
, 733

On ideals free of large prime factors

par EIRA J. SCOURFIELD

In memory of Robert Rankin

RÉSUMÉ. En 1989, E. Saias a établi une formule asymptotique
pour 03A8(x, y) = | avec un très bon terme
d’erreur, valable si exp ((log log x)(5/3)+~)~ y~ x,x &#x3E; ~ &#x3E;

0. Nous étendons ce résultat à un corps de nombre K en obtenant
une formule asymptotique pour la fonction y) avec
le même terme d’erreur et la même zone de validité. Notre objectif
principal est de comparer les formules pour 03A8 (x, y) et y),
en particulier comparer le second terme des développements.

ABSTRACT. In 1989, E. Saias established an asymptotic formula
for 03A8 (x, y) = |{n ~ x : p | n ~ p ~ y}| with a very good error
term, valid for exp ((log log x) (5/3)+~) ~ y ~ x, x &#x3E; ~ &#x3E; 0.

We extend this result to an algebraic number field K by obtaining
an asymptotic formula for the analogous function 03A8K (x, y) with
the same error term and valid in the same region. Our main ob-
jective is to compare the formulae for 03A8 (x, y) and 03A8 K (x, y), and
in particular to compare the second term in the two expansions.

1. Introduction

Many authors have studied the function Q(x, y) defined to be the number
of positive integers n  x with no prime factor exceeding y; see, for example,
~1~, ~11~, [12], [26] and other papers cited by these authors. Estimates (with
various degrees of precision) for T(x, y) have been applied in certain types
of investigations (for example, [5], [14], [15], [16], [18], [27]). Our objective
in this paper is to extend the more precise result of Saias [26] for IF (x, y) to
an algebraic number field in order to compare the formulae obtained, and
we apply our results to a sum analogous to one first considered by Ivi6 [14]
for the rational field. We begin by giving a brief survey of two results on

y) that we will need and the associated notation.

Manuscrit regu le ler aout 2003.
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First we give some definitions. The Dickman function p(u) is defined by
the differential-difference equation

Define A(x, y) for x &#x3E; 1, y &#x3E; 2 by

Write for log(log x) when x &#x3E; 1. Let E &#x3E; 0; define the region HE by

When (3) holds we write y E He- Let u = it is well known that

for y E H,; this range for y was established in [11]. Various other expres-
sions for W(z, y) have been derived; we utilize one with a very good error
term established by Saias in ~26~:

for y E He.
The first goal of this paper is to establish a result comparable to (5) in

the case when the rational field Q is replaced by an algebraic number field
K. Let K be a number field with degree n &#x3E; 2 and ring of integers D K. For
any ideal a of D K, define

where p denotes a prime ideal with norm N(p), and let P(DK) = 1. Define
bY

Thus when K = Q, y) reduces to W (z, y). For papers in the literature
on see for example [3], [6], [7], [8]. [10], [19] and [22]. We establish
in Theorem 1.1 an asymptotic formula for y) for y E HE with an error
term of the same order of magnitude as that in (5). We use this theorem to
study the difference between WK(X, y) and its leading term and derive our
main result in Theorem 1.3. This enables us to compare the second term
in the asymptotic formulae for WK(X,y) and w(x,y).

In order to state our main results, we need some more notation. Let

(K(s) denote the Dedekind zeta-function for the field K , a well studied
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function. As we see from Lemma 2.3(i), (K(s) has a simple pole at s = 1
with residue AK (given in (21) in terms of invariants of K). Let

where ((s) is the Riemann zeta-function. Denote the Laplace transform
of p(u) (defined in (1)) by p(s) (see (43)). We define g = ~(u) to be the
unique real solution of

with ~(1) = 0 by convention. Define ao = ao(x, y) by

We will see in Lemma 4.3 that the integral in (11) converges. For E &#x3E; 0,
write

We can now state our result analogous to (5).
Theorem 1.1. Let E &#x3E; 0. For y E H,

Using (4) and (5), we can compare B!IK(X, y) with IQ (x, y), and we have:

Corollary 1.2. For y E HE

Theorem 1.1 and its Corollary prompt us to ask what the magnitude of
is and how it compares with that of IF (x, y).

