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On Tate’s refinement for a conjecture of Gross
and its generalization

par NOBORU AOKI

RÉSUMÉ. Nous étudions un raffinement dù à Tate de la conjecture
de Gross sur les valeurs de fonctions L abéliennes en s = 0 et for-
mulons sa généralisation à une extension cyclique abitraire. Nous
prouvons que notre conjecture généralisée est vraie dans le cas des
corps de nombres. Cela entraine en particulier que le raffinement
de Tate est vrai pour tout corps de nombres.

ABSTRACT. We study Tate’s refinement for a conjecture of Gross
on the values of abelian L-function at s = 0 and formulate its

generalization to arbitrary cyclic extensions. We prove that our
generalized conjecture is true in the case of number fields. This in
particular implies that Tate’s refinement is true for any number
field.

1. Introduction

In [9] Gross proposed a conjecture which predicts a relation between two
arithmetic objects, the Stickelberger element and the Gross regulator, both
of which are defined for any data (K/k, S, T), where is an abelian ex-
tension of global fields and S, T are finite, non-empty subsets of the places
of k satisfying certain conditions. In the same paper, he proved the con-
jecture in the case of unramified extensions of number fields, and obtained
a partial result when the extension is cyclic of prime degree. Since then
the conjecture has been verified to be true in several cases (see Proposition
2.2 below), but yet it remains to be proved in general. Taking a close look
at the conjecture, however, one can easily notice that it becomes trivial in
some cases. For example, if S contains a place which completely splits in
K, then both the Stickelberger element and the Gross regulator are zero,
and the conjecture is trivially true. Besides such a trivial case, there are
still some cases where the conjecture becomes trivial. As observed by Tate
[22], this is the case if is a cyclic extension whose degree is a power of
a prime number l and if at least one place of S "almost splits completely"
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in (see Section 3 for the definition) and another place in S splits in
He then proposed a refined conjecture in that case.

The purpose of this paper is to study Tate’s refined conjecture from a
cohomological view point and to generalize it to arbitrary cyclic extensions.
(In a forthcoming paper [2], a further generalization of the conjecture will
be given.) We will prove that a weak congruence holds for any cyclic l-
extension (Theorem 3.3), which implies Tate’s refined conjecture when k
is a number field (Theorem 3.4). Piecing the congruences together for
all primes 1, we will also obtain a weak congruence for arbitrary cyclic
extensions (Theorem 4.2), which is a partial result in the direction of our
conjecture. In particular it shows that the generalized conjecture (and
hence the Gross conjecture) is true for arbitrary cyclic extensions of number
fields (Theorem 4.3 and Corollary 4.4). In the last section, using the results
above, we will give a new proof of the Gross conjecture for arbitrary abelian
extensions K/Q (Theorem 10.1), which simplifies our previous proof in [1].
The main idea of the proof consists of two ingredients: one is an inter-

pretation of the Gross regulator map in terms of Galois cohomology, and
the other is genus theory for cyclic extensions K/k. Here by genus theory
we mean a formula (Theorem 7.1) for the (S, T)-ambiguous class number
of and it will play an important role when we relate the Stickelberger
element to the Gross regulator in the proof of Theorem 4.2. The idea to
use genus theory can be already found in the paper of Gross [9], where
he implicitly used it to prove a weak congruence in the case of cyclic ex-
tensions of prime degree. Thus our proof may be regarded as a natural
generalization of his.

Acknowledgements I would like to thank Joongul Lee and Ki-Seng Tan
for reading the manuscript very carefully and making a number of helpful
suggestions. Especially I am considerably indebted to Lee for the treatment
of the case "mo &#x3E; 0" in Theorem 9.2. I am very grateful to David Burns
for letting me know of recent work by himself [3] and by Anthony Hayward
[11] both of which are closely related to this article. I also wish to express
my gratitude to John Tate for many valuable comments and suggestions.

2. The Gross conjecture
In this section we briefly recall the Gross conjecture. Let k be a global

field, and let S be any finite, non-empty set of places of l~ which contains
all the archimedean places if k is a number field. Let es be the ring of
S-integers of k and consider the S-zeta function
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where the summation is over the ideals a of Os. It is well known that
this series converges for R(s) &#x3E; 1 and has a meromorphic continuation to
the s-plane, with only a simple pole at s = 1. The analytic class number
formula for k says that the Taylor expansion of (s( s) at s = 0 begins:

where hs is the class number of ®s, Rs is the S-regulator, ws is the number
of root of unity in the S-unit group Us = U; and n = IS I - 1. To achieve
a formula with no denominator, following Gross, we introduce a slightly
modified zeta function. Let T be a finite set of places of 1~ which is disjoint
from S, and define the (S, T)-zeta function

where Nv is the cardinality of the residue field of v. To describe the corre-
sponding formula for (S,T(S), we define the (S, T)-unit group of k by

Clearly the index (Us : Us,T) is finite, and is a divisor 
Define the (S, T)-class number h = hs,T by the formula

Then the Taylor expansion of (s,T(s) at s = 0 begins:

where Rs,T is the (S, T)-regulator (see below for the definition) and w is
the number of root of unity in Us,T. We henceforth assume that T is chosen
so that Us,T is torsion-free. Then from (2) we obtain a formula without a
denominator:

