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A note on integral points on elliptic curves

par MARK WATKINS

RESUME. A la suite de Zagier et Elkies, nous recherchons de
grands points entiers sur des courbes elliptiques. En écrivant une
solution polynomiale générique et en égalisant des coefficients,
nous obtenons quatre cas extrémaux susceptibles d’avoir des so-
lutions non dégénérées. Chacun de ces cas conduit & un systeme
d’équations polynomiales, le premier ayant été résolu par Elkies en
1988 en utilisant les résultants de Macsyma; il admet une unique
solution rationnelle non dégénérée. Pour le deuxiéme cas nous
avons constaté que les résultants ou les bases de Grobner sont
peu efficaces. Suivant une suggestion d’Elkies, nous avons alors
utilisé une itération de Newton p-adique multidimensionnelle et
découvert une solution non dégénérée, quoique sur un corps de
nombres quartique. En raison de notre méthodologie, nous avons
peu d’espoir de montrer qu’il n’y a aucune autre solution. Pour
le troisieme cas nous avons trouvé une solution sur un corps de
degré 9, mais n’avons pu traiter le quatrieme cas. Nous concluons
par quelques commentaires et une annexe d’Elkies concernant ses
calculs et sa correspondance avec Zagier.

ABSTRACT. We investigate a problem considered by Zagier and
Elkies, of finding large integral points on elliptic curves. By writing
down a generic polynomial solution and equating coefficients, we
are led to suspect four extremal cases that still might have nonde-
generate solutions. Each of these cases gives rise to a polynomial
system of equations, the first being solved by Elkies in 1988 using
the resultant methods of MACSYMA, with there being a unique ra-
tional nondegenerate solution. For the second case we found that
resultants and/or Grébner bases were not very efficacious. Instead,
at the suggestion of Elkies, we used multidimensional p-adic New-
ton iteration, and were able to find a nondegenerate solution, al-
beit over a quartic number field. Due to our methodology, we do
not have much hope of proving that there are no other solutions.
For the third case we found a solution in a nonic number field, but
we were unable to make much progress with the fourth case. We
make a few concluding comments and include an appendix from
Elkies regarding his calculations and correspondence with Zagier.

Manuscrit regu le 1" décembre 2005.
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1. Introduction

Let E be an elliptic curve given by the model y? = z® + Az + B, and
suppose that (X,Y") is an integral point on this model. How large can X be
in terms of |A| and | B|? One measure of the impressiveness of the size of an
integral point is given by the quotient p = log(X)/ log(max(|A|'/2, |B|*/3)),
which, as Zagier [13] indicates, can be interpreted as saying that X is of
the order of magnitude of the pth power of the roots of the cubic polyno-
mial 2° + Az + B.

Lang [9] makes the conjecture that p is bounded, and notes (see [13])
that he and Stark worked out that generically p < 10 + o(1) via proba-
blistic heuristics, though a construction of Stark indicated that in similar
situations there might be finitely many exceptional parametric families with
larger p. Vojta [12] has related this conjecture to his more general Diophan-
tine theory, where again these exceptional families cannot be eliminated.
In 1987, Zagier [13] gave a construction that gives infinitely many curves
with p > 9 — o(1), and listed some impressive examples from numerical
calculations of Odlyzko.

In a letter to Zagier in 1988, Elkies constructed infinitely many exam-
ples that satisfy p > 12 — o(1). His construction is polynomial-based, and
reduces to solving a system of polynomial equations formed from equating
coefficients. There are exactly four choices of parameters that both yield
p = 12 — o(1) and for which there is a reasonable hope that a solution
might exist. The first of these was the case worked out by Elkies. This
already led to a system of 4 polynomial equations in 4 variables, which
Elkies notes took a longish session of MACSYMA [10] to solve. The second
choice of parameters immediately (via linear substitution) leads to a system
of 6 equations and unknowns; even though computers have gained much
in speed over the last 15 years, the resulting system is still too difficult to
solve via Grobner bases or resultants. We eliminated one variable from the
system via another linear substitution (though this creates denominators),
and then another via a resultant step. This gives us a rather complicated
system of four equations and unknowns; the degrees of the polynomials
were sufficiently large that, again, Grobner bases and resultants were not of
much use. We then proceeded to try to find solutions via a multidimensional
p-adic iterative Newton method. We found one such solution over a quartic
number field; it is an inherent problem with this method that we have little
hope of proving that we have found all the solutions. With the third choice
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of parameters, we found a solution in a nonic number field, and with the
fourth case we made little progress.