Theorem 1.3. Assume y E H,.
, , . ,,.",. ,.
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We see from (18) and (23) that 9K(1) = f which converges.
m=l

The question of whether there are algebraic number fields Q for which
gK(1) = 0 is an interesting one. The author has consulted several experts
in the area, but a definitive answer to this question does not seem to be
known at present. However, at least for some fields K, there are other
ways of looking at gK(l) that might help in deciding whether it is zero.
The author would like to thank Professor B. Z. Moroz and the Referee for

suggesting the following approaches. When K is a normal extension of Q,
(K(s) = ~(s)F(s) where F(l) = AK and F(s) is known to be an entire
function. Since ((s) = + y + 0 (Is - l~) as s -&#x3E; 1, where 7 is Euler’s
constant, we deduce that as s --&#x3E; 1

and hence

For K an abelian extension of Q, let G be the corresponding Galois group
and G* be the character group of G. The elements of G* can be regarded
as Dirichlet characters; let xo denote the principal character of G*. It is
known that

where L(s, X) denotes a Dirichlet L-function; see for example Theorem 9.2.2
and section 9.4 of [9] and also Theorem 8.1 of [24]. Hence, since F( 1 ) = AK,

In particular when K is a quadratic field, gK(1) = F’(1) = L’(1, X) with
X a quadratic character; the results in [4] may enable one to calculate
gK(1) with arbitrary precision. The techniques in [23] might also be useful
in investigating 9K(1) further in some cases. However we do not address
these problems here.
We note that by (4) and (13) it follows from Theorem 1.1 that for y E HE

a known result for suitable y; Krause [19] has shown that this holds for
y E HE. Hence Theorem 1.3 (ii) tells us that provided 0 the second
term in AKA(X, y) has the same order of magnitude as Jo(x, y). In Theorem
6.4 in section 6, we show how to express a truncated version of the complex
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integral Jo(x, y) (see (57)) in terms of real integrals. This representation
may be more useful in some applications.
To prove Theorem 1.1, we adopt the method used to establish (5) (see

[26] or chapter 3.5 of (31~) but with ~(s) replaced by (K (s) - To do so requires
properties of (K(s) analogous to some of the strongest known for (( s ), for
example the zero free region given in [29] and consequential properties;
these are described in section 2. Properties of the Dickman function are
given in section 3. With these tools the proof of Theorem 1.1 in section 4
is standard.
The main work of this paper is to establish Theorem 1.3 in section 5.

Our approach must take into account that we have only limited information
on the partial sums of the coefficients of the Dirichlet series for (K(s) (see
Lemma 2.1(ii)), that the bounds for p(s) depend on the size of t = s(s)
(see Lemma 3.4(iii)), and that, as y increases in the range HE, u decreases
from (logx)(log2x)-3-E to 1. These remarks suggest that we should split
Jo (x, y) into several integrals which we find we have to estimate by different
methods. The main contribution (when 0) comes from the small
values of t (see Lemma 5.1).
We end the paper with an application of our Theorems. From (4), Ivi6

[14] derived the order of magnitude of the sum

with as usual p denoting a rational prime. An asymptotic formula was
obtained in (5~, and a sharper asymptotic formula was obtained as a special
case of Theorem 3 of [27]. In section 7, we consider a sum analogous to
SQ (x) for the field K and estimate it using our results. Let

where P(a) is defined in (6). Let

We establish the following result.
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where J(x, y) is defined in (57).

where -y is Euler’s constant. and gK(1) = lim ((K(s) - ÀK((S)).
8 oi

We remark that other more general applications of the methods used to
derive (5) can be found in the literature. For example, in [28], H. Smida
studied the sum

where dk(m) denotes the number of representations of m as a product of k
positive integers, its generating function being

Similarly one could consider sums analogous to (17) with dk(m) replaced
by another appropriate multiplicative function with a generating function
involving one or more Dedekind zeta-functions, and we may return to this
problem.
The author would like to thank the Referee for helpful comments, and in

particular for those relating to the constant gK(1) and for a simplification
in the quantity investigated in Theorem 1.4.

