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Parity in Bloch’s conductor formula
in even dimension

par TAKESHI SAITO

RÉSUMÉ. Pour une variété sur un corps local, Bloch a proposé
une formule conjecturale pour la somme alternée du conducteur
d’Artin de la cohomologie l-adique. On démontre que la formule
modulo 2 est vraie dans le cas où la dimension de la variété est

paire.

ABSTRACT. For a variety over a local field, Bloch proposed a con-
jectural formula for the alternating sum of Artin conductor of l-
adic cohomology. We prove that the formula is valid modulo 2 if
the variety has even dimension.

0. Introduction

Let K be a complete discrete valuation field with perfect residue field
F of arbitrary characteristic and X be a proper flat regular scheme over
the integer ring OK with smooth generic fiber XK. The Artin conductor
Art(X/OK) is defined by

Each term in the right hand side is defined as follows. We take a prime
number different from the characteristic of F. Let Knr be the maximal
unramified extension of K in an separable closure I~ and let F be the
residue field of Knr. The first two terms

are the .~-adic Euler number of the geometric generic fiber XK and of the
geometric special fiber Xp respectively. The last term

’1.

denotes the alternating sum of the Swan conductor of the t-adic represen-
tations of the inertia subgroup I = Gal(K/Knr) = Ker(GK =
Gal(K /K) - GF = Gal(F/F)). Each term in the right hand side is known
to be independent of a choice of prime number t [9].
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Bloch defines the self-intersection cycle (AX, as a 0-cycle class
supported on the closed fiber XF. It is defined as a localized chern class

Here n = dim XK is the dimension.

Conjecture 0.1. [I] Let X be a proper flat regular scheme over a complete
discrete valuation ring OK with perfect residue field F such that the generic
fiber XK is smooth. Then we have

Conjecture is proved by Bloch [1] for curves, dim XK = 1.
We prove the following assertion on the parity for varieties of even di-

mension.

Theorem 0.2. Let X be a projective flat regular scheme over a complete
discrete valuation ring OK with perfect residue field F such that the generic
fiber XK is smooth. We assume that the dimension n = dim XK is even.
We assume further that the reduced closed fiber XF,red is a divisor of X
with normal crossing and that the characteristic of K is not 2. Then, we
have a congruence

The outline of proof is the following. We consider the highest exterior
power det Qt) of the cohomology of middle dimension. It defines a
character of the inertia group I of order at most 2 and its Artin conductor

Art(det Qt)) is defined. We also consider the de Rham cohomology
HdR(XK / K) of middle dimension. The cup-product defines a symmetric
non-degenerate bilinear form on it. Hence its discriminant 
is defined as an element of KX /KX2. Its valuation ord (discHdR(XK/K))
is well-defined as an integer modulo 2. We prove Theorem by showing
congruences

In section 1, we deduce the congruence (0.3), Proposition 1.1, from the
following two facts. One is the computation of vanishing cycles given in [3],
which is a consequence of absolute purity recently proved by O.Gabber [5].
The other is a theorem of Serre [12] on the parity of Artin conductor of an
orthogonal representation.
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In section 2, we derive the congruence (0-1), Proposition 2.1, from a
Riemann-Roch formula, Corollary 4.9, for the derived exterior power com-
plex of the coherent sheaf Q 1 The formula is an analogueK X10K 

*

of a formula of Bloch [2] in higher dimension and proved similarly as in
[10]. Its proof is given later in Section 4 after recalling the definition and
some properties of the derived exterior power complexes.
The congruence (0.2) is an immediate consequence of the relation, The-

orem 2 [11] recalled in section 3, between the determinant of f-adic etale
cohomology and the discriminant of the de Rham cohomology.

In the final section 4, we study the exterior derived power complex and
slightly generalize the results in [10]. Using it, we prove the Riemann-Roch
formula, Corollary 4.9, and complete the proof of the congruence (0.1) and
of Theorem 0.2.

There is an error in the definition of the exterior derived power complex
given in [10] but it has no influence on the proof of the results proved
there. We give a correct definition in Definition 4.1 in Section 4 and give in
Proof of Proposition 4.8 an argument why it has no influence. The author
apologizes for the mistake.

