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Van der Corput sequences towards general
(0,1)–sequences in base b

par Henri FAURE

Résumé. A la suite de travaux récents sur les suites à faible dis-
crépance unidimensionnelles, on peut affirmer que les suites de
van der Corput originales sont les plus mal distribuées pour di-
verses mesures d’irrégularités de distribution parmi deux grandes
familles de (0, 1)–suites, et même parmi toutes les (0, 1)–suites
pour la discrépance à l’origine D∗. Nous montrons ici que ce n’est
pas le cas pour la discrépance extrême D en produisant deux types
de suites qui sont les plus mal distribuées parmi les (0, 1)–suites,
avec une discrépance D essentiellement deux fois plus grande. En
outre, nous donnons une présentation unifiée pour les deux géné-
ralisations connues des suites de van der Corput.

Abstract. As a result of recent studies on unidimensional low
discrepancy sequences, we can assert that the original van der
Corput sequences are the worst distributed with respect to var-
ious measures of irregularities of distribution among two large
families of (0, 1)–sequences, and even among all (0, 1)–sequences
for the star discrepancy D∗. We show in the present paper that
it is not the case for the extreme discrepancy D by producing
two kinds of sequences which are the worst distributed among all
(0, 1)–sequences, with a discrepancy D essentially twice greater.
In addition, we give an unified presentation for the two general-
izations presently known of van der Corput sequences.

1. Introduction

The van der Corput sequence is the prototype of large families of mul-
tidimensional sequences with very low discrepancy widely used in Monte
Carlo and quasi-Monte Carlo methods, especially in numerical integration.
The precursors are Halton (1960), using arbitrary coprime bases for each
dimension, and Sobol’ (1966) using only the base 2 with the action of
primitive polynomials for each dimension. Next, the author (1982) pro-
posed constructions with prime bases using powers of the Pascal matrix
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for each dimension and finally Niederreiter (from 1987, see [12]) worked
out a general family of sequences including Sobol’ and Faure constructions,
but not Halton one, which he named (t, s)–sequences, with reference to the
dimension s and to a quality parameter t ≥ 0 (the lowest t, the lowest dis-
crepancy). Due to the research of improvements for numerical applications
(speeding up of convergence), a lot of people have recently concentrated
on the onedimensional case ([2], [3], [6]-[10], [15]) obtaining precise results,
mainly in base 2, which permit a better understanding of the behavior of
(0, 1)–sequences.

It is the aim of this article to continue this effort and to go farther in
the comparison with the original van der Corput sequences in arbitrary
bases. At the outset is a question of the referee for [7] who asked whether
the van der Corput sequence is the worst distributed among general (0, 1)–
sequences with respect to usual distribution measures. In [7], we showed
it is the worst with respect to D∗, D, T ∗, T (see Section 2 for definitions)
among two large families of special (0, 1)–sequences, the so-called permuted
van der Corput sequences and NUT digital (0, 1)–sequences (see Sections
3 and 4). Moreover, Kritzer [8] has just proved that it is also the worst
with respect to D∗ among general (0, 1)–sequences in the narrow sense.
Therefore, it seemed natural it should be also the worst with respect to D.
We show in Theorems 2 and 3 (Section 5) that it is not the case and we
find sequences which are the worst with respect to D among general (0, 1)–
sequences. Before, in Theorem 1, we extend slightly the result of Kritzer
to general (0, 1)–sequences in the broad sense; this subtle difference was
introduced by Niederreiter and Xing [13] to make quite clear the definition
of (t, s)–sequences for their complex constructions. It permits also (see the
proposition in Section 3.3) an unified presentation of the two main fami-
lies in one dimension, the permuted and the digital (0, 1)–van der Corput
sequences .

2. Discrepancies

Let X = (xn)n≥1 be an infinite sequence in [0, 1], N ≥ 1 an integer and
[α, β[ a sub-interval of [0, 1]; the error to ideal distribution is the difference

E([α, β[;N ;X) = A([α, β[;N ;X)−Nλ([α, β[)

where A([α, β[;N ;X) is the number of indices n such that 1 ≤ n ≤ N and
xn ∈ [α, β[ and where λ([α, β[) is the length of [α, β[.