Note added in proof: The author recently established an asymptotic ex-
pansion for the number defined by (7) that is analogous to the expansion
obtained in [26] for K the rational field. It is hoped to include this result
in a paper being prepared.

2. Properties of (K(s)
As usual, we write s = Q + it.
Throughout this paper, K denotes a number field with degree n &#x3E; 2 and

ring of integers D K . Write a, b for ideals of ~7K and p for a prime ideal, and
let N(a) denote the norm of a.

For Q &#x3E; 1, the Dedekind zeta-function (K(s) is given by

where j(m) is the number of ideals a with N(a) = m. We require some
properties of ~K(s) that are analogous to some of the strongest available
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for the Riemann zeta-function ((s) near the line Q = 1, and we embody
those we need and related ones in the following Lemmas.

Lemma 2.1. (i) Let dn(m) denotes the number of representations of m as
a product of n positive integers; then

(ii) Let AK be the residue of (K(s) at s = 1 (given in (21) below); then

These results are well known. For (i), see Corollary 3 of Lemma 7.1 of
[24], and for (ii), see Theorem 6.3 of [21] from which we see that

(21) AK = 

where q is the number of real and r is the number of complex conjugate
pairs of monomorphisms K --4 C, m is the number of roots of unity in
K and R, h, A denote the regulator, class number, discriminant of K,
respectively. For a stronger result, see Satz 210 of [20] or for recent results
see [25] when n &#x3E; 3 and [13] for n = 2.

Lemma 2.2. For 6 fixed with 0  6  2,

Proof. This follows by partial summation and the result (see (13.3) and
Theorem 13.2 of [17])

Lemma 2.3. (i) (K(s) is differentiable in the half plane a &#x3E; 1 - except
for a simple pole at s = 1 with residue AK (given by (21)), and in this
region
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Proof. (i) (22) follows for Q &#x3E; 1 from (18) and (20) on using partial summa-
tion, and the other properties follow by analytic continuation since by (20)
the integral is absolutely convergent for Q &#x3E; 1 - ~. (If we used a stronger
version of Lemma 2.1(ii), this range for Q could be extended, but we do not
need this.)

(ii) Since for a &#x3E; 0

(23) follows from part (i), (8) and (20).
(iii) By partial summation

and the result then follows from (20). D

We remark that (K(s) has more general properties in the whole complex
plane that are analogous to those of C(s), but we do not require them as
we are concerned only with the behaviour of (K(s) in a region just to the
left of the line Q = 1. The properties that we need depend on the zero free
region of (K(s), established in [29] by A.V.Sokolovskii, and related results:

Lemma 2.4. (i) For suitable positive constants c, to, (K (s) 0 0 in the
region

Part (ii) is the prime ideal theorem. By standard arguments 
0; hence by taking c to be sufficiently small it follows that (K(s) 0 0 in the
region

We require bounds for (K(s) and for ~K(s)~~K(s) in appropriate regions.
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Proof. We apply (24) with N = Itln and the property b(m) « m6
for any fixed 6 &#x3E; 0 to obtain

by our choice of N if we take 6  ~ ~~ ~ . Since ( (s) « Itll/2 for ~  a  1,
the bound for ~K(s) follows from (8) and analytic continuation. 0