To define the (S, T)-regulator, let Ys be the free abelian group generated
by the places of S and

the subgroup of elements of degree zero in Ys. Then Xs ^--’ ZI. Since we
are assuming that US,T is torsion-free, we have an isomorphism 
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Let (1,... un) and (xl, ... , rn) be l2-bases of and Xs respectively.
Let detR(A) be the determinant of the map

taken with respect to Z-bases of UST and XS chosen above. The (S, T)-
regulator Rs,T is by definition the absolute value of detr (A) - By (3) we
have

where the sign of course depends on the choice of bases of US,T and Xs.
The Gross conjecture predicts that there is an analogous congruence

relation if we replace and detr (A) in (4) by the Stickelberger element
and the Gross regulator respectively. We give a brief review of the definition
of these two objects.

First we define the Stickelberger element. Let be a finite abelian
extension which is unramified outside S and G the Galois group of 
For any complex valued character X of G, we define the (S, T)-L function
associated to X to be the infinite product

where Frv E G denotes the Frobenius element at v. Then there exists a
unique element BG = C[G] such that X(OG) = for any
X. Gross [9] showed that BG is in Z[G] using integrality properties proved
independently by Deligne-Ribet [7] and Barsky-Cassou-Nogu6s [5].

Next, to define the Gross regulator, consider the map

where rv : k; 2013~ G denotes the local reciprocity map. Let be the
n x n matrix representing A with respect to the bases and (rj ) chosen
above, namely:

Let Z[G] be the integral group ring of G and IG the augmentation ideal of
Z[G]. Then there is an isomorphism G ~ IG/IÕ, 9 1---+ 9 - 1. Using this
isomorphism we can view the matrix with entries in IGII2G as a
matrix representing A. Define the Gross regulator by

where the sum is over the permutations of ~l, ... , 
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We are now in a position to state the conjecture of Gross.

Conjecture 2.1. Let the notation be as above. Then OG E 13 and the
following congruence holds:

where the sign is chosen in a way consistent with (4).
In the following we have a list of the cases where Conjecture 2.1 is proved.

Proposition 2.2. Conjecture 2.1 is true in the following cases:

(i) n=0.
(ii) k is a number field and S is the set of the archimedean places.
(iii) K is a quadratic extension of k.
(iv) k is a function field and n = 1.
(v) k = Q.
(vi) is an abelian p-extension of function fields of characteristic p.
(vii) K/k is an abelian 1-extension., where l is a prime number different

from the characteristic of k and divides neither the class number of
k nor the numbers of roots of unity in K.

(viii) K/k is an abelian extension of a rational functions field k over a finite
field and 3.

Proof. In the case of (i) Conjecture 2.1 is an immediate consequence of (4).
In both cases (ii) and (iii) the conjecture was proved by Gross in [9]. Case
(iv) is a consequence of the work of Hayes [10] proving a refined version of
the Stark conjecture. Case (v) was treated in our previous paper [1]. In

the cases (vi), (vii) and (viii) the conjecture was proved by Tan [19], Lee
[15] and Reid [16], respectively. 0

As mentioned in the introduction, Gross [9] proved a weak congruence
when K/k is a cyclic extension of a prime degree. Here we give the precise
statement because our main results (Theorem 3.3 and Theorem 4.2) may
be viewed as a generalization of it to arbitrary cyclic extensions.

Proposition 2.3. Suppose K/k is a cyclic extension of prime degree l.
Then there is a constant c E (7G/d7G)" such that

Proof. See [9, Proposition 6.15]. 0

3. Tate’s refinement for the Gross conjecture

In this section we give the precise statement of Tate’s refinement for the
Gross conjecture.
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First, we assume that G is an arbitrary finite abelian group. Choose and
fix a place vo E S and set S’1= S ~ ~vl, ... , vn~. Then, as a Z-basis
of Xs, we can take {~i 2013 vo, ... , vn - In this case we have

Choosing a Z-basis ~ul, ... , 7 Un I of US,T, we define

It is clear from the definition that ?ZG E 13 and detG(A) (mod ~+1).
Now, suppose that G is a cyclic group of degree lm, a power of a prime

number l. For each v E S, let G~, denote the decomposition group of v in
G. We fix the ordering of the elements of S = vi , ... , so that

Clearly N &#x3E; n, and N = n if and only if mo = ... = 0.
If mn = m, that is, Vn splits completely in then 0G = RG = 0.

Hence Conjecture 2.1 trivially holds. Let us consider the second simplest
case mn = m -1. Following Tate, we say that the place vn almost splits
completely in K if mn = m -1. Tate [22] proved the following.
Theorem 3.1. Assume that mn = m - 1. Then 8G E Ig and RG E

Moreover, the image ofRG in 
sign, independent of the choice of the basis and the choice of va.

Since N &#x3E; n, this theorem, in particular, shows that 8G E Iä. Let us
consider the case where mo &#x3E; 0. In this case we have N &#x3E; n and hence
Theorem 3.1 also shows that 8G E ~+1. Moreover, one can show that
hRG = 0 (mod ~+1) (see Theorem 9.2, (i)). Therefore Conjecture 2.1 is
trivially true if mo &#x3E; 0. On the other hand, if mo = 0, then both 8G and
7ZG are in the same ideal Ig. Therefore it is meaningful to compare them
in the quotient group Based on these facts, Tate [22] proposed
a refinement for the Gross conjecture.