Shortly after the conference at Luminy, in a joint work with K.Kato, the
author found a proof of the conductor formula, Conjecture 0.1, under the
assumption that the reduced closed fiber is a divisor with simple normal
crossings. The proof will be published in [8].
Acknowledgement The author would like to thank Prof. S. Bloch for

asking the proof of the congruence (0.1) above. It inspired the auther
greatly to find the proof of Theorem. He also thanks to Prof. H. Esnault
for stimulating discussion and for encouragement. The author is grateful
to Profs. L. Illusie and A. Abbes and to the anonymous referee for careful

reading of an earlier version of the article.

1. Parity of conductor

In this section, OK denotes a complete discrete valuation ring with per-
fect residue field F. We prove the congruence (0.3).

Proposition 1.1. Let X be a proper flat regular scheme over OK such that
the generic fiber XK is smooth. We assume that the dimension n = dim XK
is even. If we further assume that the reduced closed fiber XF,red is a divisor
of X with normal crossing, we have a congruence

We introduce some notation to prove Proposition 1. Let V be a quasi-
unipotent f-adic representation of I. The Artin conductor Art(V) is defined
by

. I I - - T -- I- -1
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where V, denotes the I-fixed part and Sw(V) denotes the Swan conductor
of V. We define the semi-simplified version as follows. Take an I-

invariant filtration F on V such that the action of I on Gr; V = ®q 
factors a finite quotient of I. For example we may take the monodromy
filtration. Then the dimension of the I-fixed part 
is independent of the choice of F. We denote it by dims V. For a quasi-
unipotent £-adic representation V of I, we define the semi-simplified Artin
conductor by

If we take a filtration F on V as above, we have .
For a proper smooth scheme Xx over K, we put

We reduce Proposition 1.1 to the following Lemmas.

Lemma 1.2. For X as in Proposition 1, we have

Lemma 1.3. For an orthogonal representation V of I, the semi-simplified
Artin conductor Art"(V) is congruent to the Artin conductor Art(det V)
of the determinant representation det V:

We deduce Proposition 1.1 from Lemmas 1.2 and 1.3. It is enough to
prove congruences

The congruences (1.1) and (1.3) are Lemmas 1.2 and 1.3 respectively. The
congruence (1.2) follows from the equality
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The last equality follows from Poincar6 duality and the equality ArtsSY =
ArtSSY* for the dual representation V*.
Proof of Lemma 1.2. We prove a more precise statement Lemma 1.4 below.
We may and do assume F = F is an algebraically closed field.
We change the notation in the rest of this section as follows. We assume

F = F is algebraically closed and we drop the assumption that the dimen-
sion n = dim XK is even. Let Y = denote the reduced closed fiber.

We define proper smooth schemes over F for 0  l  n = dimXK
of dimension n - k. When Y has simple normal crossing, it is the disjoint
union of (1~ + I) x (1~ + I )-intersections of irreducible components of Y. We
define y(O) to be the normalization of Y. 1, we define as

follows. We put
1- I 1 1- I 1

denotes the k + 1-fold self
fiber product. For 0  i  j  1~, the closed subscheme (y2 = is

the image of a closed immersion

The natural action of the symmetric group Sk+1 on (fly Y(o))o is free and
we define y(k) to be the quotient From the assumption
that Y has normal crossing, it follows that y(k) is smooth of dimension n-k
and the canonical map y(k) - Y is finite.
To show Lemma 1.2, we prove more precisely

Lemma 1.4. Let X be a proper regular flat scheme over a discrete valuation
ring OK with algebraically closed residue field F such that the generic fiber
XK is smooth of arbitrary dimension n = dim XK. We assume that the
reduced closed fiber Y = XP,red is a divisor with normal crossings and define
the schemes y(k) as above. Then, we have equalities

Lemma 1.4 implies Lemma 1.2. In fact, if n = dim XK is even and k is
odd, the scheme is proper smooth of odd dimension n - k. Hence by
Poincar6 duality, the Euler number is even.
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Proof of Lemmas 1.4. 1. Let L~~~ be the locally constant sheaf of rank I on
y(k) corresponding to the character

and let ~rt~~ : - Y denote the canonical map. Then we have an exact

sequence

of sheaves on Y. By the Lefschetz trace formula, we easily obtain the
equality L~~~) = X(y(k)). Thus the assertion I is proved.

