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A study of the mean value of the error term in
the mean square formula of the Riemann
zeta-function in the critical strip 3/4 < o < 1

par YUk-Kam LAU

RESUME. Pour o dans la bandre critique 1/2 < ¢ < 1, on
note E,(T) le terme d’erreur de la formule asymptotique de
flT |¢(o + it)|?dt (pour T grand). C’est un analogue du terme
d’erreur classique E(T) (= FEi/o(T)). L'étude de E(T) a une
longue histoire, mais celle de E,(T) est assez récente. En par-
ticulier, lorsque 3/4 < 0 < 1, on connait peu d’informations sur
E,(T). Pour en gagner, nous étudions la moyenne flT E,(u) du.
Dans cet article, nous donnons une expression en série de type
Atkinson et explorons quelques une des propriétés de la moyenne
comme fonction en T'.

ABSTRACT. Let E,(T) be the error term in the mean square
formula of the Riemann zeta-function in the critical strip
1/2 < o < 1. It is an analogue of the classical error term E(T').
The research of E(T') has a long history but the investigation of
E,(T) is quite new. In particular there is only a few informa-
tion known about E,(T) for 3/4 < o < 1. As an exploration, we
study its mean value flT E,(u)du. In this paper, we give it an
Atkinson-type series expansion and explore many of its properties
as a function of T

1. Introduction

Let ((s) be the Riemann zeta-function, and let
T T
E(T) = / €2+ i) dt = T(log o +2y - 1)
0 T

denote the error term in the mean-square formula for ((s) (on the critical
line). The behaviour of E(T') is interesting and many papers are devoted
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to study this function. Analogously, it is defined for 1/2 < o < 1,

T
E,(T) = / 1C(o +it)[* dt — <g(2a)T+ (2w)201MT“0> .
0 2—20
The behaviour of E,(T") is very interesting too, and in fact, more delicate
analysis is required to explore its properties such as the Atkinson-type series
expansion and mean square formula, see ([17]-[20]). Excellent surveys are
given in [11] and [18].

In the critical strip 1/2 < ¢ < 1, our knowledge of E,(T) is not ‘uniform’,
for example, an asymptotic formula for the mean square is available for
1/2 < 0 < 3/4 but not for the other part. In fact, not much is known for
the case 3/4 < o < 1, except perhaps some upper bound estimates and

T
(1.1) T < /1 E,0)2dt<T  (3/4<o<1)

(See [7], [20] and [14].) To furnish this part, we look at the mean value
flT E,(u) du. The mean values of E(T) and E,(T) (1/2 < o < 3/4) are
respectively studied in [2] and [6], each of which gives an Atkinson-type
expansion. Correspondingly, we prove an analogous formula with a good
error term in the case 3/4 < o < 1. Actually, the tight lower bound in (1.1)
is shown in [14] based on this formula. The proof of the asymptotic formula
relies on the argument of [2] and uses the tools available in [2] and [19].
But there is a difficulty which we need to get around. In [2], Hafner and
Ivié used a result of Jutila [9] on transformation of Dirichlet Polynomials,
which depends on the formula

Shenzyd(n)f(n) = [

a

b o0 b
(logx + 27) f(x) dz + Z d(n) / f(z)a(nz)d,
n=1 a

where a(x) = 4Ky(4m/x) — 2nYy(4m/x) is a combination of the Bessel
functions Ky and Yj. It is not available in our case but this can be avoided
by using an idea in [19].

In addition, we shall regard the mean value as a function of 7" and study
its behaviour; more precisely, we consider

T
(1.2) Gy (T) = /1 (E, () + 27¢ (20 — 1)) dt.

(The remark below Corollary 1 explains the inclusion of 27((20 — 1)T".)
Unlike the case 1/2 < o < 3/4, the function G,(T) is now more fluctu-
ating. Nevertheless we can still explore many interesting properties, in-
cluding some power moments, {21-results, gaps between sign-changes and
limiting distribution functions, by using the tools in [19], [23], [4], [3], [1]
and [13]. Particularly, we can determine the exact order of magnitude of
the gaps of sign-changes (see Theorems 5 and 6). The limiting distribution
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function is not computed in the case 1/2 < o < 3/4, perhaps because it
is less interesting in the sense that the exact order of magnitude of G, (t)
(1/2 < o < 3/4) is known; therefore, the limiting distribution is ‘compactly
supported’. Here, a limiting distribution P(u) is said to be compactly sup-
ported if P(u) = 0 for all v < a and P(u) = 1 for all u > b, for some
constants a < b. (Note that a distribution function is non-decreasing.)
However, in our case the distribution never vanishes (i.e. never equal to 0
or 1), and we evaluate the rate of decay.

2. Statement of results

Throughout the paper, we assume 3/4 < o < 1 to be fixed and use ¢,
c and ¢’ to denote some constants which may differ at each occurrence.
The implied constants in <- or O-symbols and the unspecified positive
constants ¢; (i = 1,2,...) may depend on o.

Let oq(n) = 3 g, d* and arsinh = = log(z + Va2 + 1). We define

[4=o 01—95(1
=i(6.%) = V2 (5 )5 TS a2 ) sin £t m),
n<X

% 77,7/470

t 1/2—0’ _ t -2
Yo(t, X) =2 <) 91-20(n) (log > sing(t,n),
2m nl-o 2mn
n<B(t,vVX)
where
—-1/4 57 —2
ea(t,n) = (1 + 7;?) <\/ — arsinh, / 7;;) ,

™

t,n) = 2t arsinh m + (27t + m2n2)1/2 — -
2t 4

'
t.n) =tlog —— — ¢
g(t,n) 0gy — —t+

B(t,\/)?):%-i-{—\/)?