Conjecture 3.2. Assume that mo = 0 and mn = m -1. Then

where the sign is chosen in a way consistent with (4).
Obviously Conjecture 3.2 implies Conjecture 2.1 since N &#x3E; n and

Now, we can state one of our main results.
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Theorem 3.3. Let the notation and assumptions be as in Conjecture 3.2.
Then there exists an integer c prime to l such that

In particular, if l = 2, then Conjecture 3.2 is true.

We will give the proof of this theorem (more precisely, of Theorem 9.1
which is equivalent to Theorem 3.3) in Section 9. Here we only note that
the last assertion immediately follows from the first one. To see this we
have only to observe that IG /IG +1 ^-’ since G is a cyclic group and
that both 0G and RG are killed by l in under the condition that

mn = m -1 (see Proposition 5.4) . Therefore, if l = 2, then = ~7~
(mod Thus Conjecture 3.2 is true.
As a special case of Theorem 3.3 we have the following.

Corollary 3.4. If K/k is a cyclic l-extension of number fields, then Con-
jecture 3.2 is true.

Proof. Actually, Conjecture 3.2 is non-trivial only when 1 = 2 in the number
field case since is an l-group and both BG and RG are killed by 2 in

Thus Corollary 3.4 is a direct consequence of Theorem 3.3. ll

Remark 3.5. As remarked by Lee [14], one can not drop the condition
mo = 0 from the conditions in Conjecture 3.2. Indeed, he showed that
there are infinitely many cyclic l-extensions K/k for which but

hdetG(A) E In the next section, we will generalize Conjecture 3.2 to
arbitrary cyclic extensions in order to remove the restriction on mo.

4. A generalization of Tate’s conjecture
In this section G will be an arbitrary cyclic group. For any v E S, let

be the kernel of the canonical surjection Z[G] -- Let us choose
and fix a place vo E S. Let Sl = S ~ Ivol and consider the ideal

in Z[G]. If Q is a generator of G, then GVi is generated byavi := (J(G:Gvi)
and is a principal ideal generated by (Qvl -1 ) ~ ~ ~ (ow,~ -1 ) . Since the
entries of the i-th row of the matrix are in the ideal IG(vi),
its determinant RG belongs to the ideal IG(Si). Moreover, the image of
RG in the quotient group is, up to the sign, independent
of the choice of the basis of Us,T.
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Given a finite abelian extension K/k of global fields and finite sets S, T of
places of k such that S fl T = 0, we call the triple S, T) an admissible
data if the following conditions are satisfied:

(i) S contains the places of 1~ ramifying in K and the archimedean places
of k.

(ii) U K,S,T is torsion-free.
In [9] Gross gave a sufficient condition for Us,T to be torsion-free:

. In the function field case UST is torsion-free if T is non-empty.

. In the number field case Us,T is torsion-free if T contains either primes
of different residue characteristics or a prime v whose absolute ramifi-
cation index ev is strictly less than p -1, where p is the characteristic
of Fv .

It is worthwhile to note that each condition above also ensures that UK,S,T
is torsion-free for any finite abelian extension unramified outside S.
We propose the following conjecture which will turn out to be equivalent

to Tate’s refinement when is a cyclic 1-extension such that mo = 0 and
m

Conjecture 4.1. Let (K/k, S, T) be an admissible data such that G =

Gal(K/k) is a cyclic group. Then

where the sign is chosen in a way consistent with (4).

It is very likely that the congruence in the conjecture holds for any finite
abelian extension In a forthcoming paper [2], this will be discussed
in some detail and some evidence will be given.

If l is a prime number dividing we denote by GI the 1-Sylow subgroup
of G. For each v E S, let Gv be the decomposition group of v in G, and put

= Gv n Gl. Thus is the 1-Sylow subgroup of Gv. Now, consider
the following condition:

(5) 
There exists a place vn E sl such that  5 for any prime divi s or l of 

such that l l

In other words, this requires that there exists a place vn in S which either
splits completely or almost splits completely in the maximal 1-extension of
k contained in K for each prime divisor 1 of IGI. Although this condition is
very restrictive in the function field case, it is always satisfied in the number
field case since =1 or 2 for any archimedean place v of k.
Now, we can state our main result, which may be viewed as a partial

answer to Conjecture 4.1.
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Theorem 4.2. Suppose condition (5) holds. Then BG belongs to IG(SL)
and there exists an integer c prime to IGI such that

In the next section we will see that in order to prove Theorem 4.2 it
suffices to prove it when G is a cyclic group of a prime power order.

In the case of number fields, Theorem 4.2 gives a complete answer to
Conjecture 4.1.

Theorem 4.3. If K/k is a cyclic extensions of number fields, then we have

Proof. As we have remarked above, condition (5) is always satisfied in the
number field case. As is well known, if k is not totally real or K is not
a totally imaginary, then Conjecture 2.1 is trivial. Suppose K is a totally
imaginary extension of a totally real field l~. Then, as we will see later (see
Proposition 5.4), the quotient group IG/IGIG(SI) is a cyclic group of order
2. Thus Theorem 4.3 immediately follows from Theorem 4.2. 0

Since Conjecture 3.2 implies Conjecture 2.1, Theorem 4.3 proves the
following.