2. Since the absolute purity is proved by Gabber [5], the tame part
Rt9 = RQOPQ, of the vanishing cycle is computed as in [3]. The result

loc.cit. is summarized as follows. Define a map Q~(2013l) 2013~ to

be the multiplication by the prime-to-p part of the multiplicity in the closed
fiber XF to the component corresponding to each irreducible component
of and put R = Then the cup-product
induces an isomorphism Rr 0 AqR --&#x3E; Rq for all integer q &#x3E; 0. Further,
the action of the tame quotient I/P on Ro factors a finite quotient and the
fixed part (Ri)I/P is equal to the constant sheaf Consequently,
the fixed part Rq = (Ri)I/P is identified with AqR.

Since the action of I/P on RQOPQE factors a finite quotient, by the
spectral sequence we have

By the description of R’ above we get an exact sequence8 , , ,

of sheaves on Y. Hence together with the equality (1), we have

and hence , Substituting this in the
equality (3) above, we get the equality (2).
Proof of Lemmas 1.3. We consider the monodromy filtration W on V.
Then each graded piece GRWV is isomorphic to Gr£V and hence to the
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dual Hence we have

, ,w

Thus it is enough to apply a theorem of Serre [12] to an orthogonal repre-
sentation Grl)VV on which the action of the inertia group I factors a finite
quotient.
The following Lemma will not be used in the sequel.

Lemma 1.5. For an orthogonal representation V of I, the semi-simplified
Artin conductor Artss(V) is congruent to the Artin conductor Art(V) mod-
ulo 2:

Proof. It is sufficient to show the congruence dims V - dim V, mod 2.
We consider the monodromy filtration W on V. It is enough to show
the congruence dim Vl mod 2. By the definition of the
monodromy filtration, we have mod 2. Since
we have V, = (Ker(N : V 2013~ V)),, it is enough to show the congruence

dim(Ker(N : V -~ mod 2.
i be the primitive

part. Then we have isomorphisms
. ---

- . - 
, ,

Therefore, it is sufficient to show that the dimension dim pI of the I-
fixed part pI is even for an odd integer r &#x3E; 0. It follows from that the

primitive part Pr for odd r has an I-invariant non-degenerate alternating
form (x, Nry).

2. Parity of discriminant

We prove the congruence (0.1).

Proposition 2.1. Let X be a projective flat regular scheme over a complete
discrete valuation ring OK with perfect residue field such that the generic
fiber XK is smooth of even dimension n = dim XK. Then, we have a
congruence

We deduce Proposition 2.1 from Lemma 2.2 below. To state Lemma,
we introduce some notation. For X as in Proposition 2.1, let 
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det be the relative canonical sheaf. It is an invertible Ox-module.
There is a canonical map c : an

isomorphism on the smooth generic fiber XK.
A complex C of Ox-modules is said to be perfect if the cohomology

sheaves are coherent for all q and if 0 except for finitely
many q. For a perfect complex C of Ox-modules, its dual complex DC =

is also a perfect complex C of Ox-modules. If a per-
fect complex C is acyclic in positive degree i.e. 1-iq (C) = 0 for q &#x3E; 0, the
dual DC is acyclic in negative degree i.e. 7iq (DC) = 0 for q  0. Hence a

map H°(C) - of coherent sheaves induces a map
C ~ DC of perfect complexes. For a map C ~ C’ of perfect complexes, let
Cone[C 2013~ C~] denote the mapping cone. For a perfect complex C of Ox-
modules acyclic on the generic fiber XK, the hypercohomology Hq(X, C)
are Ox-modules of finite length for all q and are 0 except for finitely many
q. We define its Euler number by

Lemma 2.2. Let X be as in Proposition 2.1 and put n = 2m. Then, there
exists a perfect complex C of OX-modules satisfying the following properties
(1) and (2).