)

RS

o 4

X\1/2 X\1/2 VX2
+3) =(G+rD) 5)

/N

t
2 27
Theorem 1. Let o0 € [3/4,1), T > 1 and N <T. We have
T
/ E,(t)dt = —27¢(20 — VT + S1(T, N) — So(T, N) + O(log? T).
1

The next result follows with the trivial bounds on 31 (7', N) and ¥5(7', N).
Corollary 1. For oll T > 3, we have

/lT E,(t)dt = —2a¢(20 — )T+ O(VT)  (3/A<o<1),
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and
T
/ Bs(t) dt = —2r¢(1/2)T + O(VT log T).
1
Remark. Tt suggests that FE,(t) is a superimposition of the constant

—2m((20 — 1) and an oscillatory function, say, EZ(t). (Indeed this view-
point had appeared in [18].)

t
Define Gy (£) = / EZ(t) dt, which is (1.2). Then,
1

Go(t) < t'? (3/4<o<1) and Gyu(t) < t'/*logT.

Integrating termwisely with partial integrations, one gets
2T

(2.1) ; Go(t)dt = o(T'+0/4=9))y  (3/4 <o < 1).

In addition, we have the following higher power moments.

Theorem 2. Let o € [3/4,1) and T > 1. We have

2T 2T
(1) . G(O'(t)2 dt = B(O’) /T (t/(zﬂ-))5/2_20' dt + O(CZ'VB—QU)7
2T

) [ Gotfdr=—C(o) [ 12/ O3
T T
where B(o) and C(o) are defined by
Blo) = - 01 a0 (n)Pn 112 = C(7/2 — 20)C(3/2 + 20)0(5/2)%C(5) ",
n=1

3 > ,U,(S)2 > 0'1_20(8(12) 0'1_20(8()2) al_gg(s(a + b)Z)
Clo) = 3 2 $21/4—30 > a7/2=20  pi/2-20 (g 4 b)7/2-20

s=1 a,b=1

(3) for any real k € [0, Ag) and any odd integer | € [0, Ag) where Ay =
(0 —3/497,

T
/ |Gg(t)’k dt ~ oy, (U)T1+k(5/4fg)
1

and
T
/ Go—(t)l dt ~ ﬁl(J)T1+l(5/4_U).
1

for some constants ay(c) > 0 and [i(c) depending on o. (Ag de-
notes oo when o = 3/4.)
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Remark. We have no information about the value of (o), which may be
positive, negative or even zero. (See [16] for possible peculiar properties of
series of this type.)

It is expected that G, (t) is oscillatory and its order of magnitude of G (t)
is about /477 (2.1) shows a big cancellation between the positive and
negative parts, but Theorem 2 (2) suggests that it skews towards negative.
This phenomenon also appears in the case 1/2 < ¢ < 3/4. Now, we look at
its distribution of values from the statistical viewpoint.

Theorem 3. For 3/4 < o < 1, the limiting distribution Dy(u) of the
function t"‘5/4Gg(t) exists, and is equal to the distribution of the random
series 1 =Y p—q an(ty) where
2 oo

m“Ul—QU(nTQ) .
Z(—l) A3 sin(27rt — w/4)

an(t) = \/5:7(/2)0 >

and t,’s are independent random variables uniformly distributed on [0, 1].
Define tail(Dy(u)) = 1 — Dy(u) for u >0 and Dy(u) for u < 0. Then

exp(—c1 exp([ul)) < tail(Ds/4(u)) < exp(—cz exp(|ul)),

2.2
(22) exp(—63|u|4/(4cf—3)) < tail(Dy(u)) < eXp(—C4]u\4/(4U—3))
for3/4 <o <1.

Remark. D,(u) is non-symmetric and skews towards the negative side be-
cause of Theorem 2 (2). Again it is true for 1/2 < o < 3/4. But in the case
1/2 < o < 3/4, the closure of the set {u € R: 0 < D,(u) < 1} is compact
and it differs from our case.

To investigate the oscillatory nature, we consider the extreme values of
G, (t) and the frequency of occurrence of large values. These are revealed
in the following three results.

Theorem 4. We have
Gs/a(T) = Q_(VTloglogT) and Gs/a(T) = Q4 (VTlogloglogT).
For3/4<o <1,
Go(T) = 0 (T34 (1og T)7~3/4)

and

(loglog T')7—3/4 )

Gy (T) = Q4 (T5/4°
(T) +< exp (cs (logloglog T)7/4~2
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Theorem 5. For o € [3/4,1) and for every sufficiently large T, there exist
t1, tg € [T,T—I—CG\/T] such that G,(t1) > C7t?/4_0 and G, (t2) < —C7tg/4_0.
In particular, G,(t) has (at least) one sign change in every interval of the
form [T, T + cgV/T].

Theorem 6. Let o € [3/4,1) and § > 0 be a fixred small number. Then for
all sufficiently large T > Ty(6), there are two sets ST and S~ of disjoint
intervals in [T,2T] such that

1. every interval in ST is of length cod\/T,

2. the cardinality of S* > ¢100*1=) /T,

3. £G4(t) > (en1 — 55/2_2")t5/4_" for allt € I with I € SE respec-
tively.

Remark. Theorems 5 and 6 determine the order of magnitude of the gaps
between sign-changes.
3. Series representation

This section is to prove Theorem 1 and we need two lemmas, which come
from [2, Lemma 3] and [19, Lemma 1] with [22] respectively.