Corollary 4.4. If is a cyclic extension of number fields, then Con-
jecture true.

5. Stickelberger elements for cyclic I-extensions

Throughout this section we will assume that G is a cyclic 1-group and
that (K/k, S, T) is an admissible data. In particular UK,s,T is torsion-free.
In order to state Theorem 5.1 below, let F be the intermediate field of K/k
with [K : F] = 1 and put

If at least one place in ~S’ does not split completely in then hK,S,T is
an integer by [17, Lemma 3.4]. In particular, if mn = m - 1, then hx,S,T is
an integer. 

’ ,

Theorem 5.1. Suppose rrzn = m - 1. Then

Moreover, the following assertions hold.

(i) If mo &#x3E; 0, 0 (mod 
(ii) If mo = 0, then 0 (mod IGIG(Sl)) if and only if =

0 (mod l). 
~ ’



466

Although both the first statement and (i) of the second statement follows
from Tate’s theorem (Theorem 3.1) in view of Proposition 5.4, we will give
a proof for the completeness. We begin with a lemma.

Lemma 5.2. Let M be an intermediate field of K/k such that (S(K)) _
IS(M) I . Then UK,S,T = UM,S,T ·

Proof. Let u be any element of UK,s,T. For any a E G, uO"-1 is also an ele-
ment of UK,s,T since UK,s,T is G-stable. Moreover the following argument
shows that is a root of unity. Indeed, the assumption of the lemma im-
plies that U K,S,T /U M,S,T is a finite group. It follows that there exists a pos-
itive integer m such that um E UM,S,T. Therefore (uO"-I)m = 1.

Thus ul-1 is an m-th root of unity. However, since UK,S,T is torsion-free,
this shows that u~-1=1 for any a E Gal(K~M), hence ~c E M~. The asser-
tion of the lemma then follows from the fact that = UM,s,T. 0

Proposition 5.3. Assume that mn = m - 1. Then

where X runs through the faithful characters of G.

Proof. Let F be as above. Then the assumption on Gv’s implies that
IS(K)I = IS (F) I. This, in particular, implies that

Further we have

where X runs through the faithful characters of G. On the other hand, by
(3), we have

Gross [9, (6.4), (6.5)] showed that

The denominator of the right hand side is 1 by Lemma 5.2, hence

The assertion of the proposition then immediately follows from (6) and
(7). 0
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Proposition 5.4. Assume that mn = m - 1. Let p be an elemerct of G of
order 1. Then we have an equality

and an isomorophism

Proof. See [22]. D

Corollary 5.5. If K/k is a cyclic 1-extension such that mo = 0 and mn =
m - 1, then Conjecture 3.2 is equivalent to Conjecture ,~.1

Proof. If mo = 0, then from (8) we have

Since both 8G and RG belong to ( p -1 )7~ ~G~, this shows that Conjecture
3.2 is equivalent to Conjecture 4.1. D

Proof of Theorem 5.1. Let denote the norm map from to

Q. Then by Proposition 5.3 we have

where v = Since l completely ramifies in it follows
from this that 

’ ’

Since I S (K) I - 1 = N + lm-l - 1 and 0G E (p - 1)Z[G’], from Proposition
5.3 and the lemma of [22] we deduce that

Thus OG E by Proposition 5.4. This proves the first statement.
If mo &#x3E; 0, then lm° &#x3E; l, whence

by Proposition 5.4. Therefore 8G E IGIG(Sl) by Theorem 3.1. If mo = 0,
then by the same proposition we have

Therefore from (10) and (11) we deduce that 6G E IGIG(SL) if and only if
(mod 1). This completes the proof. D
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6. Reduction to cyclic I-extensions

We wish to reduce Theorem 4.2 to the case of cyclic 1-extensions. For
that purpose we consider the ring homomorphism Wl : - 

induced from the canonical surjection G - Gl. Let

where 1 runs through the prime numbers dividing For any place v E Sl,
we have *1 (IG (v)) = IGl(v) and hence = If * denotes
either v or Sl, then we define the map

to be the restriction of W to IG(*).

Proposition 6.1. The following assertions hold for the maps W v and W SI .
(i) Both Wv and Ts, are surjective.
(ii) Ker(Wv) = Ker(ws1).
(iii) The maps Wv and respectively induce isomorphisms

where l runs through the prime numbers dividing ~G~.
Before giving the proof of this proposition, we show how the proof of

Theorem 4.2 can be reduced to the case of cyclic 1-extensions. We continue
to use the notation above and assume that condition (5) holds. Then 9G
belongs to IG(vn). Suppose that Theorem 6.1 is true for any Gl, that is, for
each prime divisor 1 of I G 1, 8Gl belongs to IG~ (Sl) and we have a congruence

(12) (mod IGlIGl(SI))
for some integer cl prime to l. Since = Proposition 6.1, (iii)
shows that 8G belongs to IG (Si). Let c be an integer such that c - cl
(mod l) for any prime 1 dividing I G 1. By Proposition 5.4, IG~ (Sl )
is trivial or isomorphic to according as IGv,zI =1 or l. It follows that

for all l dividing IGI. Then Proposition 6.1, (iv) and (12) shows that

as desired. D
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To state the following lemma, for any subgroup H of G, we denote by
IH the kernel of the natural surjection 7G~G~ ~ 
Lemma 6.2. Let G a finite abelian group and Gl, G2 subgroups of G such
that ]G2 [) = 1. Then

for any positive integer t.