(1) The complex C is acyclic in positive degree, the 0-th cohomology sheaf
is canonically isomorphic to Or;/OK = NMQI 10 and the generic fiber
C 00K K is acyclic except for degree 0.

be the map induced by the map

and by the canonical isomorphism in (1).
(2) The mapping cone Cone(C --&#x3E; DC] is acyclic on the generic fiber XK

and, for the Euler number, we have a congruence

In section 4, we define the derived exterior power complex 
and prove that C = LAm°3c/OK satisfies the conditions (1) and (2) in
Lemma 2.2 to complete the proof of congruence (0.1).
We deduce Proposition 2.1 from Lemma 2.2. By Lemma 2.2, it is suffi-

cient to show

We prove the congruences (2.1) and (2.2).
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We show (2.1). By Grothendieck duality, the map b : C ~ DC induces
a pairing

Tensoring K, we recover the cup-product

For an Ox-module M of finite type, let M’ denote the free quotient M’ =

M/Mtors and M* denote the dual M* = HomoK (M, OK) . Let Hq (b)’
denote the induced map

For q = m, the free quotient C)’ is a lattice of .
and hence we have a congruence

On the other hand, by the exact sequence

we have

Since the pairings Hq (X, C)’ x C)’ -~ OK are 
to each other, the cokernel CokerHq(b)’ is isomorphic to CokerHn-q(b)’.
Thus we have a congruence

and hence the congruence (2.1) is proved.
We show (2.2). It follows from Lemma 2.3 below by taking the valuation.

Lemma 2.3. Let K be an arbitrary field of characteristic # 2 and X
be a proper smooth scheme of even = 2m over K. We put

Then, we have
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Proof of Lemma 2.3. By Proposition 4 and its Corollary in ~11~, we have

Since b - h mod 2, the assertion follows.

3. Parity of conductor and discriminant

We prove the congruence (0.2).

Proposition 3.1. Let X be a projective smooth scheme of even dimension
n over a complete discrete valuation field K with perfect residue field. If
the characteristic of K is not 2, we have a congruence

Proof. We recall the relation between the determinant of ~-adic cohomol-
ogy and the discriminant of de Rham cohomology. Let X be a projective
smooth scheme of even dimension n = 2m over a field K of characteris-

tic # 2, f. Then the determinant of the orthogonal ~-adic representation
defines a character GK - {~1} c ~E of the absolute

Galois group GK = Gal(K/K). We regard it as an element

We identify KX/Kx2 with Hom(GK, f ±11) by the canonical map a H
xa = (~ H Then we have

In fact, the conductor ArtXa is equal to the valuation ord of the

discriminant of the quadratic extension The class of the discrimi-
nant in is 4a and the assertion follows.

By the congruence (3.1), Proposition 3.1 follows immediately from

Theorem 3.2. ([Il] Theorem 2) Let X be a projective smooth scheme of
even dimension n = 2m over a field K of characteristic ~ 2, ~. Then we
have
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4. Derived exterior power complex

In this section, we recall the definition of the derived exterior power
complex LAq°3c/oK and show, Corollary 4.9, that the complex LAm°3c/oK
for q = m = ~ satisfies the conditions (1) and (2) in Lemma 2.2 to complete
the proof of Theorem 0.2.

First, we recall the definition of the derived exterior power complex
LAqK for a complex K = [L -~ E]. The definition given in [10] is wrong
and we give a correct definition, cf. Lemma 4.3. However the definition
in [10] is correct if L is an invertible sheaf, Example 4.2 below. Hence

the results proved in [10] are true if we just replace the wrong definition
there by the correct definition below for it is proved by reducing to the case
where L is invertible, cf. Proof of Proposition 4.8 below. After recalling the
definition, we define another complex using symmetric tensors, which is
canonically quasi-isomorphic to the derived exterior power complex. More
systematic account will be given in [8].
Definition 4.1. Let d : L ~ E be a rraorphism of locally free Ox -modules
of finite rank on a schemes X and let K = [L I E] be the chain complex
where E is put on degree 0. For an integer q E Z, we define the derived
exterior power complex LAqK = 