Lemma 3.1. Let «, 3, v, a, b, k, T be real numbers such that «, 3, v are
positive and bounded, « # 1, 0 < a < 1/2, a < T/(87k), b > T, k > 1,
T>1,

1/2 -
Ult) = (27Ttk + i) , V(t) = 2arsinh 2—?,
Li(t) = (2kiy/m) 2V () U (1) (U(t) - ;)_a (U(t) + ;) 7

X exp (itV(t) + 2mikU (t) — mik + T) 7

and

2T rb o _ 1+y -
@) = [ e+ (g —2)

x exp(itlog(1l + 1/y) + 2miky) dy dt.
Then uniformly for |a — 1| > €, 1 <k <T + 1, we have
J(T) = Ly(2T) — Li(T) + O(a'=®) + O(Tk 1o~ F)
+ O((T/k)(7+1—a—6)/2T—1/4k—5/4)_

In the case —k in place of k, the result holds without Li(2T) — Li(T) for
the corresponding integral.
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Lemma 3.2. Let

¢(2 —20)

Ara(t) = S cy120(n) — (C(Qa)t T

1
2720 5((20 — 1))

where the sum nggt counts half of the last term only when t is an integer.

Define Aj_gy(€) = §A1_gg(t) dt — ((20 — 2)/12. Assuming 3/4 < o < 1,
we have for £ > 1,

A9, (€) = C1£°/47 i 01-20(n)n" "4 cos(4m/né + 7 /4)

+ Cog¥lie Z 01—20(n)n? 4 cos(4m/n€ — 7/4)

n=1

+0(177)

where the two infinite series on the right-hand side are uniformly convergent
on any finite closed subinterval in (0,00), and the values of the constants
are C1 = —1/(2v/272), Cy = (5 — 40)(7 — 40)/(64v/273). In addition, we
have for 3/4 <o <1,

Ap_9p(v) <07, / Aq_9s(v)?dv < zlogz,
1

A1—2a(§) < £"logk, / Al_2a(v)2 dv < 27/220
1

where 0 < r = —(402 —To +2)/(40 — 1) < 1/2.
Proof of Theorem 1. From [17, (3.4)] and [20, (3.1)], we have

/t 1C(o + iu) | du = 2¢(20)t + 2((20 — 1)['(20 — 1)Siln(m)t22”
—t

— 0

o+t
- Qi/ (4,20 — u) du + O(min(1, [¢|727)).

—it
(Note that the value of ¢3 in [20, (3.1)] is zero.) Hence, we have
o+t
B (1) = —i/ g(u, 20 — u) du + O(min(1, :27)).

o—it

(3.1) (&) =2 [y (1 )" cos(2ny) dy
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Assume AT < X < T and X is not an integer where 0 < A < 1 is a
constant. Then, following [19, p.364-365], we define

o+it
t) = o1_25(Nn h(u,n) du,
)= 3 sl [ husn)
Galt) = A1 _op(X )/mth(u X) du,
(3.2) / T / (20) + ¢(2 — 20)E %) h(u, €) d€ du,

~ o+it ah
ai() :Al_ga(X)/U e X)du

oo o+it 92}
[T Aiate) [T S dude,

Then, we have

2T 2T 2T 2T
/ B (t)dt = —i [ Gi(t)dt+i [ Go(t)dt—i [ Ga(t)dt
T T T T
2T 2T
(3.3) i [ aimdi—i [ arwdi+ o)
T T

1) Evaluation of [2" G(t)dt. By Lemma 3.1 with v = 1, a = 8 = 0, we
have from (3.1),

2T  ro+it 27
/ / h(u,n) dudt—4z/ / y(1+y)) " (log(1 +1/y))~ "
T o—it
x sin(tlog((1 +y)/y)) cos(2mny) dy dt

= 2i Im/QT/ y(1+1y)) 7 (log(1 +1/y)) "

X { exp(i(tlog((1 4+ vy)/y) + 2mny))

+exp(i(tlog((1-+ y)/y) — 2mny) } dy
=2¢ Im (Ln(QT) — Ln(T)) + O(T3/4foncrf9/4)

Noting that

Lu(t) = (iv2) 7 (t/(2m)> 477 (= 1)"n" ea(t, n) expli( f(t,n) + 7/2)),
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we get with (3.2) that

2T

2T . ¢ 5/4—c L O1-20(n )
/T Gy(t)dt = V2i (277) n;((—l) 7117/24(0)62(@71) sin f(t,n) ]

(3.4) +O(T%47).

2) Evaluation of fj%T Go(t) dt. The treatment is similar to Gi. From (3.2)
and Lemma 3.1,

2T  ro-+it
/ / h(u, X) dudt = 2 Tm(Lx (2T) — Lx (T)) + O(T3/477 x7=9/4),
T o—it
Since Lx(t) < t?/477 X774 <« T2 for t = T or 2T, we have

2T

(3:5) Ga(t) dt < Aq_on(X)T71? < T2,
T

3) Evaluation of [2' G3(t) dt. Using [17, (4.6)], we have
G3(t) = —2in 1 (¢(20)
(2= 20)X172) [Ty (14 ) (og(1 +1/3) !
0>< sin(2r Xy) sin(tlog(1 + 1/y)) dy
+ (1 —20)71¢(2 - 20) X172 /Oooyl(l + )77 sin (27 Xy)
X /G:t(u +1—20)7" (14y—y>“ du dy.

