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Journal de Théorie des Nombres
de Bordeaux 19 (2007), 27-39

Small points on a multiplicative group and class
number problem

par Francesco AMOROSO

Résumé. Soit V une sous-variété algébrique du tore Gn
m ↪→ Pn et

notons V ∗ le complémentaire dans V de l’adhérence de Zariski de
l’ensemble des points de torsion de V . Par un théorème de Zhang,
V ∗ est discrète pour la métrique induite par la hauteur normalisée
ĥ. Nous décrirons certaines versions quantitatives de ce résultat,
proche des conjectures les plus précises que l’on puisse formuler, et
ses applications à l’étude du groupe de classes d’idéaux de certains
corps de nombres.

Abstract. Let V be an algebraic subvariety of a torus Gn
m ↪→ Pn

and denote by V ∗ the complement in V of the Zariski closure of the
set of torsion points of V . By a theorem of Zhang, V ∗ is discrete
for the metric induced by the normalized height ĥ. We describe
some quantitative versions of this result, close to the conjectural
bounds, and we discuss some applications to study of the class
group of some number fields.

1. Lehmer’s problem

Let α ∈ Q and let K be a number field containing α. We denote by MK

the set of places of K. For v ∈ K, let Kv be the completion of K at v and
let | · |v be the (normalized) absolute value of the place v. Hence, if v is an
archimedean place associated with the embedding σ : K ↪→ Q

|α|v = |σα|,

and, if v is a non archimedean place associated with the prime ideal P over
the rational prime p,

|α|v = p−λ/e,

where e is the ramification index of P over p and λ is the exponent of
P in the factorization of the ideal (α) in the ring of integers of K. This
normalization agrees with the product formula∏

v∈MK

|α|[Kv :Qv ]
v = 1

Manuscrit reçu le 31 décembre 2005.
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which holds for α ∈ K∗. We define the Weil height of α by

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α|v, 1}.

More generally, if α = (α0 : · · · : αn) ∈ Pn(K), we define the Weil height
of α as

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α0|v, · · · , |αn|v}.

It is easy to see that these definitions do not depend on the field K con-
taining the coordinates of α. The height of an algebraic number satisfies:

i) h(α) = 0 if and only if α = 0 or α is a root of unity.
ii) h(αn) = |n|h(α) for any integer n.

It is therefore natural to ask for a lower bound h(α) ≥ f(d) for non
torsion α ∈ Q∗ of degree d, where f is a positive function. Looking at 21/d

we see that the best possible lower bound for such an α is

(1) h(α) ≥ c

d
,

where c > 0 is an absolute constant.
This problem was considered for the first time by Lehmer in [18]. More

precisely, Lehmer considers the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

which has precisely one root α on (1,∞). Since α is a Salem number (i.e.,
all the conjugates of α, except α itself and α−1, lie on the unit circle), its
height is

h(α) =
log α

10
.

Notice that α ≈ 1.176. In the quoted paper, Lehmer asks for the following
problem:

If ε is a positive quantity, to find a polynomial of the form f(x) =
xr + a1x

r−1 + ... + ar where the a’s are integers, such that the absolute
value of the product of those roots of f which lie outside the unit circle,
lies between 1 and 1+ε. (...) Whether or not the problem has a solution for
ε < 0.176 we do not know.

The best known result in the direction of (1) is Dobrowolski’s theorem
(cf. [15]), which implies

Theorem 1.1 (Dobwolski, 1979).
For any ε > 0 there exists c(ε) > 0 such that, for all non torsion points
α ∈ Q∗ of degree d,

h(α) ≥ c(ε)
d1+ε

.
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More generally, we can look for lower bounds for the height for special
families of numbers. Let S be a set of algebraic numbers and let µ be the
set of roots of unity. Let’s define, for d ∈ N,

fS(d) = inf{h(α) such that α ∈ S\µ, α 6= 0, [Q(α) : Q] ≤ d} .

For instance we have (see [29]),

Theorem 1.2 (Smyth, 1971).
If α ∈ Q∗ is not a reciprocal number (i.e., if α−1 is not an algebraic conju-
gate of α), then

h(α) ≥ log θ0

[Q(α) : Q]
,

where θ0 > 1 is the only real root of the equation x3 − x− 1 = 0.

Also, Mignotte (see [20]) gives a positive answer to Lehmer’s problem for
any α of degree d such that there exists a prime p ≤ d log d which splits com-
pletely in Q(α). More recently, Lehmer’s problem was solved by Borwein,
Dobrowolski and Mossinghoff (see [12]) for algebraic integers whose minimal
polynomial has coefficients all congruent to 1 modulo a fixed m ≥ 2.