For an integern, we defines the n-th component (LAqK)n C 
to be the direct summand

where the integers qo, ... , qn in those satisfying the condition qi &#x3E; 0

for 1  i  n. We have = 0 unless max(0, (q-rank E)/rank L) 
-
We define the boundary maP dn : (LAqK)n --* to be the

restriction dn = of the q-th exterior power of the map
- ,

Example 4.2. If L is an invertible module, the complex is

with the boundary map 
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The 0-th homology sheaf = is canonically isomorphic
to the q-th exterior power AQ1toK of the cokernel RoK = Coker(d : L -
E). In fact, di : (LAqK)o is

We verify that Definition 4.1 is a special case of the general definition
of the derived functor of the exterior power by Dold-Puppe [4] (cf. [7]),
in the case where the complex is of amplitude ~-l, 0~. Let the notation be
as in 1.3 [7] with the following exception. To avoid confusion, we use the
letter T to denote the Dold-Puppe transform which is denoted by K in the
reference.

Lemma 4.3. Let K = [L ~ E] be a complex as in Definition 4.1 and q &#x3E; 0
be an integer. Then, the norrraal complex NAqT(K) of the derived q-th
exterior power AqT(K) of the Dold-Puppe transform T(K) of the complex
K is canonically isomorphic to the complex LA q K defined above.

Proof. We keep the notation in 1.3 [7] with the exception stated above.
Following the definition given there, the Dold-Puppe transform T(K) is

computed as follows. The n-th component T(K)n is E EB Lffin. Its 0-th

component E in E’ 0 corresponds to the map Eo : [0, n] - [0] and,
for I  i  n, the i-th L corresponds to the surjection Ei : [0, n] -&#x3E; [0, 1]
defined by Ei ( j ) = j for j  i and = j + I i. Each component
of the boundary map di : E e3 L~~ Lffin-1 for 0  i  n is described
as follows.

On E, the identity to E for all i.
On j-th L for 1  j  n,
the identity map to j-th L if j  i except for j = i = n,
the identity map to (j - l)-st L if j &#x3E; i except for j - I = i = 0,
the 0-map for j = i = n and

If 1  i  n, the map di looks like

The description above is a consequence of the following fact.
, . - p - ...... - - .... - v -

be the map defined by (
r-.-" ,
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To describe the q-th exterior power, we introduce an isomorphism

We identify T(K)n with E e3 LtBn by an. Then the composite map d2 =
o di o E e3 L®n -~ E e3 L®n-1 is simply the map droping the

i-th component L for I ~ i ~ n. Since the inverse is given by
(.roi?2?... Xn) (x0, xi, x2 -f- x1, ... , ¿1 xi), the map dQ is the same
as the map d : (~o?~i~2?’’’ Xn) ~ (.ro+d(’ri)?~’2’’~i?~3"~i?’’’ xn-xi)
in Definition 4.1.
We compute the normal complex By its definition, the n-

th component is T (K)n --~ By the
isomorphism 0152n above, it is identified with

By do = d, the boundary maps are the same as that in Definition 4.1 and
Lemma 4.3 is proved.

be complexes as
above.

(1). For two rraorphisms f, g : K = [L -&#x3E; E ---&#x3E; K’ = [L’ ---&#x3E; E’] homo-
tope to each other, there exists a horraotopy between the LAq ( f ), LAq (g) :

LAqK’.

(2) If f : K = [L -&#x3E; E --; K’ = [L’ 2013 E’] is a quasi-isomorphism, the
induced map LAq( f ) : LAqK’ is also a quasi-isomorphisrra.

Proof. (1) is a consequence of the general fact that the functors N and
T preserve homotopy. For (2), since the question is local on X, we may
assume f has an inverse g : K’ --&#x3E; K upto homotopy. Then, (1) implies (2).

For an integer q E Z and a complex K = [L 2013~ E] as above, we define
another complex L’AQK using symmetric tensors. We give a canonical
quasi-isomorphism LAqK in Lemma 4.6 below.

Definition 4.5. 1. For a quasi-coherent Ox-module M and an integer n,
the n-th symmetric tensor module TSnM is the fixed part

by the natural action of the symmetric group Sn.
2. Let K = [E -+ L] be a complex of locally free Ox -modules of finite

rank. For an integer q, n &#x3E; 0, we put ( We
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define a map dn : « to be the restriction

The sn -invariance implies the Sn-1 -invariance and that dn_ 1 o dn = 0 . The

complex L’AQK is defined to be

1’he last term is put on degree 0. For q  0, we put = 0.