As an appendix, we include some calculations of Elkies regarding the
first case, and his 1988 letter to Zagier.

2. Families of Pell type
First we review the construction of Elkies. Consider the equation
(1) X () +A®)X (1) + B(t) = Q)Y ()?

where A, B, Q, X,Y € Q(t) are polynomials in some number field K and we
have deg @ = 2. Given a polynomial solution to (1), via scaling we can make
all the polynomials K-integral. The theory of the Pell equation implies that
if the quadratic polynomial Q(t) is a square for one integral ¢t-value, then
it is square for infinitely many integral ¢, and thus we get infinitely many
curves y? = 2% + A(t)z + B(t) with K-integral points (X (t), Y (t)\/Q(1)).

Let a, b, q, x,y be the degrees of these polynomials respectively. We wish
for p = x/max(a/2,b/3) to be as large as possible. If we do a parameter
count, we get that there are (a + b+ q + x + y) + 5 coefficients of our
polynomials. The total degree of our equation is 3z = ¢ + 2y, so we get
3z + 1 equations. When 3x +1 < a+b+ ¢+ z + y+ 5, we might expect
there to be a solution. However, we first need to remove the effect of the
action of the group PGL2(Q) on our choice of coefficients.

Letting [(P) be the leading coefficient of a polynomial P, we first scale ¢
by I(X)/I(Y') and then multiply through I[(Y)*/I(X)Y, so as to make X, Y, @
all monic. Then we translate so as to eliminate the t¥~! term in Y. Then
we effect t — 1/t and multiply (X,Y,Q, A, B) by (t*,tY,t2,¢>* #3%), and
then scale so as to make! the t-coefficient of X be equal to 1. Finally we
undo the ¢ — 1/t transformation in the same manner. So we are left with
(a+1)+(b+1)+qg+ (xr—1)+ (y — 1) coeflicients, while we also lose one
condition, namely that the leading coefficients match. Thus we want to have
a+b+q+r+y > 3x with p = 2/ max(a/2,b/3) as large as possible, and this
turns out to be 12. We get 4 different possibilities, namely (a,b,q,x,y) =
(0,1,2,4,5),(1,1,2,6,8),(1,2,2,8,11),(2,3,2,12,17). For instance, for the
first case we have the polynomials

X(t) =t + 8 +aot? + z1t + 20, Y () =2+ yst® + yat® + 1t + vo,

Qt) =t +qit +qo0, A(t) =ao, B(t) = bit + by,

and equating the t%-t!! coefficients gives us 12 equations in these 12 un-

knowns. Fortunately, simple linear substitutions easily reduce this to 4

IWe could alternatively equate two coefficients, or set the linear coefficient of @ equal to 1;
we found that fixing the linear coefficient of X to be 1 was best amongst the various choices. In
this scaling, we assume the coefficient is nonzero; the alternative case can be handled separately.
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equations and unknowns; we give one such reduced set, in order to indicate
the complexity of the equations.

122022 —1220q0+60w0+627 —24z1 22 +4821 g0 — 15621 —3 —3x3q0+2725+9w2¢2 —174m2q0+
+417z2—5¢5+171¢2 —939q0+1339=0,

4xox1+4xoxr2+4x0qo+8x0 +2z% —x1 x% —2z122q0—621 22 +3x1q3 —10x1q90—17z1 +2m%qo+5x§—

—12w2q2+2622q0+3822+10¢3 —71g2 +80g0+83=0,

120xox122—722021q0+3122021 —60xox§+216mozg qo—5T76x0x2 —60$0q8+336x0q0 —516xo+
+320% — 1683252 +28852 g0 —936x7 — 1871 73 —54m1 35 g0 +34271 35 +11471 7293 — 183671 7290+
+414621 22— 4221 g3 +130231 g3 — 687021 g0 +964221 + 935 +723 go —234x3 — 342333 +265823 g0 —