Hence, if S is the set of non reciprocal numbers, or the set of algebraic
α such that there exists a prime p ≤ [Q(α) : Q] log([Q(α) : Q]) which
splits completely in Q(α), or the set of algebraic integers whose minimal
polynomial has coefficients all congruent to 1 modulo a fixed m ≥ 2, then

fS(d) ≥ c

d

for some absolute constant c > 0.

For other set S we know even more than Lehmer:

(2) fS(d) ≥ c

for an absolute constant c. For instance, if Q(α) is a totally real field and
α 6= ±1, then, by a special case of a result of Schinzel (see [25]),

h(α) ≥ 1
2

log ϕ

where ϕ is the golden ratio 1+
√

5
2 . This also holds if Q(α) is a CM field,

provided that1 |α| 6= 1 (op. cit.). This last condition can be very restrictive
for some applications; it was removed for abelian extensions2 in [8]:

1In a CM field |α|v = 1 for an archimedean place if and only if |α|v = 1 for any archimedean
place.

2We remark that there exist algebraic numbers α (necessarly of absolute value 1 by Schinzel’s
result) with positive and arbitrarily small height such that Q(α) is a CM field (see [9]).
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Theorem 1.3 (A. – Dvornicich, 2000).
Let α ∈ Q∗ not a root of unity, and assume that Q(α)/Q is an abelian
extension. Then

h(α) ≥ log 5
12

.

As remarked before, given an arbitrary algebraic number α, we cannot
hope for nothing more than Lehmer’s conjecture. Nevertheless, if we look
at several multiplicatively independent numbers, we have a bound which is
close to (2).

Theorem 1.4 (A. – David, 1999).
Let α1, . . . , αn ∈ Q∗ multiplicatively independent. Then, for any ε > 0

max{h(α1), . . . , h(αn)} ≥ c(n, ε)
d1/n+ε

where d = [Q(α1, . . . , αn) : Q] and c(n, ε) > 0.

This result is better understood in the more general setting of the next
section.

2. Lower bounds for the height in Gn
m

2.1. Normalized height and essential minimum. Let h be a height
on subvarieties of Pn(Q), for instance the height defined by Philippon in
[22] or an other equivalent: for our purposes two projective heights h1 and
h2 are equivalent if for any subvariety3 V we have

|h1(V )− h2(V )| ≤ cdeg(V )

for some c > 0 independent of V . We consider the n power of the multi-
plicative group Gn

m which is naturally embedded in Pn. We denote by [l]
the “multiplication" by l ∈ Z in Gn

m(Q). Let, as in the rest of this paper, V
be a subvariety4 of Gn

m(Q); by degree deg(V ) and height h(V ) we mean the
degree and the height of the Zariski closure of V in Pn. Following David
and Philippon (see [14]), we define the normalized height ĥ(V ) of V by a
limit process:

ĥ(V ) = lim
l→+∞

h([l]V ) deg(V )
l deg([l]V )

The same height can be defined using Arakelov theory. It satisfies:
i) ĥ(·) is non-negative;
ii) for every l ∈ N we have

ĥ([l]−1V ) = lcodim(V )−1ĥ(V )

3By a subvariety of Pn(Q) we mean an algebraic and geometrically irreducible subvariety
defined over Q.

4V is a subvariety of Gn
m(Q) if V = Ṽ ∩ Gn

m(Q), where Ṽ is a subvariety of Pn(Q).
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iii) for every torsion point ζ we have ĥ(ζV ) = ĥ(V ).

For θ ≥ 0 let

V (θ) = {α ∈ V (Q) such that ĥ(α) ≤ θ},

where ĥ(α) = h
(
(1 : α1 : · · · , αn)

)
. Hence V (0) is the set of torsion points

on V . It is now important to recall the former Manin-Mumford conjecture
for Gn

m (see [17]):

Theorem 2.1 (Laurent, 1984).
The Zariski closure of V (0) is a finite union of translates of subtori by
torsion points (= torsion varieties).

Let define the essential minimum µ̂ess(V ) of V as the infimum of the set
of θ ≥ 0 such that V (θ) is Zariski dense in V . Then (see [30]),

Theorem 2.2 (Zhang, 1995).
The following assertions are equivalent:

i) V is torsion;
ii) µ̂ess(V ) = 0;
iii) ĥ(V ) = 0.