To avoid any ambiguity, recall that [α, β[= [0, β[∪[α, 1] if α > β ([1],
p.105), so that λ([α, β[) = 1−α+β and E([α, β[; k;X) = −E([β, α[; k;X).
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Definition of the L∞–discrepancies:

D(N,X) = sup
0≤α<β≤1

|E([α, β[;N ;X)|,

D∗(N,X) = sup
0≤α≤1

|E([0, α[;N ;X)|,

D+(N,X) = sup
0≤α≤1

E([0, α[;N ;X),

D−(N,X) = sup
0≤α≤1

(−E([0, α[;N ;X)).

Usually, D is called the extreme discrepancy and D∗ the star discrepancy;
D+ and D− are linked to the preceding one’s by

D(N,X) = D+(N,X) +D−(N,X)

and

D∗(N,X) = max(D+(N,X), D−(N,X)).

Note that D∗ ≤ D ≤ 2D∗.

Definition of the L2–discrepancies:

T ∗(N,X) =
( ∫ 1

0
E2([0, α[;N ;X

)
dα

) 1
2
,

T (N,X) =
( ∫ 1

0

∫ 1

0
E2([α, β[;N ;X

)
dα dβ

) 1
2
.

We have chosen these definitions, introduced in [11], because they show
the parallel with the L∞–discrepancies, but usually T ∗ is called the L2–
discrepancy (and is denoted by T ). In dimension one, π

√
2 T = F where F

is the diaphony introduced by Zinterhof :

F (N,X) =
(

2
∞∑

m=1

1
m2

∣∣∣∣ N∑
n=1

exp(2iπmxn)
∣∣∣∣2)

1
2

.

3. Generalized van der Corput sequences

3.1. Permuted van der Corput sequences. These sequences have been
introduced by the author in [4], where an extention in variable bases is also
proposed; we restrict here to fixed bases b.

Let b ≥ 2 be an integer. For integers n and N with n ≥ 1 and 1 ≤ N ≤ bn,
write

N − 1 =
∞∑

r=0

ar(N) br

in the b–adic system (so that ar(N) = 0 if r ≥ n) and let Σ = (σr)r≥0 be a
sequence of permutations of {0, 1, . . . , b− 1}.
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Then the permuted van der Corput sequence SΣ
b in base b associated with

Σ is defined by

SΣ
b (N) =

∞∑
r=0

σr
(
ar(N)

)
br+1

·

If (σr) = (σ) is constant, we write SΣ
b = Sσ

b .
The original van der Corput sequence in base b, SI

b , is obtained with the
identical permutation I.

3.2. Digital (0, 1)–van der Corput sequences. To simplify, we deal
only with prime bases b. Instead of permutations, we consider here the ac-
tion on the digits of infinite N×N matrices over Fb. The following definition
is the extension to bases b of the definition in base two given by Larcher
and Pillichshammer in [9] and [15].

Let C = (crk)r≥0,k≥0 be an infinite matrix with entries crk ∈ Fb such that,
for any integer m ≥ 1, every left upper m×m submatrix is non singular.

Then the digital (0, 1)–van der Corput sequence XC
b in base b associated

with C is defined by

XC
b (N) =

∞∑
r=0

xN,r

br+1
in which xN,r =

∞∑
k=0

ckrak(N),

where the ak(N) are defined as in 3.1.
Note that the second summation is finite and performed in Fb, but the

first one can be infinite and is performed in the reals, with the possibility
that xN,r = b− 1 for all but finitely many r.

An important particular case is the case of non singular upper triangular
(NUT) matrices C, for which the first summation is finite. These sequences
are called NUT digital (0, 1)–sequences.

Of course, we obtain the original van der Corput sequence SI
b with the

identity matrix (see the beginning of Subsection 4.2.2 for more information).

3.3. General (0, 1)–sequences in base b. The concept of (t, s)–sequen-
ces has been introduced by Niederreiter (see for instance [12]) to give a
general framework for various constructions of s–multidimensional low dis-
crepancy sequences and to obtain further constructions. Smaller values of
the integer t ≥ 0 give smaller discrepancies. But, in order to give sense to
new important constructions, Niederreiter and Xing ([13] and [14] where
many other references are given) as well as Tezuka [16] have been led to
slightly generalize the original definition by using the so-called truncation
we introduce now, restricting ourselves to the one-dimensional case we are
only interested with in the present study.
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Truncation : Let x =
∞∑
i=1

xib
−i be a b–adic expansion of x ∈ [0, 1], with

the possibility that xi = b− 1 for all but finitely many i. For every integer

m ≥ 1, define [x]b,m =
m∑

i=1

xib
−i (depending on x via its expansion).