—4488x2+336x2q3 —451832¢3 +17004x2g0 — 1944672 — 755 +1486¢5 —9036¢2 +220980=19041,

4822 w2 —4812qo+24022 +64x02? —128z0x1 w2 +288z071 g0 — 76820 x1 —40z0w3 +24w0 230 —
—72xow§ +40zox2q(2) —816x0x2q0+1864x0T2 —24x0q8+792w0q(2) —4232x0q0+5928x¢ —28:1:%90% -
724:13%:E2q0 +24:v%:1:2 +36:p%q(2) 7312x%q0 +42OI§ +84x, zg —84x7 z% q0+388x1 :L"% —244x1 :vzqg +
+1480z1 w20 — 187621 2+18021 g5 — 202821 g2 +642831 g0 —6180x1 + 325+ 923 g0 —84a5 —2623 g2+

+480z3 g0 —118623+10x2¢3 —22422¢2 4131023 g0 —214023+Tx 295 — 464293 +421022¢2 —

—12472z2q0+11807x2— 3¢5 +228q] —2942¢3 +14284¢2 — 297910 +22560=0.

If we are willing to accept variables in denominators, we can go one step
more and eliminate xg from one of the first three equations. A system like
this was solved by Elkies in 1988 using MACSYMA which uses resultants;
solving it is almost instantaneous? with MAGMA today, using either Grébner
bases or resultants. We get an isolated solution and also two (extraneous)
positive-dimensional solution varieties (which correspond to points on the
singular plane cubic curve):

(20, 21,2, q0) = (785 [16u? — 200u — 239], 2 [4u — 1], u, 2),

(u, —2v + 3,v — 5,v), (%, %1, %, Q).

From the isolated point, via back-substitution we get

715 165 77 55 o 216513 _ 3720087 531441
(yo, Y1, 92,93, 41, ao, bo, bl) = (67’ 1616’ 8 ° 3, 4096 ° 131072 ° 8192 )
To derive the solution in the form given by Elkies, we first want to

eliminate denominators, and we also wish to minimise the value of A that

occurs at the end (that is, get rid of spurious powers of 2 and 3). This can

2That is, provided one deals with the multivariate polynomial rings properly and works over
the rationals/integers at the desired times.



A note on integral points on elliptic curves 711

be done by replacing ¢ by 1 — 9¢/2 and then multiplying (X, Y, Q, A, B) by
(s,—45/3,95/16, 5%, s3) where s = 128/81. This gives us

X(t) = 6(108t* — 120t + 72t* — 28t + 5),
Y (t) = 72(54t° — 60t* + 45t — 2142 + 6t — 1),
Q(t) = 2(9t% — 10t + 3), A(t) = 132, B(t) = —144(8t — 1).

Note that Q(1) = 22, so that there are infinitely many integral values of ¢ for
which Q(t) is square. As noted by Elkies, we have that X (t) ~ B(t)*/22°3%,
so that small values of ¢ do not give very impressive values of p.

2.1. The second case. We next consider the second case EPZi; of the
Elkies-Pell-Zagier equation (1), where (a,b,q,2,y) = (1,1,2,6,8). After
making rational transformations, we are left with 18 equations in 18 un-
knowns, which reduce to 6 upon making linear substitutions. We can reduce
to 5 via allowing denominators,® and then eliminate one more variable via
resultants, but at this point, we are left with equations with too large of de-
grees for resultants or Grobner bases to be of much use. Parts of two of the
four equations appear below (the whole input file is about 500 kilobytes)

2101324894157987694¢3* + 107129273851487767680x3x3x3g5 + --- = 0,

32970900880723713844451225823¢3% —
— 34328441295817679913295188031488z323245g5 + - - - = 0.

We denote this reduced system of equations by Ry.