More precisely, the equivalence between ii) and iii) follows by a special
case of Zhang’s inequality (see again [30]), which shows that the normalized
height and the essential minimum are closely related:

µ̂ess(V ) ≤ ĥ(V )
deg(V )

≤ (dim(V ) + 1)µ̂ess(V ).

2.2. Lower bounds. Let V be a subvariety of Gn
m(Q) and let K be a

subfield of Q. We denote by V
K the union of the orbit of V under the

action of Gal(Q/K); therefore

deg
(
V

K)
= [LK : K] deg(V ),

where L is the field of definition of V .
Let us also define the “obstruction index" of V over K as the minimum

ωK(V ) of deg
(
Z

K)
where Z is an hypersurface containing V . For instance,

if V = {α} ⊆ Gn
m(Q),

(3) ωK(V ) ≤ n[K(α) : K]1/n

by a linear algebra argument.

We propose two conjectural lower bounds for the essential minimum:

Conjecture 2.3 (A. – David, 1999–2003).
There exists c(n) > 0 having the following properties.
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• Arithmetic case. Let us assume that V is not contained in any
proper torsion subvariety. Then,

µ̂ess(V ) ≥ c(n)
ωQ(V )

.

• Geometric case. Assume further that V is not contained in any
translate of a proper subgroup. Then,

µ̂ess(V ) ≥ c(n)
ωQ(V )

.

As for Lehmer’s conjecture, the previous statement is best possible, since

µ̂ess([l]−1V ) = lµ̂ess(V ) and ωK([l]−1V ) ≤ lωK(V ).

In [2], [3] and [4] we prove that conjecture 2.3 holds up to an ε > 0.

Theorem 2.4 (A. – David, 1999–2003).
For any ε > 0 there exists c(n, ε) > 0 having the following properties.

• Arithmetic case. Let us assume that V is not contained in any
proper torsion subvariety. Then,

µ̂ess(V ) ≥ c(n, ε)
ωQ(V )1+ε

.

• Geometric case. Assume further that V is not contained in any
translate of a proper subgroup. Then,

µ̂ess(V ) ≥ c(n, ε)
ωQ(V )1+ε

.

We remark that a 0-dimensional variety V = {α} is contained in a proper
torsion subvariety if and only if α1, . . . , αn are multiplicatively dependent.
Moreover

µ̂ess(V ) = h(α) ≤ max{h(α1), . . . , h(αn)} and ωQ(V ) ≤ nd1/n.

by (3), where d = [Q(α) : Q]. Therefore the lower bound

max{h(α1), . . . , h(αn)} ≥ c(n, ε)
d1/n+ε

of theorem 1.4 for multiplicatively independent α1, . . . , αn is a corollary of
theorem 2.4.
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2.3. Small points. Let V be a non-torsion subvariety of Gn
m(Q) and de-

fine V ∗ as the complement in V of the union of torsion subvarieties con-
tained in V . Then, theorem 2.2 implies that the height on V ∗(Q) is bounded
from below by a positive quantity.

Similarly, if V is not a union of translates of subgroups we define, follow-
ing [11], V 0 as the complement in V of the union of translate of subgroups
B of positive dimension with B ⊆ V . Bombieri and Zannier (see [11]) and
Schmidt (see [26]) prove that, outside a finite set, the height on V 0(Q) is
bounded from below by a positive quantity depending only on the ideal of
definition of V and not on its field of definition. Later, their lower bound
was strongly improved by David and Philippon (see [14]).

Let K be any subfield of Q and define δK(V ) as the minimum integer δ

such that V is the intersection of hypersurfaces Z1, . . . , Zr with deg Zj
K ≤

δ. Then (
deg V

K)1/codim(V ) ≤ δK(V ) ≤ deg V
K

.

and both lower and upper bounds can be attained.

We propose the following conjectural lower bounds for the distribution
of small points:

Conjecture 2.5 (A. – David, 2004–2005).
There exists c(n) > 0 having the following properties.

• Arithmetic case. For any α ∈ V ∗(Q) we have

h(α) ≥ c(n)
δQ(V )

.

• Geometric case. For all but finitely many α ∈ V 0(Q) we have

h(α) ≥ c(n)
δQ(V )

.

In [5] and [6] we prove that conjecture 2.5 holds up to an ε > 0.

Theorem 2.6 (A. – David, 2004–2005).
For any ε > 0 there exists c(n, ε) > 0 having the following properties.

• Arithmetic case. For any α ∈ V ∗(Q) we have

h(α) ≥ c(n, ε)
δQ(V )1+ε

.