An elementary interval in base b is an interval in the shape of [ a
bd ,

a+1
bd [

with integers a, d such that d ≥ 0 and 0 ≤ a < bd.
A sequence (xN )N≥1 (with prescribed b-adic expansions for each xN ) is

a (t, 1)–sequence in base b (in the broad sense) if for all integers l,m ≥ t,
every elementary interval E with λ(E) = bt−m contains exactly bt points
of the point set

{[xN ]b,m ; lbm + 1 ≤ N ≤ (l + 1)bm}.

The original definition of (t, 1)–sequences was the same with xN instead
of [xN ]b,m in the definition of the point set above. These sequences are
now called (t, 1)–sequences in the narrow sense and the others just (t, 1)–
sequences (Niederreiter-Xing [13], Definition 2 and Remark 1); in this pa-
per, we use intentionally the expression (in the broad sense) to emphasize
the difference.

In the following, we deal only with the most interesting case of (0, 1)–
sequences.

Proposition 3.1. The two generalizations of van der Corput sequences
defined in subsections 3.1 and 3.2 are (0, 1)–sequences in base b (in the
broad sense).

Remark. Here, the truncation is required for the sequences SΣ
b when

σr(0) = b−1 for all sufficiently large r
(
recall that SΣ

b (N) =
∞∑

r=0

σr
(
ar(N)

)
br+1

)
and for the sequences XC

b when the matrix C gives digits xN,r = b − 1

for all sufficiently large r (recall that XC
b (N) =

∞∑
r=0

xN,r

br+1
with xN,r =

∞∑
k=0

ckrak(N)).

Proof. For digital (0, 1)–sequences XC
b , this property is already known. In-

deed, the concept of (t, s)–sequence has been worked out from the first
constructions of digital (t, s)–sequences by Sobol’ and Faure in which the
matrices C were NUT.

For permuted sequences SΣ
b , the property has never been pointed out.

We outline the proof hereafter.
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According to the definitions, we have to prove that for arbitrary integers
l,m ≥ 0, every elementary interval [ab−m, (a + 1)b−m[, with 0 ≤ a < bm,
contains one and only one point of the point set {[xN ]b,m ; lbm + 1 ≤ N ≤
(l + 1)bm}, in which xN = SΣ

b (N).
Let N − 1 =

∑∞
r=0 ar(N) br be the b–adic expansion of N − 1. The

condition lbm+1 ≤ N ≤ (l+1)bm implies that ar(N) is uniquely determined
for all r ≥ m.

Now, write that [xN ]b,m ∈ [ab−m, (a+ 1)b−m[:

ab−m ≤
∑m−1

r=0 σr
(
ar(N)

)
b−(r+1) < (a+ 1)b−m,

which is equivalent to

a ≤ σ0
(
a0(N)

)
bm−1 + σ1

(
a1(N)

)
bm−2 + · · ·+ σm−1

(
am−1(N)

)
< a+ 1,

that is

a = σ0
(
a0(N)

)
bm−1 + σ1

(
a1(N)

)
bm−2 + · · ·+ σm−1

(
am−1(N)

)
,

which determine uniquely the σr
(
ar(N)

)
’s for 0 ≤ r ≤ m− 1.

Finally, since the σr’s are bĳections, we have found the remaining digits
of N − 1 and the given data l,m, a of our assumption determine an unique
point belonging to the elementary interval. �

4. Overview of previous results

4.1. Results on permuted van der Corput sequences. These results
come from preceding studies ([4] and [1]); we recall them to show the parallel
with digital (0,1)–sequences and for future use. We are only concerned by
the exact formulas; we refer to the papers above for the various asymptotic
behaviours resulting from these formulas. Until now this family gives the
best sequences with respect to low discrepancies, the L∞ one (see [4], [5])
as well as the L2 one (see [1]).

Functions ϕσ
b,h related to a pair (b, σ).