It was suggested to us by Elkies that it might be possible to find a solution
via multidimensional p-adic Newton iteration.* In general, this method is
most useful when we are searching for zero-dimensional solution varieties in
a small number of variables. Writing f as our system of equations, we take a
p-adic approximate solution § and replace it by §— J(3)~!f(5), where J(3)
is the Jacobian matrix of partial derivatives for our system evaluated at s.
Since the convergence is quadratic, it is not difficult to get p-adic solutions
to high precision. From each liftable local solution mod p we thus obtain a
solution modulo a large power of p, and then use standard lattice reduction
techniques [4, §2.7.2] to try to recognise it as a rational or algebraic number.

3This linear substitution is probably most efficiently done via resultants, as else the denomi-
nators will cause problems for some computer algebra systems.

4This technique appears in [5], while J. Wetherell tells us that he has used it to find torsion
points on abelian varieties. In [5], the lifting step was done via computing derivatives numerically,
while we chose to compute them symbolically. Uses of this technique in situations close to those
that occur here will be described in [6]. Wooley gives [7, Prop. 5.20] as a theoretical reference.



712 Mark WATKINS

First we tried the primes p = 2, 3, but we found no useful mod p solutions;
all the local solutions had a noninvertible Jacobian matrix.®> Furthermore,
since a solution to Ry might very well have coordinates whose denominators
have powers of 2 and 3, not finding a solution was not too surprising. With
p = 5 we again found some (probable) positive-dimensional families and
three other solutions, of which two had an invertible Jacobian modulo 5.
However, these solutions to Ryy failed to survive the undoing of the resultant
step, and thus do not actually correspond to a solution to EPZ;. We found
the same occurrence for p = 7,11, 13 — there were various Q,, solutions to
our reduced system, but these did not lift back to the original system.

With p = 17 our luck was better, as here we found a solution in the
dihedral quartic number field K defined® by 2* — 223 — 422 4+ 52 — 2, whose
discriminant is —3%113. Letting 6 be a root of this polynomial, the raw form
of our solution is

Ty = 5zia00 (906998463 + 664283846 + 199348160 — 283298787),

3 = 55 (202406% + 705766 — 1216169 — 441839),

T4 = gug (—58080% — 756862 + 339680 + 23959),

Q0 = 5255 (25766° + 376002 — 87200 + 10971).

After undoing the resultant step the rest is but substitution and we readily
get a solution to EPZyy, albeit, in a quartic number field. Note that 17 is
the smallest” odd unramified prime which has a degree 1 factor in K.

We next introduce some notation before stating our result; we have in-
finitely many Pell equations from which to choose, and so only present the
simplest one that we were able to obtain. Let

pr=0, @=0-1, ro=0*>—0—-5, and p3=20>—20+1
be the primes above 2 and the ramified prime above 3, and
m=0>+6%>—-20+1 and 1, =6>—-30+1

be fundamental units, so that we have pagore = 2 and pg = 377%772_ 1 Let
B = 26% + 262 — 60 — 3 (this is of norm 3271), and with

Q(t) = cat® + c1t + co = 3pjaaBning ' + 26301 B(6° — 0% + 11)t + ¢38°n3

we have A(t) = — 12¢3rop3Bimn, > (0% — 6 4 1)t—
— @3ps By 2(0° — 6 + 1)(96° — 26 + 50 4 9),

5Many of them had a Jacobian equal to the zero matrix, and these we expect to come from
positive-dimensional solution varieties.

6David Brown (Berkeley) indicated to us that this number field can also be obtained by
evaluating the 11th modular polynomial at (x,0); that is ®11(z,0) = f2 where f also defines K.

"Due to our method of division of labour we actually first found the solution mod 29. Since
we do not know K ahead of time, we have little choice but to try all small primes.