Direct computation shows that for y > 0,

o+it 1 20—1
/ (u+1—20)" 14 1/y)" du = 27i (—i—y)
o Yy

—it

—oo—+it

Then, we have

/2T Gs(t)dt = 2i(1 — 20)((2 — 20)TX1—2UI1
T

— 271 (¢(20) + ((2 — 20) X172 Iy
(3.6) + 71——1(1 _ 20){(2 _ 2U)X1—2013
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where
I :/ Y~ sin(2n Xy) dy
0
2T [ee) 1 1
I = /T /O y 7(1+y) 7(log(l+1/y))”

x sin(27r Xy) sin(tlog(1 + 1/y)) dy dt,
[P 1-20
Is = vy (1+vy) sin(27 X y)
T Jo

o+it —oo—it
X (/ +/ >(1—|—l/y)“(u+1—20)_1dudydt.
—oo+it o—it

Then, I; = 2272727 X291 /(T'(20) sin(7c)) which is the main contribution.
Interchanging the integrals, we have

I =— /OOO y (14 y) " (log(1 + 1/y))

t=2T
x sin(2r Xy) cos(tlog(1 +1/y))| dy.
t=

We split the integral into two parts [;+ [7° for some large constant
¢ > 0. Expressing the product sin(---)cos(---) as a combination of
exp(i(tlog(14+1/y) £27Xy)), since (d/dy)(tlog(1+1/y) £27Xy) = £27X
—t/(y(1+y)) > X for y > ¢ (recall t = T or 2T), the integral [’° is
< X! by the first derivative test. Applying the mean value theorem for
integrals, we have

c
/<<
0

Integration by parts yields that the last integral fc‘f” equals

// y—l—a(l + y)—l sin(27 Xy) cos(tlog(1l + 1/y)) dy

/!

1 (y*" sin(27 Xy) sin(t log(1 + 1/3/))‘

C/

(3.7) — / Oy " Ysin(2rXy)| +y 7 X) dy) < 1.

Hence Iy < 1. For I3, the extra integration over t is in fact not necessary to
yield our bound. Thus, we write I3 = fT2T(I31 + I32) dt, separated according
to the integrals over u. I3; and I3o are treated in the same way, so we work
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out I3; only. Using integration by parts over w,
oo
I = [y (0 )7 (log(1+ /) sin(2nXy) exp(it log(1 + 1/9))

y { (1+1/y)°

a=

do
(141 dy.
a_oo+/ +1/y)° +1—20+it)2} v

a+1—20+ 1t

Then we consider
|5 1492 og(1+1/3)~ sin(27.Xy) explitlog(14+1/4))(1+1/y) dy.

Again, we split the integral into [5 + [*°. Then [* < X~ 1. If a < -2,
then [ <1 trivially; otherwise, we have (see (3.7))

/<<

Therefore, I3; < T~ ! and so I3 < 1. Putting these estimates into (3.6), we
get

< 1

/ y (1 4 y) " sin(2m Xy) exp(it log(1 + 1/y)) dy

T _ 920-1_20 (1 —20)¢(2 — 20)
. G3(t) dt = 227 172 (20 ) sin(ro) T+ O(1)
(3.8) = —2mi((20 — 1)T + O(1).

4) Evaluation of fj%T G} (t) dt. From [19, Section 4], we obtain
27

Gi(t)dt = 4iA |95 (X)((20 — 1)y + Iy — 013 — Iy)
T

where by Lemma 3.1, (recall LX(t) < T V2?2 <« X2 fort =T or 2T)
2T oo (2 log(1+ X
(X + y)? log(1 + X/y)

s /QT /00 cos 27er sin(tlog(1 4 1/y)) dydt < X3/2
7(1+y)7 log(1+1/y)
o 2T ® cos 27ry cos(tlog(l+ X/y
= X? 1/ / U—f-l v
7(X +y)otlog(1+ X/y)

/ /00 cos(2m X y) cos(tlog(1l + 1/y)) du dt
7(14y)o+log(l+1/y)

< X7'T sup
T<TY <TR<2T

< X—1/2

and similarly I3, I, < X~3/2. With Lemma 3.2,

2T
(3.9) Gi(t)dt < T" Y 21logT < log T.
T
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5) Evaluation of 27 G5*(t)dt. [19, (3.6) and Section 5] gives

2T
(3.10) / CI* () dt = —4il, + 4ily + 45,
T

I, I, and I3 are defined as follows: write

(3.11) w(&y) = D120 ()& 2y (L +y) ™ *(log(1 + 1/y)) ™" cos(2n&y),

then
2T
= / / t2/ w(&,y)sin(tlog(l + 1/y)) dy dt d€
27
:/ / / w(&,y)Hy(y) cos(tlog(l + 1/y)) dy dt d§
27
= [ [ [T w(epHow)sin(tlog(1 + 1/y) dy dr e
where Hy(y) and H;(y) are linear combinations of y*(log(1+ 1/y))~" with
p+v <2and p+v <1 respectively. (Remark: It is stated in [19] p+v < 2

only for both Hy(y) and Hi(y).)
When £ > X <T =<t and p+ v < 2, we have

2T oo exp(itlog(l+ 1/y)) cos(2m&y)
(3.12) /I L T T 1y <L
> eXP(“flOg(l +1/y)) cos(2m&y) ~1/2
3.13 / d T .
(349 o v (T y) 2 (log(L+ 1/y) 1 Y S

The estimate (3.13) can be seen from [19, p.368]. To see (3.12), we split the
inner integral into [5 + [°. First derivative test gives [ < ¢ For [;,
we integrate over ¢ first and plainly fo <1

Using (3.12) and Lemma 3.2, we have I < [LA 2, (8)E72de <
T4~ Applying integration by parts to the t-integral, we find that Ir <
T3/4=7 with (3.12) and (3.13). (Here we have used p + v < 1 for Hy(y).)
Since

2T 2T
/T t?sin(tlog(1 + 1/y)) dt = —t*(log(1 + 1/y)) ! cos(tlog(1 + 1/y))’T

2T
+ 2t(log(L + 1/y))?sin(tlog(1 + 1/y))|

—2(log(1 + 1 /y))—2/T “sin(tlog(1 + 1/y)) dt

the last two terms contribute T3/47 and TV/4~9 in I, respectively by using
(3.13) and (3.12). Substituting into (3.10), we get with [17, Lemma 3] (or
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[5, Lemma 15.1]) and (3.11)

2T
Gy (t)dt
T
t=2T
= 42t2/ / w(&,y)(log(1+ 1/y)) "' cos(tlog(l 4 1/y)) dy dé
=T
+O0(T%*7)
(3.14)
A 27
. 1/2,5)2 /°° A1 95 (&) cos(tV + 2m€U — € + 0 /4)
=T t d¢
x  EVUYAU -1/2)7(U +1/2)7+2 .