Set Zσ
b =

(σ(0)
b
, · · · , σ(b− 1)

b

)
. For any integer h with 0 ≤ h ≤ b − 1,

the real function ϕσ
b,h is defined as follows:

Let k be an integer with 1 ≤ k ≤ b; then for every x ∈ [k−1
b , k

b [ we set:

ϕσ
b,h(x) = A

(
[0,

h

b
[; k;Zσ

b

)
− hx if 0 ≤ h ≤ σ(k − 1) and

ϕσ
b,h(x) = (b− h)x−A

(
[
h

b
, 1[; k;Zσ

b

)
if σ(k − 1) < h < b;

finally the function ϕσ
b,h is extended to the reals by periodicity. Note that

ϕσ
b,0 = 0.
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The functions ϕσ
b,h give rise to other functions, depending only on (b, σ),

in accordance with the notion of discrepancy we deal with. Set

ψσ,+
b = max

0≤h≤b−1
(ϕσ

b,h) , ψσ,−
b = max

0≤h≤b−1
(−ϕσ

b,h) ,

ψσ
b = ψσ,+

b + ψσ,−
b , χσ

b =
∑

0≤h<h′≤b−1

(ϕσ
b,h − ϕσ

b,h′)
2.

Then, for arbitrary bases b ≥ 2,

D+(N,SΣ
b ) =

∞∑
j=1

ψ
σj−1,+
b

(
N

bj

)
, D−(N,SΣ

b ) =
∞∑

j=1

ψ
σj−1,−
b

(
N

bj

)
,

D(N,SΣ
b ) =

∞∑
j=1

ψ
σj−1

b

(
N

bj

)
and T 2(N,SΣ

b ) =
2
b2

∞∑
j=1

χ
σj−1

b

(
N

bj

)
.

There is also an analogous but more complex formula for T ∗ resulting from
other functions deduced from the ϕσ

b,h; we don’t give it since we are mainly
concerned with D and D∗ in the sequel.

4.2. Results on digital (0, 1)–van der Corput sequences.

4.2.1. In base 2. By Pillichshammer [15] following a study on twodimen-
sional digital point sets by Larcher and Pillichshammer [10]:

For any digital (0, 1)–van der Corput sequence XC
2

D∗(N,XC
2 ) ≤ D∗(N,SI

2) and

.28 ≈ 1
5 log 2

≤ lim
D∗(N,XC1

2 )
logN

≤ 5099
22528 log 2

≈ .32,

where C1 is the NUT matrix whose all entries are 1. It is conjectured that
the lower bound should be the exact value of the limit superior and that the
matrix C1 should give the minimum over all digital (0, 1)–van der Corput
sequences in base 2 (see [10] p.406 for the analog with (0,m, 2)–nets in base
2).

There are other results in base 2 concerning the L2–discrepancy T ∗ of
symmetrisized digital (0, 1)–sequences by Larcher and Pillichshammer [9]
and also a precise study of a family of digital (0, 1)–sequences generated by
special matrices including I and C1 by Drmota, Larcher and Pillichshammer
[3]. But there is nothing in their studies concerning the extreme discrepan-
cies D and T .

4.2.2. In arbitrary prime base b, with NUT matrices. By the au-
thor [6], followed by a comparative study with van der Corput sequences
[7]:

If the generator matrix C is diagonal, we have

XC
b = S∆

b with ∆ = (δr)r≥0 and δr(i) = crri,
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where δr is the multiplication in Fb by the diagonal entry crr.
Now, if C, NUT, is not diagonal, the diagonal entries still determine the

same δr, but the permutations σr in the exact formulas for D+, D−, D∗ and
T ∗ are translated permutations of the δr’s depending on the entries strictly
above the diagonal. To save room, we don’t give these complex formulas
and deal only with D and T .

D(N,XC
b ) =

∞∑
j=1

ψ
δj−1

b

(
N

bj

)
= D(N,S∆

b )

and T 2(N,XC
b ) =

2
b2

∞∑
j=1

χ
σj−1

b

(
N

bj

)
= T 2(N,S∆

b ).

Therefore D(N,XC
b ) and T (N,XC

b ) depend only on the entries on the diag-
onal and their behaviour is the same as permuted van der Corput sequences
with the sequence of permutations ∆.