Proof. We have only to show that

for any 9i E Gi and any positive integer t. First we note that E

for i = l, 2. By induction on t one can easily see that E IG21
for any positive integer t. Since GCD(IGII, IG21) = 1, there exist integers
al, a2 such that allGllt + a21G21t = 1. Then the identity

shows that equation (13) holds, completing the proof. 0

Proof of Proposition 6.1. It is clear from the definition that

for any v E s and for any prime l dividing IGI. Since IG(v) is generated by
as 1 ranges over the prime divisors of ~G~, it follows from (14) that Wv

is surjective. From (14) and the definition of Wl we also deduce that

Since IG(S’1) contains fIvESlIGv,l for all l, we conclude that the map BII Sl
is also surjective. 

To prove (ii) note that the ideal Ker(BIIv) is generated by the products
of two ideals IGv,l and as l, l’ runs through distinct prime

divisors of I GI. By Lemma 6.2 we have an inclusion

for any positive integer t. Since C IG (S’1 ) for any t &#x3E; n, this shows

that Iav7lIav7l1 9 IG(Sl). Therefore Ker(wv) g IG (Si), whence 
Ker
To prove the first isomorphism of (iii), for * = v or Sl let
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Since PG(v)IPG(Si) is isomorphic toED, IGl(v)/IGl(SI), Wv induces a map

We have to show that Wv is an isomorphism. To this end, consider the
commutative diagram

Since both W Sl and ~v are surjective, this diagram shows that ~v is also
surjective. Moreover by the snake lemma we have an exact sequence

Then the equality Ker(wsl) = shows that Ker(Wv) = 0, whence
ivv is an isomorphism.

In order to prove the second isomorphism of (iii), let

Then QG(Sl) is a subgroup of and is isomorphic
to Hence iYsl induces a map

To show that ’Qs, is an isomorphism, we consider the commutative diagram

where Ws, denotes the restriction of to As we have seen

above, is surjective. Moreover, quite similarly as in the proof of the
surjectivity of one can prove that cpsl is also surjective. Hence, by the
snake lemma again, 4’s, is also surjective and we obtain an exact sequence

We wish to show that = 0. To see this note that in the proof of (i)
we have actually proved that is contained in the ideal IGIG(Si).
Therefore is also contained in the same ideal, whence 

Thus from (15) we deduce that Ker(ws1) = 0, as desired. This
completes the proof of Proposition 6.1. 0
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7. The (S, T)-ambiguous class number
Let S, T be any finite sets of places of such that S fl T = 0. (We do not

impose any other condition on S and T.) Let J~ be the id6le group of k.
If v is a place of k, then we denote by kv and Zfv the completion of k and
the integer ring of k at v, respectively. We define the (S’, T)-idele group
Js,T = JK,S,T of k to be the subgroup

of Jk , where for v E T we put ®v 1 = ~u E U; 1 u -1 (mod v) I - Clearly
we have 

’

The (S’, T)-id6le class group Cs,T = CK,S,T is defined to be the quotient
group

Let Ck = be the id6le class group of k. It follows from (16) that the
inclusion ~ Jk induces an injective map Cs,T ~ Ck. We define the
(S, T)-ideal class group = Clk,S,T of k by

Then Cls,T is isomorphic to the ray class group corresponding
to the subgroup k x JST of J. To see this, note that

By (16) we have an isomorphism whence

Let h be the (S, T)-class number defined in (1). This naming will be justified
if we show that h = To show this, note that we have an exact
sequence

For simplicity we let Cls := Cls,g (the S-ideal class group of k) and Js =
(the S-idele group of l~), respectively. Then, as a special case of (17),

we have an exact sequence
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For any v E T, let Iw be the residue field of v. Then two exact sequences
(17) and (18) fit into the following commutative diagram:

Applying the snake lemma to this diagram, we obtain an exact sequence

Since hs = iClSI, it follows that

, , ,

Therefore h = as desired.

Now, let be a finite Galois extension with the Galois group G.
We define UK,S,T, etc. similarly as above. Then, taking
H’ (G, -) of the exact sequence

of G-modules, we obtain the long exact sequence

The next formula will play a key role in the proof of Theorem 4.2.



473

Theorem 7.1. Suppose G is cyclic. Then
.. 1.-, /

Proof. Since HI(G,CK) = 0, taking cohomology of the short exact se-
quence

yields the exact sequence

Noticing that CK = Ck, we obtain

For any G-module M, let Q(M) denote the Herbrand quotient:

From the exact sequence (20) we deduce that

By class field theory we know that Q(CK) = Moreover, we have
Q(CIK,s,T) = 1 since CLK,S,T is a finite group. Therefore, from the exact
sequence

we obtain IGI. Since Q(JK,S,T) = Q(Ilx,s,T)Q(Cx,s,T), it

follows that IGI. Therefore by (22) we have
. - - . -... - - , , .