+ O(T3/4=9)

where U and V are defined as in Lemma 3.1 with k replaced by . Applying
the argument in [19, Section 6] to (3.14), we get

2T

G (t)dt
T

(Ve o1-20(n t\ 2. t=2T
= -2 (277) Z lnf—‘(’ ) (log 27rn> sin g(t, n)‘t_T
n<B(t,VX) a
(3.15)
+ O(logT).

(Remark: The o in [19, Lemma 4] should be omitted, as mentioned in [18].)
Inserting (3.4), (3.5), (3.8), (3.9), (3.15) into (3.3), we obtain

2T
E,(t)dt
(3.16) = —2rC(20 — V)T + S1(t, X)|2 = So(t, X)|2 + O(log T).

6) Transformation of Dirichlet Polynomial. Let X7, X9 =< T (both are
not integers) and denote B; = B(T,v/X1) and By = B(T,+/X2). Assume
X1 < Xs5. Write

T\ 2 T
F(z) = Pt (log ) exp(i(T log - + 27 —T + ))

2nx 4

then we have
Z (fl,zty(n)n“'_l(log(T/(27rn)))_2 sing(T,n)
B(T,v/X2)<n<B(T,v/X1)
(3.17) =Im Z o1-25(n)F(n).

Ba<n<B;
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Stieltjes integration gives

Z o1-25(n)F(n)

Bo<n<B1

By 1—9 By
= [ FOC(0) + 2~ 2002 dt 4 B o (0P
2

2 .

- Ay s (H)F'(t) dt
By
(318) =1+ I, — I3, say.

Now, since (d/dt)(g(T,t) + 2nt) = 2m — T/t < —c when By < t < By, we
have

I = /BI(C(%) +((2 - 20)t17%)

By
x t7 Llog(T/(2mt))) "2 exp(i(g(T, t) + 2xt)) dt
< Tofll

By Lemma 3.2, I» < 1. Direct computation gives

T T T T
"(t) = i(2m— =)t ! - ' — 4 omt—T+~ o2
F'(t) =127 . )t (log 27715) exp(i(71 log 27rt+ T +4))+O( )

where By <t < Bj. As fg;l |A1 oo (t)[t°2dt < T°1\/log T, we have by
(3.18) that

Z o1-20(n)F(n)

Ba<n<B;
T T By T
= —1 ) _ — _oo t 2 _ tafl
iesp(i(Tlog 5 =T+ ) [~ Ao (t)(27 = )
T -2
(3.19) X (log 275) exp(i(2nt — Tlogt)) dt + O(1).
T

The integral fgf in (3.19) is, after by parts,

B>

X T, o1 TN
Ap_ox(t)(2m — —)t7 (log ) exp(i(2nt — T'logt))
t 2mt

By

B1

Ar e ()L L (2r = Ly (10 T >_Qe (i(2rt — Tlog ) b dt
~ P Py TN ~
e AT & omt P &
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The first term is < T°~1/21og T by Lemma 3.2. Besides, computing directly
shows that for By, <t < By,

T\ 2
% {--Y=i2nt —T)*t°3 <log 27rt> exp(i(27t — T'logt)) + O(t7 ).

Treating the O-term with Lemma 3.2, (3.19) becomes

Z o1-25(n)F(n)

Bo<n<Bi
T B1
= —exp(i(Tlog — —T+2)) | Ay_ap(t)(2rt — T)23
2 4 By
T -2
(3.20) X (log 2t> exp(i(2nt — T'logt)) dt + O(T° "2 1og T).
s

Inserting the Voronoi-type series of Aj_o,(t) (see Lemma 3.2) into (3.20),
we get

Z o1-20(n)F(n)

Ba<n<B1
= —exp(i(T log % -T+ 2))
cfer S 2o 03 2o
(3.21) + O(T":l/2 logT) :
where

B 2,-7/4 T N\2 .
Ji(n) = /B (2mt — T)*t <log 2775) exp(i(2nt — T'logt))
2

x cos(4mv/nt + %) dt

B 2,-9/4 T \2 :
Ja(n) = /B (2nt — T)*t <log %) exp(i(2nt — T'logt))
2

x cos(4mv/nt — 2) dt.

Applying the first derivative test or bounding trivially, we have Ja(n) <
T-Y4 for n < T, Jo(n) < T3/* for ¢I' < n < ¢T and < TY*n=1/2 for
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n > ¢T. Thus, the second sum in (3.21) is

< (T—1/4 Z +T3/4 Z )UlQU(n)nU_9/4

n<cTl’ cI'<n<c'T
+T1/4 Z Ul_QJ(n)nafll/ll
n>c'T
(3.22) < T2,

After a change of variable t = z2

VB _9
Ji(n) = /rl(chg _T)25/2 (log ; 7;:2)
B> T
X { exp (i(27rg;2 — 2T log x + 4m\/nx + %))

+ exp (i(2r2? — 2T log & — 4m\/nx — %)) } dx.