A note on integral points on elliptic curves 713

X(t) = 2*3*p3qs Bning 115 + 2334 ¢S raBning * (1763 + 26% — 7160 + 33)t°+
+ 223340 By 2 (14636° — 243662 — 266760 4 1903)t*+
+ 24281915 2(259016° + 3206007 — 524576 + 15455)t>+
+ 12¢2p3 303 (4037463 + 474220% — 619766 + 37707)t>+
+ 2¢373p3 B2 (70810% — 8546 + 907916 — 23035)t+
+ g2 Bmn3 (19003563 + 1990086 — 1741896 4 50449),
and
B(t) = —6q5r53°mmy *(20 — 1)*t—
— gy 0y 3(20 — 1)*(46° + 1867 — 160 + 1).
With the above definition of ¢y = 3pgqgﬁn%n2_ ! we have that
fi =3 @ops 'ny Pna (0% 4207 — 0+ 1)\/cg + ramy ' 2(36° — 1967 4200 — 5),

fa = 2pipg 0y gt y/ea + mny ' (196° — 5162 4 380 — 5),
and

f3 = pagany n3(60% — 20 + 1) /ca + ramune(196% — 146% — 710 — 41)

are units of relative norm 1 in K (,/cz). Again from the above definitions
we have \/co = £qof3n2 = (4963 + 416% — 770 + 33), and so we solve the
Pell equation and obtain square values of Q(t) by taking

t = 2\/couv +vic; where fif}f¥ =u+vy/cy

for integers 4, j, k. We can make t integral via various congruence restrictions
on (4,7, k); however, note that py divides all but the constant coefficients
of our polynomials (including Y'), and so we still get integral solutions
to EPZy1 even when py exactly divides the denominator of £. Similarly, the
only nonconstant coefficient that ps fails to divide is the linear coefficient
of Q; since p3 divides Y'(¢), this nuisance evaporates when we consider
solutions to EPZy;. As t — oo the norm of the ratio X (t)/A(t)% tends to
1/2°632917632711%; we do not know if this is as large as possible.

We are fairly certain that there are no more nondegenerate algebraic
solutions to EPZyy, but have no proof of this. For the small primes,® we can
identify every local solution to Ryr that has invertible Jacobian as algebraic.
In addition to the above quartic solution, there are five such solutions®
having degrees 13, 17, 19, 22, and 22, each with maximal Galois group.

81t takes about 1 minute to find local solutions mod 17, and thus p = 97 takes about a day.

9Since the local images of these solutions to Ry failed to survive the undoing of the resultant
step modulo p, this determination of their algebraicity is unnecessary as evidence toward our
claim that EPZ; has no more solutions, but might be interesting in that it shows the splitting
of a large-dimensional algebra into many smaller fields.
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2.2. The third case. We next discuss whether we expect to be able to
find a solution for the third set of parameters (a,b,q,z,y) = (1,2,2,8,11).
Analogous to before, via linear substitutions and a resultant step, we should
be able to get down to about 6 equations and unknowns, and we call the
resulting system Rjrp. This already is not the most pleasant computational
task, but only needs be done once (it takes about 15 minutes). It takes
time proportional to p® to check all the local solutions, so we can’t take p
too much above 20. The size of the minimal polynomial of a prospective
solution does not matter much due to the quadratic convergence of the
Newton method, but the degree of the field of the solution has a reasonable
impact. We cannot expect to check fields of degree more than 30 or so. We
need p to have a degree 1 factor, but by the Chebotarev density theorem we
can predict that this should happen often enough (even for a high degree
field) so that some prime less than 20 should work.

With these considerations in mind, we checked the Ry system for local
solutions for all primes p < 20 and with p = 19 we found!? a local solution
that lifted to a global EPZyy; solution in the nonic number field given11 by
29 — 228 — 627 + 820 — 725 4+ 1824 + 4423 + 3222 4 242 + 24, which has dis-
criminant —2193755114. For reasons of space, we do not record the solution
here.'? For EPZy we were unable to use resultants to reduce beyond 13
variables and did not attempt to find local solutions, even with p = 5. If the
system had reduced down to 10 variables (as would be hoped from analogy
with the above), we could probably check p = 5 and maybe p = 7.

3. Concluding comments

Note that the above four choices of (a,b,q,x,y) are members of infi-
nite families for which each member has a reasonable possibility of having
infinitely many solutions with p > 10. Indeed, by taking

(a,b,q,2,y) = (2m,3m,2,10m + 2,15m + 2) p=10+2/m
(a,b,q,2,y) = (2m, 3m +1,2,10m + 4,15m + 5) = m
(a,b,q,2,y) = (2m + 1,3m +1,2,10m + 6,15m + 8) :m
(a,b,q,z,y) = 2m +1,3m + 2,2,10m + 8, 15m + 11) :m

10por p = 13, 17 the reduction of the global solution intersected a degenerate solution variety.