Lemma 2.6. For s i~c the region (26~

Proof. From the results in [30], when a  1 in the region (26) we have

and, when Q &#x3E; 2, (K (s) is bounded. Hence we need only consider 1  Q 
2, t &#x3E; to; the case t  -to follows similarly. We apply Cauchy’s integral
formula twice using (29) and (31). Let 71 = suppose (K(s) W h(t) =
o (Itl) in the region (26), and let R be the rectangle with vertices

We can bound (K(s) by (31) when w = 1 - Ti + i(t + v) h(t),
and (K (s) is bounded when w = 2 + i(t + v) and Ivl I  h(t). By Cauchy’s
integral formula and since 2 - 1/2 we have

By (29), (32) holds with h(t) = tl/2 , and so we obtain

when 1  ~  3/2 in the region (26). Now by (33) we can apply (32) again
with h (t) = (log t)5/3, and the result follows. D

Corollary 2.7. In the region (26)
n Ira
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Proof. Since ~(s) G (log It1)2/3 in the region (26) (see Theorem 6.3 of [17]),
the result follows from the lemma and (8). 0

Lemma 2.8. In the region (26) for a suitable choice of c,

and hence

Using (30) and (36), we follow the method used to prove a slight improve-
ment of (35) when K = Q described in the proof of Lemma 12.3 of [17]. In
the argument leading to equation (12.55) of that proof, take

and use Lemma 2.4(i) above and then (35) follows. 0

3. Properties of the Dickman function

The Dickman function p(u) is defined as in (1) by the differential-diffe-
rence equation

Lemma 3.1. The function p(u) has the following properties:

B B B 0 / / /

ii
· p(u) is continuous = 0.
~ p’(u) is defined 0 and continuous except at u = 1.
· 0  p(u)  1 0, -1 ~ p’(u)  0 for u &#x3E; 1.
~ p( u) decreases strictly and p’ ( u) increases strictly on u &#x3E; 1.

Proof. A stronger form of (i) is due to de Bruijn [2], and (ii) follows from
(37). ll
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In (9), we defined g = ~(u) to be the unique real solution of the equation

Define I(s), J(s) by

Lemma 3.2.

Proof. For (i)-(iii), see equations (47), (59), (56), (51) of chapter 3.5 of
[31] or Lemme 3 of [26]. Part (iv) follows by considering the integral

Note that we can rewrite (iv) as

Corollary 3.3.

This follows from (i) of Lemmas 3.1 and 3.2.
As usual, we denote the Laplace transform of p(u) by p(s), so for all

sEC
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By Lemma 3.1(i), the integral converges absolutely for all s E C. In our
context, the inverse of this Laplace transform is given by

for all real u &#x3E; 1; see, for example, equation (3.5.45) of [31].

Lemma 3.4. (i) I(-s) + J(s) + q + log s = 0 for s E C B (-oo, 0~, where
y is Euler’s constant.

the integral being absolutely convergent for all s E C.

Proof. For (i) - (iii), see equations (43), (40), (44), (48), (49) of chapter
3.5 of [31]. For (iv), we have using (43)

on integrating by parts. The result now follows since p(O) = 1, e-uv p( v) 2013~

0

Lemma 3.5. As u = 
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Proof. We consider first the integral over the range 1  v  x2/3, where
3u~ By Lemma 3.2(i), (ii), (iv) and the mean value theorem applied

we have for v  min x23, , so u - &#x3E; l, that, y gy y ,

Throughout this paper we are assuming that y E HE given by (3), so using
Lemma 3.2(i)

Define V = V(x) by log V = we could replace the exponent
1 by any positive number  ~. For v  min(V, Z) , it follows from (47) and
(49) that



746

It remains to deal with the range ~2~3  v  x where we use Lemma

3.1 (ii) to bound p’ We have

Combining (50), (51), (52) we obtain

since § + X-2/3 - o ((log2X)-1/2) by (48) and Lemma 3.1(i). This givessince L - 0 ((1092 by (48) and Lemma 3.1(i). This gives
the result. 0

In (2) we defined A(z, y) by

Lemma 3.6.