Then we use [5, Theorem 2.2], with f(z) = 2> — 7 'T'logz, ®(z) = 27/,
F(z)=T, p(z) = /2 and k = £2y/n. Thus,

T4 T 3
_ 2 (= ; _ - _ -
Ji(n) = 6,27 (277) ea(T,n) exp(i(f(T,n) — Tlog o +T —7mn+ 1 )
+ 06, T4 + O(T3/* exp(—eVnT — ¢T))
+ O(T¥*min(1, |vV/X; £ vn| ™))
+ O(T**min(1, |V Xz £ v/n| ™))
where 6, = 1 if By < g < By and k > 0, or 0, = 0 otherwise. (z¢g =

VT/(27) +n/4 — \/n/2 is the saddle point.) Note that By < z¢g < Bj is
equivalent to X; < n < Xa. Thus, for the first term in (3.21), we have

) T T > Ul—2a(n)
—Cl exp (Z(TlOg % -T + Z)) nz::l le(n)
1 ( T )3/4 0'1720(”) :
= [ = 7_062(T, n)exp(i(f(T,n) —mn + 7))
\/§ 27'(' X1<n<Xo n7/4

+O(T° " Y210g T)
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Together with (3.22), (3.21) and (3.17), we obtain

Z 0125 (n)n° (log T/(27n)) 2 sin g(T,n)
B(T,V/X2)<n<B(T,v/X1)

1 T\ 3/4 o1-95(n .
- LIV s 2w msin )
m X1<TL<X2 "

V2
(3.23) +O(T° % 1ogT).
We can complete our proof now. Taking X = [T]—1/2 in (3.16), we have
Yi(t,X)—%;(t,T) <logT for i = 1,2 and t = T, 2T’; hence

2T
E,(t)dt = —21¢(20 — DT + Sy (6, 6|2 — Sa(t,0)[7
T

— ((2127,27) = 22T, 7)) + (%2(2T, T) - %,(2T, 27)) )

+ O(logT).

Choosing X; and Xs in (3.23) to be half-integers closest to 7" and 2T
respectively, then (X1(27,27) — 227, 7)) + (3227, T) — X2(27,27T)) <
log T'. Hence,

/T E,(t)dt = —27¢(20 — 1)T + 31 (T, T) — So(T, T) + O(log> T).
1

The extra logT in the O-term comes from the number of dyadic intervals.
Suppose N =< T. We apply (3.23) again with X; = [N] 4+ 1/2 and X5 =
[T] +1/2 to yield our theorem.

4. The second and third power moments

The proof of the second moment is quite standard, see [19], [21] or [5]
for example. Part (1) of Theorem 2 follows from that for N =< T,

2T 2T
/ Yo(t, N)?dt < T, / 1 (t, N)Sa(t, N)dt < TlogT,
T T

2T t

21 (t, N)2 dt = B(o) /T . ()5/2_20 dt + O(T32).

T 2T

Moreover, one can show
Lemma 4.1. Define Xy (t) = 1 (8) = S0 (t) for L< M <M < T.
Then, we have
EM,M’ (t)2 dt < T7/2720M2075/2'
T

The next result is of its own interest and will be used in the proof of the
third moment.
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Proposition 4.1. Let 0 < A < (0 — 3/4)~L. Then, we have
2T
/ ‘Gg(t)’A dt < T1+A(5/4fa).
T

Proof. The case 0 < A < 2 is proved by Hoélder’s inequality and part (1) of
Theorem 2. Consider the situation 2 < A < (¢ —3/4)~!. Then, for T < t <
2T and N =< T, we have $o(t, N) < T'/? and hence [7 |Sa(t, N)|Adt <
T42. We take N = 2% — 1 =< T and write M = 2". Then %(t, N) <
Y or<r |Xam20m(t)]. By Holder’s inequality, we have

A-1
SN < | S ol Saan @] | S apVAD )
r<R r<R
Taking o, = MU-AC=3/9)/CA) with the trivial bound Ypon(t) <

T5/4=7 Mo=3/4 we have

2T
[ war
T

< 7(5/4~0)(A-2) Z a;fo(af:%/z;)(A,Q) /2T 5y QM(t)Z dt
r<R T
(41) <<A T1+A(5/4—U)

by Lemma 4.1.

Proof of Theorem 2 (2). We have, with M = [§T"/3] for some small constant
0 >0,

2T
/ Gy(t)? dt
T

2T 2T
@2 = [T S de+ O Eanrl(Go 0 + 5 (0) ).

Proposition 4.1 and (4.1) yields that the O-term is O(T(13-89)/3), The
integral on the right-sided of (4.2) is treated by the argument in [23]. Then
the result follows.

5. Limiting distribution functions

We first quote some results from [1, Theorem 4.1 and [3, Theorem 6.

Let F be a real-valued function defined on [1,00), and let a;(t), ax(t), ...
be real-valued, continuous and of period 1 such that fol an(t)dt = 0 and

o fol an(t)?dt < oo. Suppose that there are positive constants 71,
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2, ... which are linearly independent over Q, such that

L IV
lim hmsupf/o min(1, |F(t) — Z an(Ynt)]) dt = 0.

—00 T—o0 n<N

Fact I. For every continuous bounded function g on R, we have

T 00
ti - [ g(F@)dt = [ glau(do)

T—o0 —oco

where v(dx) is the distribution of the random series n = >->2 | an(t,) and t,
are independent random variables uniformly distributed on [0, 1]. Equiva-
lently, the distribution function of F, Pr(u) = T~ u{t € [1,T] : F(t) < u},
converges weakly to a function P(u), called the limiting distribution, as
T — oo.