11 This model was obtained with polredabs of PARI/GP using partial reduction (possibly
using a suborder of the maximal order); OptimisedRepresentation in MAGMA was too slow.

120ne model is given modulo 19 by X (t) = t8+t74+6t0+16t°+8t3+4124+-12, Q(t) = t2+3t+13,
A(t) = 16t + 15, B(t) = 17t? + 6t + 14, and the reader can verify this lifts to a Q;g-solution with
coefficients xg, 7,92 = 1 and y190 = 0, with precision 192" sufficient to identify it algebraically.
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in each case we have, since a + b+ g + x + y = 3z, the same number
of equations and unknowns, with the value of p = z/max(a/2,b/3) as
indicated. However, we might also suspect that the fields of definition of
these putative solutions become quite large; thus there is no contradiction
with Lang’s conjecture, which is only stated for a fixed ground field.

We can also note that with (a, b, q,z,y) = (2,3, 2,10, 14) we can expect
there to be a nondegenerate 1-dimensional solution variety V' with p = 10.
This presumably could be found by a variant of the above methodology,
perhaps by taking specialisations to 0-dimensional varieties and finding
points on these, and then using this information to reconstruct V. We have
not been able to make this work in practise; although the specialised system
can be reduced to 7 equations and unknowns and we can find a liftable
solution mod 5, it appears that the process of specialisation increases the
degree of the field of the solution beyond our computational threshold.

3.1. Performance of computer algebra systems. For our computa-
tions we used both PARI/GP [11] and MAGMA [1]. In the end, we were able
to do all the relevant computations'? using only MaGMA (V2.12-9), but this
was not apparent at the beginning. The main difficulty with MAGMA was
dealing with multivariate polynomial rings, especially as we eliminated vari-
ables — if we did not also decrease the dimension of the ambient ring, we
could experience slowdown. We also found it to be important to work over
the integers rather than rationals as much as possible,'* as else the continual
ged-computations to eliminate denominators could swamp the calculation.
The availability of multivariate ged’s in MAGMA frequently allowed us to
reduce the resulting systems by eliminating a common factor. We found
MAGMA much superior than PARI/GP in searching for local solutions.'?
MAGMA did quite well in obtaining algebraic numbers from p-adic approx-
imations; after discussions with the maintainer of PARI/GP, we were able
to get algdep to work sufficiently well to obtain the above solutions. The
lifting step'® was noticeably slower in MAGMA than in PARI/GP, but as
we noted above, the time to do this is not the bottleneck.

3.2. Acknowledgements. Thanks are due to Karim Belabas, Nils Bruin,
Noam Elkies, and Allan Steel for comments regarding this work. The au-
thor was partially funded by an NSF VIGRE Postdoctoral Fellowship at

30ur Macma input files are available from www.maths.bris.ac.uk/ mamjw

14Except in the (simple) cases where we were able to use the Grobner basis machinery; there
we want to be working over the rationals rather than the integers.

15por Rir, MAGMA took about 5 minutes to find all solutions mod 23, and with Ryyy it took 19
hours to find all solutions mod 19 — the bulk of the time is actually in computing the determinant
of the Jacobian matrix to see if the solution lifts; we could ameliorate this partially by (say) not
computing the whole Jacobian matrix when the first row is zero.