See equation (80) of chapter 3.5 of [31], or Lemma 2.6 of [27] (where the
last bracketed expression was missing).
From Lemma 3.5 or equation (104) of chapter 3.5 of ~31~, we deduce
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Corollary 3.7. As u - o0

Lemma 3.8 (Saias). For E &#x3E; 0 and y E HE given by (3)

See [26] or the proof of Theorem 3.5.9 in [31],

4. Proof of Theorem 1.1

Recall that throughout y lies in the region He given by (3) and L,(y) is
defined by (12).
With P(a) as in (6), define (K (s, y) by

which is valid in Q &#x3E; 0 since the product is finite.

Lemma 4.1. To each E &#x3E; 0, there exists yo(E) such that

uniformly for

Proof. The proof is similar to that given in [31] for the case K = Q (see
Lemma 9.1 of chapter 3.5); see also Lemme 6 and Proposition 1 of [26].
The properties of ~K(s)/~K(s) required have been established in Lemma
2.8. 0

Define
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Lemma 4.2. For y E HE

Proof. By Perron’s formula

where

with

I141

Following the method employed to bound the error term in the proof of
Lemma 9.4 of chapter 3.5 of [31], but with T defined differently, and using
Lemma 4.1 and appropriate results from sections 2 and 3, in particular
noting that (K (ao) « ~ ao - we find that

We now use Lemma 4.1 with e replaced by E/3 to substitute for (K(s, y)
in the integral in (59). The conditions of (55) hold since

and we assume throughout that x and hence y are sufficiently large. We
obtain

by (8) and since
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on using Lemma 4.1, (22), Lemmas 3.4(iii), 3.2(iii) and the fact that log u =
o(log Le/3(Y)) for y E He.
The first term on the right of (61) equals

see the proof of Theorem 3.5.9 in [31] with a slightly different range of
integration or Proposition 2 of [26]. The lemma now follows from Lemma
3.8. a

To complete the proof of Theorem 1.1, we need to show that

this follows from

Lemma 4.3.

Proof. It is sufficient to consider the range t &#x3E; T. Let

Since T log y &#x3E; 1 + u~, we have by Lemma 3.4(iii) that

Hence by Lemma 2.3(iii) with N = 
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where, as Ib(m)1 «: d.~(m) and by Lemma 2.2 and Corollary 3.3,

since

It remains to estimate the main term in (63). We have

(see Lemma 2.2.1.1 of [31]). Hence the main term of (63) is

When I

. - .

. Hence the contribution of

these terms to (65) is

by Corollary 3.3; for the series on the right converges since ao + 2 +1 &#x3E; 1,2(n+l)
and its sum is «T-1 = (L/gy)).

When 1m - xl  G 1 and dn(m) W X6 for any J &#x3E; 0,
and so the contribution of these terms to (65) is

if we take 6  4~n+1) (say) so ~ ~ 2(~+1) Combining equations
(63) to (67), we obtain

The result of the lemma now follows, for the integral over t  -T is j ust
the complex conjugate of J*. D

The result of Theorem 1.1 now follows from Lemmas 4.2 and 4.3.
In the next two sections we investigate y) further.
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5. Asymptotic formula for J(x, y)
Define J(x, y) by (57) with T = Le/3(Y) and y E He given by (3). We

split the integral into several parts depending on the size of It I and of u,
and deal with each part in a separate lemma. Our aim is to show that the
magnitude of J(x, y) (when 0) is the same as that of the second
term in A(x, y), given in Corollary 3.7. Provided 0, the leading
term comes from the range It  7r in (68).
By the change of variable (s - 1) log y - s, we can rewrite (57) as

Lemma 5.1.