Fact IL Tf [I'|F(t)|*dt < T, then for any real k € [0,A) and integral
1 €1]0,A), the following limits exist:

T T
lim 7! [ |F(t)|* dt and Jim Tt F(t)dt.
1 —00

T—o00 1

Now, let us take F(t) = t22~5/2G,(2nt?), v, = 2y/n and

n)? & o1—95(nr?) .
(5.1) an(t) = V2 :7(/410 S :(—1)W1T72/2(_20) sin(27rt — 7/4).
r=1

Following the computation in [3, p.402] with Lemma 4.1, we get

/ 2T(F(t) — 3 an(2vnt)?dt < TN* 5% (N <V/T),

T n<N

Then Theorem 2 (c) and the first part of Theorem 3 are immediate conse-
quence of Facts I and II with Proposition 4.1.

We proceed to prove the lower bounds in (2.2) with the idea in
[1, Section V].

Lemma 5.1. Let n be squarefree. Define

A, ={t €10,1] : an(t) > B o1 _as(n)n"" 4}
where B = 4A(X52, )" and A = V23.°%, 0125 (r2)r27"7/2. Then,
we have p(Ay) > 1/(AB) where p is the Lebesgue measure.

The proof makes use of the fact that fol ab(t)dt = [y a, (t)dt where
at(t) = max(0, +a,(t)), and
1 o0

1 1 2\2
Y2 SN2 01-90(n1r?)
/O (2% (t) dt + /0 Qy, (t) dt = n7/2—2(r rzzjl T7740 :

The readers are referred to [1] for details.
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Proof of lower bounds in Theorem 3. By Markov’s inequality, we have

where Pr(#) denotes the probability of the event # and

oo 1
K= 21/0 a (8)2 dt < +o0.

Consider the set

[e.9]

E, = {(tl,tg,...) it € Ay for 1 <m < n and | Z am,(tm)] < 2\/?}
m=n+1
where A, = [0, 1] if m is not squarefree. Then,
n [ee] 3
Pr(E,) = [[ Pr(An)Pr(| Y. am(tm)| < 2VK) >

A(AB)"

m=1 m=n+1
due to Pr(A,,) = u(A,,) and Lemma 5.1. When (¢1,t9,...) € E,, we have

iam(tm)zl 3 g1-20(m) _, 1

7/4—0

m squarefree

S logn if o0 = 3/4,
no=3* if3/4 <o < 1.

Our result for 1 — D, (u) follows after we replace n by [e¢¥] if 0 = 3/4 and
by [u*/(47=3)] if 3/4 < ¢ < 1. The case of Dy(—u) can be proved in the
same way.

To derive the upper estimates, we need a result on the Laplace transform
of limiting distribution functions [13, Lemma 3.1].

Lemma 5.2. Let X be a real random variable with the probability distribu-
tion D(x). Suppose D(x) > 0 for any x > 0. For the two cases: (i) Y(x) =
zlogz and ¢(x) = logz, or (ii) Y(z) = T4 and ¢(x) = x(4o7=3)/4
there exist two positive numbers L and L' such that

(a) if limsup,_,., ¥(A)"!log E(exp(AX)) < L, then
limsupz ! log(1 — D(¢(x))) < —L,

(b) if limsupy_,., ¥(A\) "t log E(exp(—AX)) < L, then
limsup z~log D(—¢(x)) < —L'.

r—00
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Proof of upper bounds in Theorem 3. We take N = X if ¢ = 3/4, and
N = \/(49) if 3/4 < 0 < 1. When n < N, we use
1 2
/ exp(EAan(t)) dt < exp()\Aal_%;%).
0 n7/4=e
Recall that A = V2322, 019, (7 ) 7/2-20 Now consider n > N. If NAo1_9,(n) <

n7/4=7  then by the inequality ¥ < 1+z+22 for x < 1, and [, a,(t)dt = 0,
we have

1 01_90(n)2p(n)?
/0 exp(£han(t)) dt < exp((AA)2Z: 27(/22’;( Sy

Otherwise, NAo1_9,(n) > n7/4=7 it is obvious that

n n 2
/01 exp(+Aan(t)) di < exp()\A‘W)

g 2 n 2
< exp((ray 2ot BT

Therefore, log F(exp(+AX)) is

01— 20 Ul—QJ(n)2
SM Y QAT Y —
n<N n>N

< Alog A if o =3/4,
M/ (T=49) i 3/4 <o < 1.

The proof is complete with Lemma 5.2.

6. Qi-results

This section is devoted to prove Theorem 4. We apply the methods in
[2] or [7], but beforehand, we transform G, (¢) into a simple finite series by
convolution with the kernel

sin 27 Bu\ 2
K(u) = 2B (% i >
Similarly to [15], we have, for 1 <« B < L'/* <« T1/16,
L

(6.1) t20=5/2 /_ . Go(27m(t +u)?) K (u) du = Sp(t) + O(B775)
where

Vi, o1-25(n)
(6.2) 2n<232 ") o sin(4my/nt — )

To prove the €)_-result, we use Dirichlet’s Theorem to align the angles.
More specifically, for any small 6§ > 0, we can find [ € [Tl/ 10,
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(1 + 0-B*)T'/10) such that ||I\/n|| < é. Taking B < 6y/IogT, we have
€ [T 7/5] and

Spll) = — Y (-1y(1 - Dzl

n<B2

(6.3) +o(a > vn "127”())