• Geometric case. For all but finitely many α ∈ V 0(Q) we have

h(α) ≥ c(n, ε)
δQ(V )1+ε

.
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2.4. More conjectures and results.

• The proofs in the quoted papers [2], [4], [5] and [6] follow the usual
steps of a transcendence proof: interpolation (construction of an auxiliary
function), extrapolation, zero estimates and conclusion. Unfortunately, for
subvarieties of codimension > 1, we need a rather technical extra step
(descent argument). It will be very interesting to find an alternative proof
removing this extra step. Recently C. Pontreau succeeds in this task for
subvarieties of G2

m(Q) in the arithmetic case (see [23]) and for subvarieties
of G3

m(Q) in the geometric case.

• In the geometric case of conjecture 2.5 we could ask for an upper bound
for the exceptional points:

Conjecture 2.7 (A. – David, 2005).
There exist translates of subgroups B1, . . . , Bm ⊆ V with

deg(B1) + · · ·+ deg(Bm) ≤ c(n)−1δQ(V )n.

such that

h(α) ≥ c(n)
δQ(V )

.

for any α ∈ V (Q) outside B1 ∪ · · · ∪Bm.

Recently, Pontreau gives some partial results in this direction for curves
in G2

m and for surfaces in G3
m (see [24])

• The arithmetic part of conjectures 2.3 and 2.5 can be generalized by
replacing Q with Qab. For instance, for the essential minimum we can for-
mulate:

Conjecture 2.8 (A. – David, 2005).
Let V be a subvariety of Gn

m(Q) which is not contained in any torsion
subvariety. Then,

µ̂ess(V ) ≥ c(n)
ωQab(V )

.

For n = 1 (“relative Lehmer Problem") this conjecture was proved up to
an ε (see [10]).

Theorem 2.9 (A. – Zannier, 2000).
Let α ∈ Q∗ not a root of unity and let ε > 0. Then

h(α) ≥ c(ε)
d1+ε

.

where c(ε) > 0 and d = [Qab(α) : Qab].
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3. Size of the class group of some fields

Lower bounds for the height can be used to obtain informations on the
size of the ideal class group of a field K, following a general construction
which we summarize as follows :

I) Let assume that the ideal class group of K is “small" and construct
algebraic integers of small norm by analytic methods.

II) Construct algebraic numbers of small height from algebraic integers
of small norm.

III) Use lower bounds for the height to get a contradiction.
In the next three subsections we describe how this construction works for

cyclotomic fields, for CM fields and for other more general fields. To simplify
the notations, we only state the results concerning the exponent of the class
group, i.e., the smallest positive integer e such that Ie is principal for any
ideal I of K, although the method can give more general informations on
the size of the class group and on its Galois structure. As we see in the
next subsections, this construction produces a good lower bound for the
exponent for families of fields for which it is known, by classical methods,
that the class number goes to infinity.

3.1. Cyclotomic fields. Let’s start by the simpler case of a cyclotomic
field Km = Q(ζm) where ζm is a m-th primitive root of unity. Let em be
the exponent of the class group of Km.

I) By Linnik’s theorem, there exists an absolute constant L and a prime
p ≤ mL which splits completely in Km. Let P be a prime ideal of Km over
p; by definition P em = (γ) for some integer γ ∈ Km. We have

|NKm
Q γ| = pem ≤ mLem .

II) Let α = γ/γ. Then, |α|v = 1 for every archimedean place v ∈ MKm

and, if v ∈MKm is non archimedean

|α|v =


p−em , if v is associated to P ;
pem , if v is associated to P ;
1, otherwise.

Therefore
h(α) =

em log p

[Km : Q]
≤ emL log m

ϕ(m)
,

where ϕ(·) is the Euler function.

III) Since Km/Q is abelian, we can use theorem 1.3:
log 5
12

≤ h(α) ≤ emL log m

ϕ(m)
.
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We obtain (see [7]):

Theorem 3.1 (A. – Dvornicich, 2003).
The exponent em of the class group of the m-th cyclotomic field satisfies

em ≥ log 5
12L

× ϕ(m)
log m

.

3.2. CM fields. If we want to obtain similar results for a CM field K,
then we must take into account two main problems: first, there are no sharp
unconditional results as Linnik’s theorem, second as K/Q need not to be
abelian, we cannot use theorem 1.3.

The construction of subsection 3.1 can be modified as follows. Let ∆ be
the discriminant of K, d = [K : Q] and let eK be the exponent of the class
group of K.