Proof. Let

so in this region F(w) is differentiable and is bounded for bounded w.
Hence for I w - 11  2~ (say),

Putting w = 1 + logyt, I It  7r, we obtain since ~ = ~(u) &#x3E; 1

Thus by Lemma 3.4(iii)

The error term in (71) is

v

by Lemma 3.2(i) and (iii).
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It remains to investigate the integrals

for by (71) and (72)

By (44)

Using Lemma 3.4(iii) and Lemma 3.2(i) and (iii)

For any Ul &#x3E; 1 + u~, by Lemma 3.4(iii) the contribution to the integral in
(76) from the range 1 + ~~  t  Ul is

by Corollary 3.3. The same estimate holds when 1 + uç ~ -t  Ul . Letting
Ul --3 00, we obtain from (76), (77) and (78) that

since £(u) &#x3E; 1.
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By Lemmas 3.4(iii) and 3.2(iii) and (i)

since ~(u) &#x3E; 1.

We deduce from (75), (79) and (80) that since 1  ç(u) rv log u

as required.

Lemma 5.2. For ~(u) &#x3E; 1

Proof. Let U2 = mine! + u~, then for 7r  ~t~  U2, s = -g + it
we have + ~a+1 ~ n for sufficiently large y, and so 9K(1 + 
is bounded whilst 11 + ~&#x3E; 1. With F(w) as in (69) it follows that

Hence by Lemma 3.4(iii)

by Lemma 3.2(i) and
Now suppose that ~’
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Lemma 3.4(iii) again

The result of the lemma now follows from (81) and (82), the latter applying
only when 2013y log y  1 + u~. 0

Lemma 5.3. 5 and 1 + u~  ~+1 log y

Proof We can expand F ( 1- 1- ) - i lot in a power series in since
log y log y ) gy

It I  i _and we obtain bti
log y - n+1 ’ 

an we 0 aIn

For m ~ 1 we have by Cauchy’s inequalities that

since F(w) is analytic and bounded for Iw - (1 - (n + ~)-1  ~.
Substituting in the integral J3 and using Lemma 3.4(iii) and (iv) we see
that
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by the second mean value theorem for real integrals. Hence by (84)

However, when m = 0, the right side of (86) becomes 0(log2 y) which is
too big for our purposes. Hence we adopt a different approach for this case,
as indicated in (85). We split the inner integral into sections, recalling that
it is absolutely convergent. Since

our main concern is to investigate (with s = -~ + it)

The first three derivatives of p(v) are continuous on v &#x3E; 4, so consider first

since p’(v) is bounded and u - v &#x3E; u - 4 &#x3E; l. (It would be enough here
and below to have u - 4 &#x3E; S for any fixed 8 &#x3E; 0.)

Let X be large (with log2 X &#x3E; + 1) where later we let X - oo. On
integrating by parts twice
(91)
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In order to determine what this contributes to (89), we need estimates of
the following integrals for v = 4, X :

and

We need also to estimate

Since p"’(v)  0, the inner integral is

where on using Lemma 3.1(i), (43) and Lemma 3.4(iii)

From (91), (92), (93) and (96) we obtain
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by Corollary 3.3. Combining (97) and (90), we see that the double integral
in (89) is

It follows from (87), (88) and (98) that

by Corollary 3.3. D

So far we have evaluated the part of the integral (68) max(l +
u~, = U3 (say). To complete the estimate for the range U3 
It I  T log y, we consider separately the two cases u  (log2 y~2, when
U3 = and u &#x3E; 

Lemma 5.4. For u  (log2 y)2, ç( u) &#x3E; 1

Proof. By Lemma 4(iii),

by a change of variable. We verify that we can use Corollary 2.7 to bound
9K(ao+it) in (99) by showing that (26) is satisfied. Thus we need to show
that

and so (100) follows for sufficiently large y. Hence by Corollary 2.7
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for to  It  T, and gK(ao + it) is bounded for  to.