7/4
n<B?2 n (e
A simple calculation shows that

2. ¥ (- - YT s g v T

=, B’ n7/i-o =, B’ ni/i-o
n< n

We thus infer Sp(t) = Q_(loglogt) if ¢ = 3/4, and Q_((logt)?—%/%) if
3/4<o <1

We proceed to prove the 2 -result with the method in [2]. Take x =
§loglog T'logloglog T and B = T/1%0 (I, = B*) for a small number § > 0.
We consider the convolution of Sg(t) with a kernel involving the function

edmin/qu 4 p—Ami/qu
Tp(u) = ] (1+cos(dmy/qu)) = ] <1+ + )

q€Q, q€Qx 2

where Q. is the set of positive squarefree integers whose prime factors
are odd and smaller than . The convolution will pick out terms with the
desired frequencies,

e/_o:o Sp(t+u)Ty(u) <Sine7ru>2 du

=2 Z (—D)™(1 - ?)017/22( )Sln(47r\ft— f)
=

To maximize the right-hand side, we apply Dirichlet’s theorem again to
find a number [ € [TV/10 (1 + §~1Q=1)T1/10] 5o that the right-side is

o1-2+(p) log x if 0 = 3/4,
> pgw i )>>{ exp(cz®3/4 /(log x))  if o > 3/4.
This follows from the the estimation of >, p7~ /% for ¢ = 3/4 and
o > 3/4 respectively. The cardinality of Q, is O(exp(cz/log x)) for some
positive constant c¢. Our choice of x ensures that [ is of a size of a small
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power of T'. Consequently, we obtain

sp Sslu)

T1/10<<u<<T1/4
logloglog T if o =3/4,
exp(c(loglog T)7~3/%(loglog log T)?~7/*) if ¢ > 3/4.

7. Occurrence of large values

Proof of Theorem 5. Define K, (u) = (1—|u|)(1+7sin(4mau)) where 7 = —1
or +1 and « is a large constant. Following the argument in [4], we derive
that

/ ety / " Gt u b 02K () duE (u) du
1 5
T2
where 61, = 1 if n =1 and 0 otherwise. Our assertion follows by choosing
B and o (L = B*) sufficiently large, and ||4t|| < 1/8 with ¢ € [V/T, VT +1].
(Note that 7 can be +1 or —1 at our disposal.)
To prove Theorem 6, we need the next lemma which is the key.

(1 — B Ycos(dnt — m/4) + O(a™2) + O(BY ).

Lemma 7.1. For T°/12 < H< T1/2,

2T
/ max (Gy(t + h) — Go(t))2 dt < TH
T O0<h<H

where the implied constant depends on o.

Proof. Following the arguments in [8], we have
27
(7.1) / (Go(t 4 h) — Gy (1)) dt < ThS 4 min((o — 3/4) 71, 1log(T/h?))
T
where log?T < h < v/T. Let b = T"/?* and H = 2*b. Then, as in [4], we

can show

_ < A 2(1—0)/3+e€
oA, |Go(t+h) — Go(t)] < 1;11%); |Go(t 4 jb) — Go(t)| + O(T b

for any fixed t. Let us take 1 < jo = jo(t) < 2* such that
|Go(t + job) — Go(t)] = max |Gy(t + jb) — G (t)].

1<j<2

Then we can express jo = 2 > ues, 271 for some set S; of non-negative
integers. Hence,

Go(t+job) — Go(t) = Y Go(t+ (v +1)2271b) — G, (t + 12X Hb)
HESt
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where 0 < v =14, < 2 is an integer. By Cauchy-Schwarz’s inequality and
inserting the remaining v’s, we get

(Go(t + jOb) - Go(t))Q
< (30 27 302Gyt (v 4 1)227H) — Gt + v22 D))

HE St HESL

< 33T 2WIMG(E+ (v + 1)22H) — Go(t + v2) D))
HES; <y < 2K

as > ,es, 2-(1=9)1 « 1. Integrating over [T, 27 and using (7.1), we see that

2T
o 2
/T max (Golt+h) = Go (1) dt

2T+v2 )~ Hp
<3 Y ot-om / (Gt + 2\ 1b) — G, (1))? dt + TV /124
LESy 0< <21 T+v27~+b
< TH5740' Z Z 27(4730);1
HESE O<p<2H

< TH™ .
This complete the proof of Lemma 7.1.

Proof of Theorem 6. Define GZ(t) = max(0,£G,(t)). By Theorem 2 (c),
we have fTQT |G, (1) dt < T'30/4=9) Hence, Cauchy-Schwarz inequality

gives
2T 2 2T oT
< Gg(t)th> g/ \Gg(t)]dt/ |Gy (t)|? dt.
T T T

we have [21 |Gy ()| dt > T'6/4=9) Together with (2.1), [7' GE(t)dt >
C12 ff«T t5/4_0 dt.
Consider K*(t) = GE(t) — (c12 — €)t7/*~7 where € = 62727 we have
2T

2T
K*(t)dt > e/ /4= qt

T T

and K*(t + h) — K=(t) = GE(t + h) — GE(t) + O(TY/*=7h). Since
|GE(t + h) — GE(t)] < |Go(t + h) — G, (t)], it follows that together with
Lemma 7.1,

2T
max |[KE(t + h) — KE(t)| dt < TH??727 4 75/4~7H

T h<H

Define w*(t) = K*(t) — maxp<y |[K*(t + h) — K*(t)|. Taking H =

2/ (5=40)\ /T (= c/éﬁ) for some sufficiently small constant ¢ > 0, we
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have

2T 2T 2T
/ wE(t) dtZG/ t5/4_"dt—/ max |[KE(t + h) — KE(t)| dt
T T T h<H

> €T1+(5/4_J).
Let T = {t € [T, 2T] : w*(t) > 0}. Then

2T
/ / tdt< | K*(t)dt
T I+

1/2 2T
< </ dt> K*(t)%dt
I+ T

We infer |ZF| > 2T as [27 K*(1)2dt < [27 G, (t)2dt+T7/>727. When t €
T#, we have K= (t) > maxp<y |K*(t+h) — K=(t)| > 0. Hence, K= (u) > 0
for all w € [t,t + H], i.e. GE(t) > (c12 — €)t>/*77. The number of such
intervals is not less than |ZF|/H > ¢136*1=9)/T.

1/2
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