As a consequence of our preceding studies (see [7]), we can assert that
for arbitrary NUT matrices C we have

D∗(N,XC
b ) ≤ D(N,XC

b ) ≤ D∗(N,SI
b ) = D(N,SI

b ),

T ∗(N,XC
b ) ≤ T ∗(N,SI

b ) and T (N,XC
b ) ≤ T (N,SI

b ).

In other words the original van der Corput sequences SI
b are the worst

distributed sequences among the permuted ones and among the NUT digital
ones (with b prime) with respect to the four measures D∗, D, T ∗ and T .

Moreover our formulas should permit improvements and comparisons, at
least for D and T , between NUT digital sequences as we did for permuted
sequences (see [7] for a first approach).

4.3. Result on (0, 1)–sequences in arbitrary base b. By Kritzer [8],
following a study with Dick on the star discrepancy of (t,m, 2)–nets [2] :

He shows that the original van der Corput sequences are the worst dis-
tributed with respect to the star discrepancy among all (0, 1)–sequences Xb

in the narrow sense and in arbitrary base b ≥ 2, that is

D∗(N,Xb) ≤ D∗(N,SI
b ) = D(N,SI

b ).

This result extends to (0, 1)–sequences in base b in the broad sense (see
below).

5. New results for extreme discrepancies

5.1. On the star discrepancy of (0, 1)–sequences in base b. The
following theorem extends the result of Kritzer [8] on (0, 1)–sequences in
the narrow sense to (0, 1)–sequences (in the broad sense).
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Theorem 5.1. The original van der Corput sequences are the worst dis-
tributed with respect to the star discrepancy among all (0, 1)–sequences Xb

(in the broad sense) and in arbitrary base b ≥ 2, that is

D∗(N,Xb) ≤ D∗(N,SI
b ) = D(N,SI

b ).

Proof. Let be given an integer m ≥ 0 and the collection of elementary
intervals of length b−m. By construction (see [4] Property 3.1.2 with σn−1 =
I), the van der Corput sequence SI

b is the unique (0, 1)–sequence whose
points are in increasing order the most left at the origins of the elementary
intervals and, of course, satisfy the elementary interval property.

Let τ be the permutation defined by τ(k) = b− 1− k for 0 ≤ k ≤ b− 1.
Then, by construction (see [4] Property 3.1.2 with σn−1 = τ), Sτ

b is the
unique (0, 1)–sequence (strictly in the broad sense) whose points are in
increasing order the most right at the extremities of the above elementary
intervals and satisfy the elementary interval property.

Therefore, by the elementary interval property for Xb, for any real α ∈
[0, 1] and any integer N ≥ 1 we have

A([0, α[;N ;Xb) ≤ A([0, α[;N ;SI
b ) and A([0, α[;N ;Xb) ≥ A([0, α[;N ;Sτ

b ).

Now, from the definitions of D+ and D−, we get

D+(N,Xb) ≤ D+(N,SI
b ) and D−(N,Xb) ≤ D−(N,Sτ

b ).

Finally, recalling from [4] (proof of Lemma 4.4.1) that ψτ,+
b = ψI,−

b and
ψτ,−

b = ψI,+
b , we obtain D−(N,Sτ

b ) = D+(N,SI
b ), so that

D∗(N,Xb) = max(D+(N,Xb), D−(N,Xb)) ≤ D+(N,SI
b ) = D∗(N,SI

b ).

Note that ψI,−
b = 0 ([4], 5.5.1) which implies that D−(N,SI

b ) = 0 and
D+(N,Sτ

b ) = 0, so that D∗(N,SI
b ) = D(N,SI

b ) = D∗(N,Sτ
b ) = D(N,Sτ

b ).
�

Remark. 1. The main idea of the proof is in the first sentence; it was
already used by Dick and Kritzer [2] in the context of Hammersley two-
dimensional point sets. But in his paper [8], Kritzer considers only (0, 1)–
sequences in the narrow sense and his proof is longer. The use of the se-
quence Sτ