Substituting this into (21), we obtain

Since ICls,TI = h, this proves the theorem. 0

Remark 7.2. If S is the set of archimedean places and T = 0, then h
is the usual class number hk of k and Theorem 7.1 reduces to a well known
formula for the ambiguous class number for the cyclic extension 

- , - - . - ,
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where hk = e(K~k) and Ek denote the class number of k, the product
of ramification indices in of the places of k and the unit group of k,
respectively. For this formula we refer the reader to [12, Lemma 4.1]. We
should also remark that Federer [8] obtained a similar formula for IClK,sGI [
when S is arbitrary. Thus our formula may be viewed as a generalization of
those formulae. To see that (23) is a special case of Theorem 7.1, it suffices
to prove the formula

in the case of s = T = 0. To prove this note that

V 11

where v runs through the places of k. Hence I H2(G, JK,s.) I = 
Moreover, we have Ek/NK/kEK, where EK = UKS. is
the unit group of K. Therefore (24) follows if we prove the formula

But this is an easy consequence of the Hasse’s norm theorem asserting the
injectivity of the natural map

8. Cohomological interpretation of A

Throughout this section we will assume that S, T) is an admissible
data such that G = Gal(K~k) is a finite cyclic extension. In Section 1 we
have defined A to be a map from UST to However, in order to give
a cohomological interpretation of A, it seems natural to replace the target
group G 0 Xs with a subgroup XG s defined below. To begin with, we let

We will regard YG,s as a subgroup of G 0 Ys via the natural injection
sending (... , gv, ...)vEs to 0 v. Next we define a subgroup XG,s
of YG,s by the exact sequence

where Ds is the subgroup of G generated by Gv for all v E s and the map
YG,s - Ds is defined by sending (... , gv, ...)vEs to ITvEs9v. Then the
image of A is contained in XG~s. We will hereafter regard A as a map
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For example Coker(A) will stand for the quotient group XG,s/Im(A).
We now wish to reveal a connection between the Gross regulator map

A and the (S, T)-ambiguous class number formula (Theorem 7.1). To this
end, we start with studying H2(G, J K,S,T ) . For each place v of 1~, choose,
once and for all, a place w of K lying above v. Then by Schapiro’s lemma
we have an isomorphism

where v runs through the places of k. Let

be the projection to the 8-part in the right hand side of (25). Similarly we
have an isomorphism

Lemma 8.1. Both ®w ) and ®w,1 ) vanish S.

Proof. First, for any v we have ~w ) ^--’ where ev denotes the

ramification index of v in the extension K/k. Therefore, if v ft S, then K/k
is unraxnified at v, and so H2 (Gv, ®w ) = 0. Next, to see that H2 (Gv, ~w,1 )
also vanishes for any v g S, we consider the long exact sequence 

’

obtained from the short exact sequence
- -- -- _v

By Hilbert’s theorem 90 we have = 0. From this and (26) it
follows that H2 (Gv, ®w,1 ) = 0 for any v g S. This completes the proof. 0

By this lemma we may view H2 (G, JK,S,T) as a subgroup of H2 (G, JK) .
Thus, restricting the map prs to H2(G, JK,s,T), we obtain an isomorphism

Recall that the local invariant map

is an isomorphism for any place v. Let
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Then the map

is an isomorphism. In order to study the image of Im(a2) C H2 (G, Jx,s,T)
under the map invs, let

be the summation map. If we denote by Ds the subgroup of G generated
by Gv for all v E s, then Im(s) = We define by the exact
sequence

Lemma 8.2. invs(Im(a2)) C 3XG,s.

Proof. By class field theory we have an isomorphism

Let H2(G, CK,S,T) - ’Z/Z be the composite map of invs and
the natural map H2(G, CK,S,T) - H2(G, CK). Then we have a commu-
tative diagram

from which the assertion of the lemma follows. D

Now, the connecting homomorphism

obtained from the short exact sequence

is an isomorphism since Hi (G, Q) = 0 for i &#x3E; 0. For any G-module M we

consider the cup product

Choose and fix a faithful additive chaxacter V) E Hom(G, Q/Z) of G. Then
defines an homomorphism

Lemma 8.3. If M is torsion free, then the map U6(o) is surjective.
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Proof. By [18, Chap. IX, 98, Theorem 14], the cup product

is a non-degenerate pairing. Since H2 (G, Z) is a cyclic group generated by
6(qb), this induces an isomorphism Therefore the

composite map

is also surjective.

We define a map

to be the composite map

Since o is a faithful additive character of G, it induces an isomorphism
Gv E3£ £Z/Z for any v E S. We denote the map

by the same notation 0. Clearly this map is also an isomorphism.