Lemma 4.6. Let K = [L ~-~ E] be a complex as in Definition 4.1 and
q be an integer. Then, the inclusion

induces a quasi-isomorphism

If L is an invertible Ox-module, the canonical map LllqK is
the identity (cf. Example 4.2).
Proof. First, let us note that TSRL is the kernel of the map L®’"

We show that the inclusions are compatible with the boundary and hence
defines a canonical map LAQK. By the definition of the boundary
map, we have an equality

for xo 0 Xl 0 X2 ® ~ ~ ~ 0 Xn E AqE 0 L®n. Hence the assertion follows from
the remark above.
We prove that the canonical map is a quasi-isomor-

phism. We define a decreasing filtration F on LA q K. Let

where means that we add the condition qo &#x3E; r to the condition in
fin Definition 4.1. We have
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and = 0. It is easily seen to define a fil-
tration on the complex LAqK. The graded piece GrF r(LAqK) is the

same as Aq-r E 0 LA~([L 2013~0]). Therefore to prove Lemma, it is enough
to show that the inclusion induces a quasi-isomorphism

~ 0]). By Proposition 4.3.2.1 [7] Chap.l, there is a
quasi-isomorphism TSr L[r] ~ 0]). Thus it is also reduced to
the fact in the beginning of the proof.
The author does not know if the functor L’Aq preserves homotopy.
We extend the complex to a complex denoted by LAqK with a

canonical map LAqK.

Definition 4.7. Let K = [L ~ E] be a complex as above.
The rank r = rK of K is the difference rE(= rank E) - rL(= rank L) .
The determinant det K of K is defined to be the invertible Ox-module

For an integer q E 7G, the extended derived exterior power complex LAqK
is defined to be the mapping fiber

of the map 1íom(LAr-qK, det K) induced by the canonical map

The map det K) is the 0-map unless 0  q  rK.
It is the same as the compositum

1tom(Ar-qE,detK).
By Lemma 4.2, the complex is canonically quasi-isomorphic to

the complex

where is put on degree 0. There is a canonical map LAQK.

For q = r = rK, the complex defined here is the same as 
defined in (1.5) in [10].
The extended derived exterior power complex LAQK satisfies similar

properties, Proposition 4.8 below, as proved in [10]. To state it, we
introduce some notations. For a complex K = [L -~ E] as above, let Z =

C X be the closed subscheme defined as the zero locus of 

Namely, locally on X, the closed subscheme Z is defined by the determi-
nant of rL x rL-minors of a matrix representing the map d : L 2013~ E. On the
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complement X - Z, the cokernel Ho(K) = Coker(d : E -~ L) is locally free
of rank r = rK and the natural map K -&#x3E; is a quasi-isomorphism.
Bloch defines in [I] a localized Chern class E X).
An element of X) is a functorial families of homomorphisms

x X Z) for all Y - X. For a perfect complex M
of Ox-modules acyclic outside a closed subscheme Z c X, the localized
Chern class csz (M) E X) is defined in [6] Section 18.1. Slightly
generalizing the results in [10], we have the following Proposition 4.8.

Proposition 4.8. Let q e Z and K = [L ~ E] be a complex of locally free
Ox-modules of finite rank as above. We assume the following condition is
satisfied.

(L). Locally on X, the complex K is quasi-isomorphic to a 

[L’ 2013~ E’] where E’ is locally free of finite rank and L’ is invertible.
Then,

(1). The cohomology sheaves Hj(LAqK) are Oz-modules for all j E Z.
The sheaves and L1i* K = Oz) are invertible Oz-
modules. There is a canonical isomorphism of Oz-modules

(2). For the localized Chern classes, we have

in CH"‘(Z --~ X). The left hand side is that defined in [6] and the right
hand side is that defined in [1].
Assume X is projective and locally of complete intersection over a dis-

crete valuations ring OK and dim X = rK + 1. Assume further that the
support of Z is a subset of the closed fiber XF. Then,

(3). The complex LAqK is acyclic on the generic fiber XK. For the
Euler characteristic X(X, LAQK) = LAQK), we
have a formula

Proof. Proof is similar to those in [10]. Since the proofs in [10] is done

by reducing to the case where the O x-module L is invertible for which the
definition given there is correct, the error in the definition of the complex
in [10] has no influence on the proof as we will see below.