By (101), the error term in (99) is

by Corollary 3.3.
The main term in (99) may be written as

We integrate this in the range n+1  t  T by parts six times to obtain

with a corresponding expression when 2013y ~ 2013~ ~ T. Applying Cauchy’s
inequalities to on a circle with centre s and radius of the form

ci / log [t[ to and using (101) we have that for to  It  T

For ~+1  It  to, the left side of (104) is bounded. Hence the main term
in (99) is

since y  &#x3E; 1 and by Corollary 3.3. The result of the lemma now
follows from (99), (102) and (105). D
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Lemma 5.5. For u &#x3E; (log2 y)2

1 3 ge

Note that 1  U3 lo  T since and
so

Using a modification of (99)

by (101). The integral is GC (log T ) 2 since 1. Hence by°gY - U3 -

Corollary 3.3 and the definition of T

since 1092 y  qE and so the positive powers of log y can be absorbed into
the O-term of the exponential. This completes the proof. 0

Collecting together the results of Lemmas 5.1 to 5.5, we obtain from (68)

Lemma 5.6. 5, so ~(u) &#x3E; 1,

Comparing this result with Corollary 3.7, we see that as u --&#x3E; oo, the two
quantities A(x, y) - xp(u) and J(x, y) have the same order of magnitude
provided 0. Which error term dominates in Lemma 5.6 depends
on the size of u =log ycompared with log y. The result of Theorem 1.3 now
follows from Theorem 1.1 and Lemma 4.3.
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6. J(x, y) in terms of real integrals
The definition of J(x, y) in (57) is given in terms of a complex integral.

Our aim in this section is to find an alternative way of expressing J(x, y) as
a combination of finite real integrals and an error term. In some situations
it may be easier to manipulate this alternative form for J(x, y).

Using Lemma 3.4(iv), we write (57) in the form

where T = and

By Lemma 2.3(ii),

where by Lemma 2.1 (ii)

Hence the integral in (109) is absolutely convergent when Q = ao. The idea
is to use (109) and (110) to replace gK(s)s-1 in (107) and (108). It turns
out (see Lemma 6.2) that, assuming 0, the main term in Lemma
5.6 comes from I2, with Ii contributing to the error term.

Lemma 6.1.

Proof. Substituting (109) into (107), we have on interchanging the order of
integration (valid by absolute convergence) that

- - ,  rT1 ,

When v =I ~, the inner integral equals
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and hence is continuous at v = x. We deduce that

by the definition of T. The result of the lemma now follows since by (110)

Lemma 6.2. For ~(u) &#x3E; 1

Proof. We split the integral in Lemma 6.1 at the points V := 
and Vi. We have

by Corollary 3.3. Also
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since exp ~ I
bounded, and hence

since log y = 0(~2 ~ iog~). This completes the proof of the lemma.
D

Lemma 6.3. Then

Proof. The inner integral in (108) converges absolutely for a = ao since
Substituting (109) into (108) and rearranging the order of

the integrals, we obtain

The inner integral is

and so is a continuous function of vyz at x. Hence

Let U = max(2u, (log y)3/5). We show that we can truncate the integral
with respect to z at z = U and the integral with respect to v at v = x
at the expense of a quantity covered by the error term of the lemma. For
z &#x3E; U &#x3E; 2u, we so for v &#x3E; 1, v~x  ~  1, whence
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by Lemma 3.1(i) and Lemma 3.2(ii). It follows that the contribution to

(111) from the range z &#x3E; U is

since the integral over z is 
y E He . Here we have used that

by Lemma 3.4(iii), and Lemma 3.2(iii).
By (112) and (113), we can now write (111) in the form

To obtain the result in the form given in the lemma, we change the variable
in the inner integral of ( 114) by putting w = so z = (log ~) / log y =
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hence when z - U, w = 1 by definition of X . It follows that e~z -

as required.

From Lemmas 6.1 and 6.3 we deduce

Theorem 6.4.

