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A monogenic Hasse-Arf theorem

par JAMES BORGER

RÉSUMÉ. On étend le théorème de Hasse-Arf de la classe des
extensions résiduellement séparables des anneaux de valuation
discrète complets à la classe des extensions monogènes.

ABSTRACT. I extend the Hasse-Arf theorem from residually sepa-
rable extensions of complete discrete valuation rings to monogenic
extensions.

Let be a finite extension of henselian discrete valuation rings which
is generically Galois with group G, that is, for which the corresponding
extension of fraction fields is Galois with group G. For Q E G - ~l}, let
IB(a) be the ideal of B generated by (Q - 1)B and let iB (a) be the length
of the B-module B/IB(Q).

For any finite dimensional complex representation p : G ~ Autc (V) , we
define the naive Artin conductor exactly as we do when B/A is residually
separable, i.e., when the extension of residue fields is separable:

By looking at real parts, it is immediate that this is a non-negative rational
number, and when B/A is residually separable, the Hasse-Arf theorem [3,
VI §2] tells us that it is also an integer.

In [4], De Smit shows that most of the classical ramification-theoretic
properties of residually separable extensions B/A hold in the slightly more
general, "monogenic" case where we require only that B is generated as an
A-algebra by one element. The purpose of this note is to show that the
Hasse-Arf theorem also holds in this context.

Partial results in this direction were obtained by Spriano [5]. A proof
of the Hasse-Arf theorem in equal characteristic that is strong enough to
cover monogenic extensions was outlined at the 1999 Luminy conference on
ramification theory. It was based on a technical analysis of a refinement [2,
3.2.2] of Kato’s refined Swan conductor [I] , but since then, an elementary
reduction to the classical Hasse-Arf theorem has been found.
The contents of this paper are contained in my dissertation (U.C. Berke-

ley, 2000), which was written under the direction of Hendrik Lenstra.
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Proposition 1. Let B/A be a finite generically separable extension of
henselian discrete valuation rings. Then the following are equivalent.

(i) There exists an x E B such that B = A[x].
(ii) The second exterior power Q 2 of the module of relative Kähler

differentials is zero.
(iii) There is a henselian discrete valuation ring A’ that is finite over

the maximal unramified subextension Anr of B/A such that eA’/Anr = 1 and
B’/A’ is a residually separable extension of discrete valuation rings, where
B’ = A’ 0Anr B.

Proof. De Smit [4, 4.2] shows that (i) follows from (ii). For any A’ as in
(iii), we have B’ B Q2 /A B’ n2 rv n2 0 so (iii) implies111 , we have 0B B ££ 0B ££ 

B’IA’ = 0, so III implies
(ii). Now we show (i) implies (iii).
Assume, as we may, that A = Anr, and let denote the residue exten-

sion of B/A. Take some x E B such that B = A[x] and let x denote the
image of x in 1. Let g(X) E A[X] be a monic lift of the minimal polynomial
Xq - a of x over k. Since the maximal ideal of B is generated by that of A
and g(x), we may assume that g(x) generates the maximal ideal of B. Then
modulo the maximal ideal of B, we have g(X + x) - Xq + xq - a - Xq, so
g(X -+- x) is an Eisenstein polynomial with coefficients in B. Now let A’ be
the discrete valuation ring A[X]/(g(X)). Then

is a discrete valuation ring which has the same residue field as B and, hence,
A’. El

Proposition 2. Let B/A be a finite extension of henselian discrete valua-
tion rings that is generically Galois with group G, and let p : G - Autc(V)
be a finite dimensional representation of G. If A’/A is a finite extension
of henselian discrete valuation rings such that B’ = A’ Q9 A B is a discrete
valuation ring, then we have arn(p’) = e A’ / A ar n (p), where p’ is p viewed as

a representation of the generic Galois group of the extension B’/A’.

Thus
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Corollary 3. Let B/A be a finite monogenic extension of henselian discrete
valuations Tings that is generically Galois with group G, and let p : G -

finite dimensional representation of G. Then arn(p) is an
integer.

Proof. Restricting to the maximal unramified subextension of B/A does
not change the naive Artin conductor or the monogeneity of the extension.
So assume B / A is residually purely inseparable. Now just apply the previ-
ous proposition with A’ taken as in the first proposition and then use the
classical Hasse-Arf theorem. D

Remark. One can define a naive Swan conductor [1, 6.7] as well. It also

is an integer in the monogenic case but simply because it agrees with the
naive Artin conductor whenever B/A is monogenic and not residually sep-
arable. It is not, however, a good invariant even in the monogenic case: it

is a consequence of results outlined at the Luminy conference that in the
(monogenic) equal-characteristic case, the naive Swan conductor of a faith-
ful, one-dimensional representation agrees with Kato’s Swan conductor if
and only if either B/A is residually separable or eB/A = 1, whereas for
general monogenic extensions in equal-characteristic, the naive Artin con-
ductor of a one-dimensional representation is equal to a non-logarithmic,
"Artin-type" variant of Kato’s Swan conductor.
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