Proposition 8.4. Notation being as above, we have

In particular, we have ICoker(À)I = 

Proof. For each v E S we denote by

the v-component of the map Similarly let

be the v-component of the map ai. Then we have a commutative diagram

Indeed, the left square commutes by the functorial property of the cup
product. The right square commutes by [18, Chap. XI, §3, Proposition 2].
Let
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Then A = rs o ao. From (28) we obtain a commutative diagram

It follows that = invs o a2 o o rs o ao o A. This proves
the proposition. 0

The following proposition, which is a corollary of Theorem 7.1, will be
useful when we relate oG with 

Proposition 8.5. Notation being as above, we have

Proof. Since UK,ST is torsion-free, the map

is surjective by Lemma 8.3. Thus we have a commutative diagram

From this we obtain an exact sequence

Hence

Substituting this into the right hand side of the formula in Theorem 7.1,
we obtain the desired equality

This proves the proposition.
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9. Proof of Theorem 3.3

In this section we will prove the following theorem which is equivalent
to Theorem 3.3 under the assumption that mo = 0 and mn = m - 1 (see
Corollary 5.5).
Theorem 9.1. Assume that G is a cyclic l -group and mo = 0, mn = m -1.
Then there exists an integer c prime to 1 such that

We start with the following theorem, which is a counter part of Theorem
5.1.

Theorem 9.2. Assume that G is a cyclic l-group and mn = m - 1. Then
the following assertions hold.

(i) If mo &#x3E; 0, then hRG - 0 (mod IGIG(SI)).
(ii) If mo = 0, then hRG = 0 (mod IGIG(Si)) if and only 

0 (mod 1).
Before begining the proof of this theorem we will prove the following

lemma, which I learned from Lee and is stated in [14, §4] without proof.
Lemma 9.3. Notation and assumptions being as above, the (S,T)-class
nurrcber h is divisible by lmo.

Proof. Let M be the subextension of K/k such that [M : k] = lTno. Then
every place in S splits completely in M. Let S(M) denote the set of places
of M lying above a place in S. Let (S) and (S(M)) be the subgroup of Clk
and ClM generated by the prime ideals in S and S(M) respectively. Then
we have a commutative diagram

where Nmlk denotes the norm map. Since every place in S splits completely
in the left vertical map is surjective. Therefore we have an isomorphism

Since is unramified, Clk/NM/k(ClM) (and hence 
is isomorphic to This, in particular, implies that IClk,sl is divisible
by lmo. Since h is a multiple of lClk,S1, it follows that h is also divisible by
fo. 0

Proof of Theorem 9.1. Suppose first that mo &#x3E; 0. Then h - 0 (mod l)
by Lemma 9.3. But, since Z/lZ, this implies that
hRG - 0 (mod IGIG(Si)). This proves (i).
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To prove (ii), let w2 a generator of Gv2. First we will prove that there
exists an integer c prime to G such that

To prove this, define n2 integers aij by rVi (Uj) = Since the map
- IG(vi)IIGIG(vi) sending u H rv(u) -1 (mod IG(v)2) is a homo-

morphism, we have

On the other hand we have a congruence

with an integer c prime to l. Then (29) follows from (30) and (31) .
Now, combining Proposition 8.4 with (29), we obtain a congruence rela-

tion

Note that Ds = G since we are assuming that mo = 0. It then follows
from Proposition 8.5 that IC1 K,ST GI = From this and (32) we
deduce that

Therefore, hK,s,TRG belongs to IGIG(SL) if and only if = 0

(mod l). This proves (ii). D

We would like to prove Theorem 3.3 by relating Theorem 9.2 to Theorem
5.1. For this end we will prove two lemmas.

Lemma 9.4. Let G be a cyclic and A a finite abelian G-module.
Let H be the subgroup of G with IHI = l, and put v = h E Z[G].
Then the following conditions are equivalent.

(i) JAI 0 (mod l).
(ii) 0 (mod l).
(iii) A) I =- 0 (mod 1).

Proof. Clearly it suffices to show the lemma in the case where A is an
1-group. Both implications (it)#(I) and are trivial. To prove
the converse implications, assume that (i) holds, namely A # 0. This, in
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particular, means that the multiplication-by-1 map on A is not injective.
Let Q be a generator of G. Then we have an identity

Since G is an 1-group, we have (IGI) - 0 (mod l) for any integer i with
0  i  It follows from (33) that the map Q - 1 : A -~ A is not
injective. This means that AG54 0, hence (I)#(it) .
To prove the implication note that we have an identity

This implies that the map 1I : A - A is not injective, or equivalently,
Ker(v : A 2013~ A) ~ 0. This proves (iii), completing the proof. D

Lemma 9.5. Let M be the intermediate field of K/k such that 
I f UK,s,T is torsion-free, then the natural map CIM,s,T -~ 

is znjective.

Proof. Let H = Gal(K/M). First we show that = 0. For
this end note that = UM,s,T by Lemma 5.2. Therefore

The last group is trivial since H is a finite group and UM,S,T (9 UK,S,T)
is torsion-free, so HI(H, UK,S,T) = 0. Thus, taking H’ (H, -) of the exact
sequence (19), we obtain an exact sequence

This implies that 
Now, consider the commutative diagram

where the vertical maps are natural maps. It is well known that the middle
vertical map CM - CKH is an isomorphism. By what we have shown
above, the left vertical map CK,S,T is also an isomorphism. As a
consequence the right vertical map ClM,S,T -~ ClK,s,TH is injective, hence
the map -~ ClK,s,T is also injective. 0

Proof of Theorem 3. ~. One can easily see that Conjecture 3.2 for the data
S, T) implies the conjecture for any data S’, T) with S.