b , whose functions ψτ,+
b and ψτ,−

b are exchanged with the functions
ψI,−

b and ψI,+
b of SI

b , together with the good control of discrepancy by means
of functions ψ allows a shorter proof.
2. It should be noted that, until now, the concept of (0, 1)–sequences in
the broad sense had not been considered, except in the general context
of multidimensional sequences by Tezuka and Niederreiter and Xing. For
instance, in [9] and [15], Larcher and Pillchshammer define implicitly digital
(0, 1)–sequences in the broad sense (in base 2) by obliging the generator
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matrices to fulfil precise conditions of regularity, but without link to the
extension of Niederreiter and Xing ([13], p. 271).
3. In the broad sense, we can say that there are two worst sequences with
respect to D∗, SI

b and Sτ
b , while in the narrow sense, there is only one, SI

b ,
since Sτ

b is not a sequence in the narrow sense.
4. As to the extreme discrepancy D of (0, 1)–sequences in the broad sense,
we have D(N,Xb) ≤ 2D(N,SI

b ). We shall see in 5.3 that this upper bound
is reached up to an additive constant by special, but not digital, (0, 1)–
sequences in the broad sense.

5.2. On the extreme discrepancy of digital (0, 1)–sequences in
base 2. We show here that the van der Corput sequence in base 2, SI

2 is
not the worst distributed sequence with respect to D among the digital
(0, 1)-sequences in base 2.

Theorem 5.2. Let C2 be the matrix

C2 =



1 0 0 0 · · ·
1 1 0 0 · · ·
1 0 1 0 · · ·
1 0 0 1 · · ·
...

...
...

...
. . .


. Then, for all N ,

2D(N,SI
2)− 5

2
≤ D(N,XC2

2 ) ≤ 2D(N,SI
2) and

D∗(N,SI
2)− 3

2
≤ D∗(N,XC2

2 ) ≤ D∗(N,SI
2) = D(N,SI

2).

Moreover the sequence XC2
2 is the worst distributed among all (0, 1)–sequen-

ces in base 2 (in the broad sense) with respect to D.

Proof. We obtain directly the upper bounds from Theorem 1 and Remark
4 above with b = 2. The lower bounds need more explanation. Computing
the 2–adic digits of XC2

2 as indicated in the definition 3.2, we obtain for all
N ≥ 1

XC2
2 (2N−1) = SI

2(2N−1) ∈ [0,
1
2
[ and XC2

2 (2N) = Sτ
2 (2N−1) ∈ ]

1
2
, 1],

where τ is defined as in 5.1 for b = 2.

First, we concentrate on the discrepancy D+. For every integer N ≥ 1,
we have (since SI

2(2N) ∈ [12 , 1[)

D+(N,XC2
2 ) ≥ sup

0≤α≤ 1
2

E([0, α[;N ;XC2
2 ) = sup

0≤α≤ 1
2

E([0, α[;N ;SI
2).
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Therefore, we have only to deal with SI
2 , which we know well. From the

block construction of that sequence, we get for 0 ≤ α ≤ 1
2

A([0, α[; 2N ;SI
2) = A([0, 2α[;N ;SI

2) and

A([0, α[; 2N − 1;SI
2) = A([0, 2α[;N ;SI

2),

so that

E([0, α[; 2N ;SI
2) = E([0, 2α[;N ;SI

2) and

E([0, α[; 2N − 1;SI
2) = E([0, 2α[;N ;SI

2) + α,

which in turn, taking the supremum over all α ∈ [0, 1
2 ], gives

D+(2N,XC2
2 ) ≥ D+(N,SI

2) and D+(2N − 1, XC2
2 ) ≥ D+(N,SI

2).

Now, for SI
2 we also have the recursion formulas (for all integers M ≥ 1)

D(2M,SI
2) = D(M,SI

2) and

D(2M + 1, SI
2) =

1
2
(D(M + 1, SI

2) +D(M,SI
2) + 1),

from which we deduce that |D(M + 1, SI
2) − D(M,SI

2)| ≤ 1 (indeed, the
property is true for 1 ≤M ≤ 2 and if it is true for all 2n−1 ≤M ≤ 2n, then

0 ≤ D(2M+1, SI
2)−D(2M,SI

2) =
1
2
(D(M+1, SI

2)−D(M,SI
2)+1) ≤ 1 and

0 ≤ D(2M+1, SI
2)−D(2M+2, SI

2) =
1
2
(D(M,SI

2)−D(M+1, SI
2)+1) ≤ 1;

note that according to the parity of M, one of the differences is less than
1
2).