(1). It is proved similarly as [10] Proposition 1.7. Since the assertion
is local on X, we may assume the sheaf L is invertible by the assumption
(L) and by Corollary 4.4 (2) . Then, as in Lemma (1.6) [10], it follows
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immediately from the definition that we have
- 

_ _ 

- , .

From this, we obtain the isomorphism in (1). Further the rest of the asser-
tions are reduced to the case q = n, which is [10] Proposition 1.7.

(2). It is proved similarly as [10] Proposition 2.1. By the same argument
as there, it is enough to show that LAqK is acyclic except for degree r +
1 - q and the homology sheaf is an invertible OD-module
in the notation there. Since the assertion is proved for q = r + 1 in [10]
Lemma 2.2, it is enough to show that LAqk is locally quasi-isomorphic to

(r + 1)]. By the condition (L), by Corollary 4.4 (2) and by the
isomorphism (4.1) above, the assertion is proved for all q.

(3). The proof is the same as [10] Proposition 2.3, with Proposition 2.1
in it replaced by the assertion (2) here.
We define the derived exterior power complex for a quasi-coherent OX-

module M satisfying the following condition.

(G). There exists a resolution 0 - L - E - M -+ 0 by locally free
Ox-modules E and L of finite rank.
We define the derived exterior power complex LAQM to be E] by
taking a resolution as in (G). It is well-defined upto homotopy, since such a
resolution is unique upto homotopy. In particular, the cohomology sheaves
LSAqM are well-defined upto unique canonical isomorphism. The determi-
nant det M, the rank rM and the extended derived exterior power complex
LAQM = det M)] are similarly defined as
above.
We may apply Proposition 4.8 to the complex LAqM, if M further sat-

isfies the condition

(L’). Locally on X, there exists a resolution 0 -&#x3E; L’ -&#x3E; E~ 2013~ M -~ 0 by
a locally free O x-module E of finite rank and an invertible Ox-module L.
In this case, the closed subscheme Z C X is defined by the annihilater ideal
of by Proposition 4.8 (1).
We apply Proposition 4.8 to M = Let X be a regular flat

projective scheme over a discrete valuation ring OK with perfect field F
such that the generic fiber XK is smooth of dimension r. We verify that
the Ox-module M = satisfies the conditions (G) and (L) above.
Since we assume X is a subscheme of P = for some integer N, we
have an exact sequence

and the condition (G) is satisfied. Locally on X, there is a regular im-
mersion X - P’ of codimension 1 to a smooth scheme P’ over OK . A
similar exact sequence for this immersion implies the condition (L’) . Thus
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the derived exterior power complex LAqSZXloK is defined and we may apply
Proposition 4.8 to it.
To show Lemma 2.2, we identify the extended derived exterior power

complex Recall that cvXloK - det relative canon-

ical sheaf. The wedge product

induces a map and hence a map

as in Lemma 2.1. The map b is the same as the map in the definition of

LAqQl Hence the complex LAqQl is identified with the mapping
fiber of the map b induced by the wedge product:

Corollary 4.9. Let X be a regular flat projective scheme over a discrete
valuations ring OK with perfect field F such that the generic fiber XK is
smooth of dimension r and q E Z be an integer. Then, the mapping fiber

is acyclic on the generic fiber and
we have a formula for the Euler number:

Proof. We identify the mapping fiber

with the extended derived power complex Since we assume the
K 

*

generic fiber is smooth, the support of Z is a subset of the closed fiber XF.
Hence the complex is acyclic on the generic fiber XK and the
Euler number is defined. Now it is enough to apply Proposition 4.8 (3) to
the Ox-module M = 

Proof of Lemma 2.2. We verify that C = satisfies the con-

ditions (1) and (2) in Lemma 2.2. The condition (1) follows immediately
from the definition of the exterior derived power complex. Since the Euler
number of the mapping cone is the minus of that of the mapping fiber, the
condition (2) is a consequence of Corollary 4.9.

Thus the proof of Theorem 0.2 is completed.
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