Therefore we have only to prove Theorem 3.3 in the case where S is the
union of the places ramifying in K and the archemidean places. If mo &#x3E; 0,
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then Theorem 4.2 becomes the trivial congruence 0 = 0 (mod 
by Theorem 5.1,(i) and Theorem 9.2, (i). Suppose mo = 0. In this case, by
Theorem 5.1,(ii) and Theorem 9.2,(ii), Theorem 4.2 reduces to the equiva-
lence 

,

To show this, let v =1 + p + ~ ~ ~ + p~-1 E Z[G] and NKIF the norm map
from K to F. Since ~ CLK,S,T is injective by Lemma 9.5, we have

Therefore, in view of Lemma 9.4, we have only to show the equality

First, consider the commutative diagram
-. ..

where the both horizontal maps are surjective and the vertical maps are
norm maps. Since every finite place of S ramifies completely in K / F, the
norm map NK/F : ClF is surjective. Therefore (36) shows that the
norm map NK/F : CLF,s is also surjective.

Next, consider the commutative diagram

where the left vertical map is the norm map, and is surjective. The right
vertical map is also surjective as we have seen above. Therefore the middle
vertical map is also surjective. It follows that

I -- .

Thus (35) holds, as desired. D

10. The Gross conjecture for abelian extensions over Q

As a consequence of Corollary 4.4 we can give a proof of the Gross
conjecture for abelian extensions of Q which simplifies our previous one [1].
Theorem 10.1. If k = Q, then Conjecture true, that is, the congru-
ence

- 1"1-
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holds for any admissible data (K/Q, S, T).

Actually we will prove this in a more general setting. To state it we need
some notation. Let G be a finite abelian group such that

where G1, ... , Gr are non-trivial cyclic groups of prime power order. Then
r = r(G) is independent of the decomposition. Fix a number field k. If

is a finite abelian extension, we denote by Sram(K/k) the set of places
of k which ramify in K and by the archimedean places of k. Define two
integers and n(K/k) by

Let ICk be the set of finite abelian extensions K/k such that r(K/k) &#x3E;
n(K/k). If K/k E ICk, then we put

where denotes the set of non-negative integers.

Theorem 10.2. E X§k, then Conjecture true for any admis-
sible data S, T ) .

Proof. We consider the lexicographic order on the set Z~o. Thus for any
(a, b), (a’, b’) E Z2 0, we have (a, b) &#x3E; (a’, b’) if and only if either a &#x3E; a’
or a = a’ and b &#x3E; b’. Clearly the minimal element of Z2 is (0,0). We
will prove Conjecture 2.1 for any admissible data Sra,,, U S,,., T) with

E Kk by induction on If (0, 0), then Conjecture
2.1 is true as we have remarked in Proposition 2.2. Suppose 
(n, r - n) &#x3E; (o, 0) and assume that the conjecture holds for any E X§k
with 6(K’/k)  Let G = In the decomposition (37),
for each i = 1,..., r, we let

be the ring-homomorphism induced from the natural surjections 7ri : G -
G/Gi. If we set Ki = KGi, then E ~C~ and 6(Kj /k)  6(K/k) for all
z. By the inductive hypothesis we have

for all i.
Here we need a lemma.

Lemma 10.3. be a generator of Gi. Then
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Proof. We use Darmon’s trick ([6, §8]). For any a = L:o-EG co-a E 7~~G~, we
consider the element

where for each Q E G we write 0’ = 1 O’r with E Gi according as
the decomposition (37) of G. For each subset J of ~ 1, ... , r}, we regard
G J = ITjEJ Gj as a subgroup of G and let

be the natural surjection. Then we have

where zj : - denotes the injection induced by the inclusion
map G/GJ - G. Clearly we have C Now, suppose

E 
i 
for all i = 1,..., r. Then 7fJ(a) E for any non-empty

J. Therefore (38) shows that

This proves the inclusion

Since the converse inclusion is clear, the lemma holds. 0

By this lemma, we have

If r &#x3E; n, then this shows that hdetG(A) (mod IG+1). Suppose r = n.
Then there exists an integer a such that

Let cp : G - r be the maximal cyclic quotient of G such that W(ai) = -y
for all i, were 7 is a generator of r. Then If = IGnl). By
Corollary 3.4 we know that

Since 1)’ ... (un - 1)) = (, - 1)1, this shows that
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Note that (~y - 1)n is a generator of the quotient group In/jn+l - r 
this shows that a - 0 (mod Thus, if we show that

then (39) proves that Conjecture 2.1 holds for (K/k, S’ram,T). To show

(40) note that there exist integers al, ... , an such that

since Irl [ = IGnl). Then the fact IGil(Qi - 1) E 12 proves
(40), as desired. The proof of Theorem 10.2 is now complete. 

G 
D

Proof of Theorem 10.1. It suffices to prove Conjecture 2.1 for any admissible
data (Q((m)/Q, Sm, T) for all positive integers m, where (m is a primitive
m-th root of unity and Sm = (oo) U {primes dividing m~. By Theorem
10.2 we have only to show that Q( (m) E Let m = mi ... mn be the

decomposition of m into the product of prime powers with GCD(mi, mj ) =
1 (i ,~ j) and let Gi = Then

Note that if we regard Gi as a subgroup of G, then Gi coincides with the
inertia group of the prime dividing mi. Thus Q( (m) E JCQ, as desired. 0
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