Thanks to this property, we get D+(N,SI
2) = D(N,SI

2) = D(2N,SI
2) ≥

D(2N − 1, SI
2) − 1, so that D+(2N − 1, XC2

2 ) ≥ D(2N − 1, SI
2) − 1 and

therefore for all N , odd or even, we still have D+(N,XC2
2 ) ≥ D(N,SI

2)− 1.

Secondly, we deal with the discrepancy D−. For every integer N ≥ 1, we
have

D−(N,XC2
2 ) = sup

0≤α≤1
(−E([0, α[;N ;XC2

2 )) ≥ sup
1
2
≤α≤1

(−E([0, α[;N ;XC2
2 )).

Since XC2
2 (2N) = Sτ

2 (2N−1) = 1−SI
2(2N−1) ∈ ]12 , 1] and XC2

2 (2N−1) ∈
[0, 1

2 [, for 1
2 ≤ α ≤ 1, we first have

−E([0, α[; 2N ;XC2
2 ) = E([0, 1− α[; 2N ;SI

2).
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Then, D−(1, XC2
2 ) = 0 (since XC2

2 (1) = 0) and for all N ≥ 2 we obtain

−E([0, α[; 2N − 1;XC2
2 ) = E([0, 1− α[; 2N − 2;SI

2)− (1− α)

≥ E([0, 1− α[; 2N − 2;SI
2)− 1

2

(since here, we deal with the shifted sequence of SI
2 on [0, 1

2 [, that is
SI

2(N − 1) instead of SI
2(N) in the case of D+ just above).

And as before, from the block construction of SI
2 , we get

D−(2N,XC2
2 ) ≥ D(N,SI

2) and D−(2N − 1, XC2
2 ) ≥ D(N − 1, SI

2)− 1
2
.

The end of the proof is the same as for D+, with the same property of
SI

2 , and leads to D−(N,XC2
2 ) ≥ D(N,SI

2)− 3
2 for all integers N .

Finally, we obtain the lower bounds with D = D+ + D− and D∗ =
max(D+, D−). The last assertion results from the inequalities (the second
one from Theorem 1)

D(N,X2) ≤ 2D∗(N,X2) ≤ 2D∗(N,SI
2) = 2D(N,SI

2) ≤ D(N,XC2
2 ) +

5
2

for any (0, 1)–sequence X2 in base 2. �

Remark. 1. The sequence XC2
2 has already been considered by Larcher

and Pillichshammer [9] to show that there exist symmetrisized versions of
digital (0, 1)–sequences in base 2 which do not have optimal order of L2–
discrepancy T ∗. We see here that XC2

2 has about the same star discrepancy
as SI

2 , but its extreme discrepancy D is about twice and it is the worst
among (0, 1)–sequences in base 2. Thus, this sequence appears to be really
a bad one (recall that the symmetrisized sequence of SI

2 has optimal order
of L2–discrepancy T ∗).
2. The constants 5

2 and 3
2 in Theorem 2 are not optimal. A deeper analysis

of the remainder E([0, α[;N ;XC2
2 ) by means of the method we used in [6]

should give exact formulas for its discrepancies D+ and D− in relation with
D(N,SI

2) (for instance we claim that D(2N,XC2
2 ) = 2D(2N,SI

2)).

5.3. On the extreme discrepancy of (0, 1)–sequences in base b.
The generator matrix C2 of Theorem 2 can be taken in arbitrary (prime)
base b to produce examples of digital (0, 1)–sequences (in the broad sense)
with extreme discrepancy D greater than that of SI

b , but its study is more
complicated and do not give the twice. Moreover, in base b, there is no
reason to deal only with the digit 1, at least on the first column. We intend
to explore later the family of sequences generated by such matrices. For
the present, we shall give a simple construction, inspired by the proof of
Theorem 2, which permits to obtain the same result.
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Theorem 5.3. Let b ≥ 3 be an integer. Define the sequence XIτ
b = (xN )N≥1

by

xbk+1 = SI
b (bk + 1) , xbk+2 = Sτ

b (bk + 1) and

xbk+l = SI
b (bk + l − 1) if 3 ≤ l ≤ b, for all k ≥ 0.