16We did not attempt to use secant-based methods (e.g., Broyden [3]) or those of Brent [2].
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The Pennsylvania State University, the MAGMA Computer Algebra Group
at the University of Sydney, and EPSRC grant GR/T00658/01 during the

time in which this work was done.
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Appendix by Noam D. Elkies (Harvard University)
I. Calculations for the First Case

We compute polynomials X, A, B,Q,Y € C(t) of degrees 4,0,1,2,5,
satisfying

(2) X?+AX + B=QY*~

Without loss of generality, we take X, A, B, Q,Y € Q(t). We may normalize
X,Y to be monic, and translate ¢ so Q = 2 — c. Since (2) has degenerate
solutions with (X, A, B,Y) = (Q(t + b1)%,0,0, Q(t + b1)?), we write

(3) X = Q((t +b1)? + 2by) + 2bst + 2by
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for some scalars by, by, b3, by. Because AX + B = O(t%) at t = oo, we have
Y = (X3/Q)'/? + O(t~2), which determines Y and imposes two conditions
on by, be, b3, by, c. Considered as equations in by, ¢, these conditions are si-
multaneous linear equations, which we solve to obtain

b2 (b3 — bybo)(3b3 — 3bybabs + 203)
4) by = —2(3b3 — 2byb = 3 2.
(4)  ba 6b3( 3 1b2), ¢ 3020,
Then A is the t* coefficient of QY2 — X?3; we compute
b2 b2
(5) A= %(bg — b1bg)? + 3—1)22(661@ + 2b3b3 — 6b7bob3 — 2b1b3b3 + b3b3).
2 3

The identity (2) then holds if the t> and t? coefficients of X3+ AX — QY
vanish. Writing these coefficients in terms of by, bo, b3, we find that they
share a factor bs — bibe that we already encountered in our formula (4)
for c. Namely, the 3 and ¢? coefficients are

6b§ — 6b1b2b% + 6b%b3 — leb%

by — b1b
(6) (b3 — b1b2) 3,
(7) 3 212\1,3 472 6 2 7
(bs — bybo) 1863 + (1563 — 18b2b3)b3 + 15b,b3b3 + (20§ — 6b263)bs — 2b,b3

90, b3
If b3 = byby then ¢ = 0 and by = b3/6, and we calculate A = —b3/3 and
B = 2b2/27. But this makes X3 + AX + B = (X +2(b3/3))(X — (b3/3))2,
so our elliptic curve degenerates to a rational curve with a node (or a cusp
if bo vanishes t00).

Therefore the numerators of the fractions in (6,7) must vanish. The first
of these yields a linear equation in by, which we solve to obtain

2, 13
(8) b — 263(193 + bg)
2(3b5 + b3)
Substituting this into (7) yields 2bb4(3b% — 2b3)/(3b% + b3). We conclude
that 3b3 = 203.

All nonzero solutions of 3b3 = 2b3 are equivalent under scaling. We choose
(b2,b3) = (6,12) and work our way back. We find b; = 10/3, and then
c = —8/9, by = —2, and finally A = 528 and B = 128(12¢ + 31). To
optimize the constants in the resulting family of large integral points on
elliptic curves, we replace ¢ by 6t — (10/3) and renormalize to obtain at last

A =33, B=-18(8t—1), Q = 9t — 10t + 3,

(9) X = 3(108t* — 1203 + 72t> — 28t + 5)
Y = 36(54t° — 60t* 4+ 45¢3 — 2142 + 6t — 1).
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To complete the proof that there are no other solutions, we must also
consider the possibility that the denominator of (4) vanishes, which is to
say by = 0 or by = 0. If by = 0 then the t% and t° coefficients of X3 — QY2
reduce to 3b3 and 6bs(b1bs + bsg). Thus we also have b3 = 0, and then
A = —3b7 and X3 + AX — QY? = 2b3, so the condition on the #* and t>
coefficients holds automatically for any choice of by and c¢. But this makes
X3+ AX + B = (X —2by)(X +by)?, so again we have a degenerate elliptic
curve. If bg3 = 0 but by # 0 we obtain by = 0 and 6by = ba(3¢ — b2). Then
A = —b3(9cy + 4b3)/12, and X3 + AX — QY? has t® coefficient zero but
t? coefficient bjc?/2. Since we assume by # 0, we conclude ¢ = 0, leaving
A = —b3/3 and B = 2b5/27, for the same degenerate elliptic curve as above.