I) Assume the Generalized Riemann Hypothesis for the Dedekind zeta
function of K. Then, the effective Chebotarev’s theorem of Lagarias and
Odlyzko (see [16]) gives primes ideals P1, . . . , Pn of K of degree 1, non-
ramified over Q, and such that

log |NK
Q Pj | ≤ 3 log log |∆|+ c(n)

where c(n) depends only on n. As before P eK
j = (γj) for some integers

γj ∈ K.

II) As for cyclotomic fields, let αj = γj/γj ; then

h(αj) ≤
eK(3 log log |∆|+ c(n))

d
.

III) Since α1, . . . , αn are easily seen to be multiplicatively independent, we
can apply theorem 1.4, which gives:

eK ≥ c(n, ε)d1−1/n−ε

3 log log |∆|+ c(n)

for any ε > 0. This inequality is good, except if |∆| is very big with respect
to d. In this last situation it is better to use the lower bound

h(α1) ≥
log |∆| − d log d

2d(d− 1)

which easily follows by Hadamard’s inequality since α1 is a generator of K
and so disc(α1) | ∆ (see [27] or [28] for details). This gives:

ek ≥
log |∆| − d log d

2(d− 1)(3 log log |∆|+ c(1))

Putting together these two lower bounds we get (see again [7]):
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Theorem 3.2 (A. – Dvornicich, 2003).
Let K be a CM field of discriminant ∆ and degree d. Then, assuming the
Generalized Riemann Hypothesis for the Dedekind zeta function of K, for
any ε > 0 the exponent eK of the class group of K satisfies:

eK ≥ max
{

C log |∆|
d log log |∆|

, C(ε)d1−ε
}

,

where C and C(ε) are positive constants.

We recall that, under suitable assumptions, the class number of a CM
field goes to infinity with |∆| (see [21]). Theorem 3.2 proves, under GRH,
the corresponding result for the exponent, giving a positive answer to a
conjecture of Louboutin and Okazaki [19].

3.3. Some other fields. The main problem in extending the method of
section 3.2 to other fields is the construction of algebraic numbers of small
height from integers of small norm. A first attempt to attack this problem is
the following. Let K be a number field of discriminant ∆ and degree d and
let γ1, . . . , γt ∈ OK of norm ≤ x. Let also r be the rank of the unit group
EK , δ be a bound for the sum of the height of a system of generators of
EK/(EK)tors and let m and N be two positive integers satisfying mN r < t.
The box principle gives m units u1, . . . , um and m + 1 distinct indexes
i0, i1, . . . , im ∈ {1, . . . , t} such that

h(ujγijγ
−1
i0

) ≤ log x

d
+

δ

N

for j = 1, . . . ,m. Unfortunately, r is at least d/2 and so the parameter
t must be exponential in the degree, excluding in most cases reasonable
applications.

Let Γ be the group of Q-automorphisms of K; to avoid this undesired
growth, we assume that there exists a “small" φ in the group ring Z[Γ] such
that the rank of Eφ

K is also small. More precisely, let ‖φ‖1 be the sum of the
absolute values of the coefficients of φ, let rφ = rank(Eφ

K) and let δφ be a
bound for the sum of the height of a system of generators of (EK)φ/(EK)tors.
Then, if mN rφ < t we can find as before m units u1, . . . , um and m + 1
distinct indexes i0, i1, . . . , im ∈ {1, . . . , t} such that

h(ujγijγ
−1
i0

) ≤ ‖φ‖ log x

d
+

δφ

N

for j = 1, . . . ,m. This construction could give a good lower bound for the
exponent (using effective Chebotarev’s theorem and lower bounds for the
height as in subsection 3.2), if

‖φ‖1rφ log
(
dδφ/(rφ + 1) + 2

)
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is small. For instance, let α be a Salem number and let τ ∈ Γ defined by
ατ = α−1. Put φ = 1 − τ . Then ‖φ‖1 = 2, rφ = 1 and dδφ ≤ 2 log α. We
obtain (see [1]):

Theorem 3.3 (A., 2005).
Let α be a Salem number and let K = Q(α). Then, assuming the Gener-
alized Riemann Hypothesis for the Dedekind zeta function of K, for any
ε > 0 the exponent of the class group of K satisfies:

eK ≥ max(Cd−1 log |∆|, Cεd
1−ε)

log log |∆|+ log(log α + 2)
.

We mention that an analogous result for the class number of the field
generated by a Salem number was proved in [13] using a relation between
Salem numbers and the derivative at 0 of an Artin L-function.
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