNi =
ker(Van/mero) - * Since none of these sheaves has higher cohomology (by as-
sumption D ~ 0) we get a 5-term exact sequence by taking global sections
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and applying the serpent lemma:

Theorem 2.1. Integration of forms over chains defines a perfect pairing
between the exact sequence (2.2) and the exact sequence from theorem 1.1:

-1 1 / -1 1 1 i /

Proof. To establish the existence of a pairing, note that if c 0 Ev is a

rapidly decaying chain and 7y is a form of the same degree with mod-
erate growth, then elementary estimates show is well defined.

Suppose c : On - X and write On - limt-o A’ where A’ denotes
On B tubular neighborhood of radius t around Let ct = and sup-
pose q = dT where T has moderate growth also. Then

Note 8c may include simplices mapping to D. Our definition (0.5) of
factors these chains out. Thus, we do get a pairing of

complexes.
Of course, chains away from D integrate with forms with possible essen-

tial singularities on D. To complete the description of the pairing, we must
indicate a pairing

To simplify notation we will drop the subscript i and take xi = 0. An
element in Hl can be represented in the form E’ ® c where c is a radial
path. Let c n i = {p}. Given n E N, choose a sector W containing c on
which E has a basis By assumption, we can represent rc with

a2 analytic on the open sector, such that

where ei from a basis of E in a neighborhood of 0 and qj are meromorphic
1-forms at 0. then by definition

The pairing is taken to be trivial on chains which do not contain 0. If s is
a 2-chain bounding two radial segments c and c’ and a path along 6 from
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p to p’. Then Cauchy’s theorem (together with a limiting argument at 0)
gives

Similar arguments show the pairing independent of the choice of the radius
of the disk. Also, if ¿ aiEi with bi meromorphic at 0, then

It follows that the pairing is well defined.

Lemma 2.2. The diagrams

and

commute.

Proof of lemma. Consider the top square. The top arrow is excision, re-
placing a chain with the part of it lying in the disks Ai. The bottom arrow
maps an n as above in some Ni to E ej 0 77j 0 daj . Along c outside
the disks E ej is exact; its integral along the chain is a sum of terms of
the form (pi) where pi E c f1 Ji. For the part of the chain inside
the Ai of course we must take (E v, ,ej)i7j. Combining these terms with
appropriate signs yields the desired compatibility.

For the bottom square, the top arrow associates to a relative chain on
Ai its boundary on 61 C U. The bottom arrow associates to a horizontal



368

section E on U the corresponding element in N. Note here the aj will be
constant so in the pairing with N only the term - ~(E~, ej)aj(p) survives.
The assertion of the lemma follows. 0

Returning to the proof of the theorem, we see it reduces to a purely local
statement for a connection on a disk. In the following lemma, we modify
notation, writing N to denote the corresponding group for a connection on
a disk A with a meromorphic singularity at 0.

Lemma 2.3. The pairing

is nondegenerate on the left, i. e. ( E V 0 c, n) = 0 for all relative 1-cycles
implies n = 0.

Proof of lemrraa. We work in a sector and we suppose the basis Ei taken

in the usual way compatible (in the sector) with the decomposition into
a direct sum of rank 1 irregular connections tensor regular singular point
connections. Let Ev be the dual basis.

Fix an i and suppose first Ei and Ey both have moderate growth. We
claim ai has moderate growth. For this it suffices to show dai has moderate
growth. But

This has moderate growth because, ej, all do.

Now assume 0 c, n) = 0 for all E v Q9 c e Hl. Fix an i and assume

EZ is rapidly decreasing in our sector. Let c be a radius in the sector with
endpoint p. We can find (cf. [4], chap. IV, p.53-56) a basis t2 of E on the
sector with moderate growth and such that ti = so t’( = 
We are interested in the growth of aiEi along c. We have

/........ - - ’-

Asymptotically, taking y the parameter along c, as

~/ 2013~ 0 for some k &#x3E; 0 and some N &#x3E; l. We need to know the integral
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has moderate growth as p - 0. Changing variables, so x = y-1, q =
p-1, U = x - q, this becomes

where f is a sum of monomials in q and u with positive coefhcients. Clearly
this has at worst polynomial growth as q --~ oo as desired.

Finally, assumeey is rapidly increasing and Ei is rapidly decreasing. We
have as above

- - -- -

In particular, has moderate growth. This implies a2 EZ = 
has moderate growth as well. Indeed, changing notation, this amounts to
the assertion that if g is rapidly decreasing and g d has moderate growth,
then g f has moderate growth. Fix a point po with 0  p  po. the mean
value theorem says there exists an r with p  r  po such that

Suppose I i We get

proving moderate growth.
We conclude that our representation for n has moderate growth, and

hence it is zero in N. It follows that the pairing N x Hl --~ C is nondegen-
erate on the left. D

Returning to the global situation, we have now

and to finish the proof of the theorem, it will suffices to show these dimen-
sions are equal.

Lemma 2.4. With notation as above, dim Ni = dim Hi(Aj, 6i; EV, pv .
Proof of lemma. It will sufhce to compute the difference of the two Euler
characteristics

It is straightforward to show this difference is invariant if U is replaced
by a smaller Zariski open set, and that the Euler characteristics are mul-
tiplied by the degree in a finite etale covering V - U. Using lemma
1.4, we reduce to the case where formally locally at each x2 E D we have
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E ® Mij with Lij rank 1 and Mij at worst regular singular.
(Here KXi is the Laurent power series field at x2). Let mij be the degree of
the pole for the connection on Then one can find coherent sheaves

such that

It follows that, writing g = genus(X),

Since

(which is proven algebraically as above, replacing V by the regular connec-
tion associated to E) it follows that

"J

Referring to lemma 1.4, we see that this is the desired formula. D

This completes the proof of the theorem. D
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