II. Letter from Noam D. Elkies to Don Zagier (1988)
Dear Prof. Zagier,

I have read with considerable pleasure your note on “Large integral points
on elliptic curves”, which Prof. Gross showed me in response to a question.
In the second part of that note you you define a “measure of impressive-
ness”, p, of a large integral point (z,y) on the elliptic curve 23 +az+b = y?
by

p = log(x)/ log(max(Ja|2,[5]%))
and exhibit several infinite families of such points for which p = 9+0(; Oéx).
You conjectured, though, that p could be as large as 10, so I searched for
an infinite family confirming this. What I found was an infinite family of

Pell type for which p =12 — O(loém). The implied constant is quite large—

bigger than 200—so p approaches 12 very slowly, remaining below 5% for =
in the range [1,108] of Odlyzko’s computation, and first exceeding 10 and
11 for = of 51 and 107 digits respectively.

In your note you give a probabilistic heuristic suggesting that p should
never significantly exceed 10. But a naive counting of parameters and con-
straints for a Pell-type family

(10) X3(t)+ A()X(t) + B(t) = Q(t)Y2(t)

(in which A, B are polynomials of low degree, ) is a quadratic polynomial
in ¢, and X, Y are polynomials of large degree) suggests that (10) should
have several solutions with p — 12, most simply with A constant, B lin-
ear, X quartic and Y quintic. Actually finding such a solution required a
longish MACSYMA session to solve four nonlinear equations in four vari-
ables, which surprisingly have a unique nontrivial solution, (necessarily)
defined over Q: up to rescaling ¢ and the polynomials A, B, Q, X, Y, the
only solution to (10) is

A=33, B=—18(8t— 1), Q = 9t* — 10t + 3,
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(11) X = 324t* — 360t3 + 216t> — 84t + 15,

Y = 36(54t° — 60t* + 45t — 2142 + 6t — 1).

As it stands, (11) seems of little use because @ is never a square for
t € Z. However, we may rescale (11) by replacing (A4, B, X) by (44 =
132,8B,2X), which yields an integral point provided 2@ is a square. That
Pell-type condition is satisfied by ¢ = 1 and thus by infinitely many ¢,
yielding an infinite family of solutions (b, z,y) to 2® + 132z + b = y? with
x ~ 27253741, The small factor 2729374 = 3.68 - 107 means that, al-
though p eventually approaches 12, the first few admissible values of ¢ yield
only mediocre p: the second such value, ¢ = 15, when b = —17424 and
x = 35334750 (the largest such x to fall within the bounds of Odlyzko’s
search), produces only p = 5.34 and was probably ignored; only the ninth
value t = 812111750209 produces p > 10, and only the eighteenth, t =
—48926085100653611109021839, reaches p > 11.

Some final remarks: Prof. Lang tells me that Vojta’s conjectures imply
the p < 10 + € conjecture except possibly for a finite number of exceptional
families such as those obtained by rescaling (11). Vojta proves this implica-
tion in a yet unpublished paper, but leaves open the existence of exceptional
families. It’s interesting to compare this situation with the similar conjec-
ture of Hall concerning |23 — y?2|, where the best infinite families known
come from the identity

(12) (t2 + 10t + 5)% — (12 + 22t +125)(t> + 4t — 1)* = 1728t

(Exer. 9.10 in Silverman’s The Arithmetic of Elliptic Curves, attributed to
Danilov, Math. Notes Acad. Sci. USSR 32 (1982), 617-8), which yields Pell-
type solutions with p tending this time to the “correct” value of 6. There
is a natural reason (which Danilov does not mention in his article) for (12)
to be defined over Q: the fifth modular curve (j(z),j(5z)) is rationally

parametrized by

4 t2 4+ 10t +5)% 1

i) = 5ty = EEE sy - 4,
and f(t) is a sixth-degree rational function with a fifth-order pole at infinity
(a cusp), two third-order zeros (CM by (1 ++/=3)) and two second-order
values of 1728 (CM by /—1 = i; the appearance of z = %(z + 2) when
j(z) = j(5z) = 1728 splits the other two inverse images of 1728 under f)—
hence (12). I have no similar rationale for (11), nor for why it gives “too
large” a value of p.

Sincerely,
(signed)
Noam D. Elkies
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