7. An application

Our aim in this section is to use our main results above and the methods

of [27] to study the sum defined in (15):

where P(a) = p a~, = 1. When K = Q the sum in
(115) becomes

which, as stated in section 1, has been the subject of several papers (for
example [5], [14], [15], [16], [18]). It follows from [27] that for a sufficiently
smallE&#x3E;0



765

where

It was shown in [14] that

We can obtain the corresponding results for a general number field K.
In (16) we defined

Lemma 7.1.

Proof. Let r(a) denote the number of distinct prime ideals p with p ~a and
N(p) = P(a), so 1  r(a)  n where n = ~K : Q]. For each of these prime
ideals p, a = pb where P(b)  P(a), so

Hence

When a contributes to the last sum of (117), a has two or more different
prime ideal divisors with norm P(a), so a = PlP2b with = N(P2) =
P(a), P(a). It follows by a similar argument to above that

Adapting the method used to prove Lemma 3.3(i) of [27], we find that the
contribution to the first sum in (117) made by those p with N(p)  
or L3  N(p)  x is
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Since, part (i) will be established
w w - vri

if we show that

Then part (ii) follows on using the argument in the proof of Lemma 3.4 of
[27].
From [19] or Theorems 1.1 and 1.3 and equation (4) above we see that

for y ~ He and &#x3E; 1

on using equation (120), (116) and Lemma 3.1(i). Hence by (118)

Since N(p) = pm for some rational prime p and m  n,

on using Lemma 2.9 of [27]. The required bound for the second sum in
(117) now follows on integrating by parts. D

From (61) and (62) we have for y E H,

We substitute this in Lemma 7.1(i) and investigate the sums involved.
A(x, y) is given by Lemma 3.6 and J(x, y) by Lemma 5.6. We need to
estimate for G1~3  v  L3.



767

(ii) Provided is positive and in-
creases in magnitude as v increases from Cl/3 to C3.

Proof. (i)We apply Lemma 5.6 with u = 1. Then

Hence by Lemma 5.6 when ,C 1 ~3  v  ,C3 we have

which is the result stated. 
B

(ii) As v increases from G1L3 to £3, p 1) increases and by (120)°g "

and Lemma 3.1(i) equals exp . Hence if 

the result tollows trom (i) since gK(1) is real. 0

Lemma 7.3. (i) Assume 0. Then
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Proof. (i) From the Prime Ideal Theorem in the form of Lemma 2.4(ii), we
deduce that 

_

where

By Lemma 7.2(ii), it follows as in Lemmas 2.8 and 2.9 of [27] with g(v) =
v log v IJ(;,v)1 I and h(v) = v log v that

This error term is smaller than

and from [5] (or by proofs analogous to those of Lemma 3.4 and 3.5 of [27])

The result now follows from (121) and (122).
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(ii) This follows from Lemma 7.2(i) since

Although we do not need to do so to prove Theorem 1.4, we can use
Theorem 6.4 in section 6 to express the integral on the right of Lemma 7.3(i)
in terms of real integrals. Let ~7(v) _ From Theorem 6.4
we deduce

Lemma 7.4.

Note that the O-term is

Lemma 7.5.
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Proof. This follows on combining the method used to prove Lemma 7.3(i)
with that used to establish Theorem 3 of [27] (and in particular with a
result analogous to Lemma 4.1(i) of (27~) in the case v = 1, 71(w) = 1. 0

Proof. (Theorem 1.4.) (i) From Lemmas 7.1(i), 7.3(i), 7.5 and equation
(119), we obtain when gK(1) 0 0

We can extend the range of integration for v to 2  v  x at the expense
of an error term of the form (122) which we know can be absorbed in the
O-term above.

(ii) From (119), (120), (124) and Lemmas 7.2, 7.3, 7.5, 3.5, we deduce
(irrespective of the value of gK(l)) that

where C = 1 - ~y and 9K(l) = lim((K(s) - ’BK((S)). As before the integral
s

over v can be extended to the range 2  v  x since the error involved is

bounded by the right side of (122) and so is negligible. 0
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