Then, the sequence XIτ
b is a (0, 1)–sequence (not digital and not in the

narrow sense), which satisfies

2D(N,SI
b )− 2(b− 1) ≤ D(N,XIτ

b ) ≤ 2D(N,SI
b ) and

D∗(N,SI
b )− (b− 1) ≤ D∗(N,XIτ

b ) ≤ D∗(N,SI
b ) = D(N,SI

b ).

Moreover the sequence XIτ
b is the worst distributed among all (0, 1)–sequen-

ces in base b (in the broad sense) with respect to D.

Remark. The choice xbk+l = SI
b (bk+l−1) for 3 ≤ l ≤ b is arbitrary. It suf-

fices to take the points in the interval [1b ,
b−1

b ] in order to keep the property
of elementary intervals (for instance any sequence Sσ

b is convenient). More-
over, the constant 2(b− 1) is not optimal and a slightly different choice for
xbk+1 and xbk+2 should probably permit (b− 1) for b ≥ 4; such refinements
seem not very interesting in our eyes.

Proof. Like in Theorem 2, the upper bounds are straightforward with The-
orem 1 and Remark 4. As to the lower bounds, we proceed in the same way,
but here with the extremal intervals [0, 1

b [ and ] b−1
b , 1].

Since xbk+1 = SI
b (bk + 1) ∈ [0, 1

b [, xbk+2 = Sτ
b (bk + 1) ∈] b−1

b , 1] and for
all 3 ≤ l ≤ b xbk+l = SI

b (bk + l − 1) ∈ [1b ,
b−1

b ], for every integer N ≥ 1 we
obtain

D+(N,XIτ
b ) ≥ sup

0≤α≤ 1
b

E([0, α[;N ;XIτ
b ) = sup

0≤α≤ 1
b

E([0, α[;N ;SI
b ) and

D−(N,XIτ
b ) ≥ sup

b−1
b
≤α≤1

(−E([0, α[;N ;XIτ
b )) = sup

b−1
b
≤α≤1

(−E([0, α[;N ;Sτ
b )).

From the block construction of SI
b , for 0 ≤ α ≤ 1

b we have

A([0, α[; bN − l;SI
b ) = A([0, bα[;N ;SI

b ) for all 0 ≤ l ≤ b− 1, so that

E([0, α[; bN − l;SI
b ) = E([0, α[; bN ;SI

b ) + lα = E([0, bα[;N ;SI
b ) + lα.

According to the first inequality above, we deduce, for all 0 ≤ l ≤ b − 1,
that

D+(bN − l,XIτ
b ) ≥ sup

0≤α≤ 1
b

E([0, bα[;N ;SI
b ) = D+(N,SI

b ).
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Now, concerning D−, we first note that Sτ
b (N) = 1− SI

b (N) but again, by
definition of XIτ

b , we deal actually with the shifted sequence of SI
b on [0, 1

b [,
SI

b (N − 1) instead of SI
b (N).

For multiples of b, it’s no matter: for b−1
b ≤ α ≤ 1, we have for all N ≥ 1

−E([0, α[; bN ;XIτ
b ) = E([0, 1− α[; bN ;SI

b ).

For integers of the form bN − l with 1 ≤ l ≤ b− 2, it’s also no matter: we
obtain

−E([0, α[; bN − l;XIτ
b ) = E([0, 1− α[; bN ;SI

b ) + l(1− α)

≥ E([0, 1− α[; bN ;SI
b ).

But for the integers of the form bN − b + 1, first D−(1, XIτ
b ) = 0 and for

N ≥ 2, we get

−E([0, α[; bN − b+ 1;XIτ
b ) = E([0, 1− α[; bN − b;SI

b )− (1− α)

≥ E([0, 1− α[; bN − b;SI
b )− 1

b
.

Again, from the block construction of SI
b , we deduce that

E([0, 1− α[; bN ;SI
b ) = E([0, b(1− α)[;N ;SI

b )

which gives for all 0 ≤ l ≤ b− 2

D−(bN − l,XIτ
b ) ≥ sup

b−1
b
≤α≤1

E([0, b(1− α)[;N ;SI
b ) = D+(N,SI

b ) and

D−(bN − b+ 1, XIτ
b ) ≥ sup

b−1
b
≤α≤1

E([0, b(1− α)[;N − 1;SI
b )− 1

b

= D+(N − 1, SI
b )− 1

b
·

In arbitrary base b, we do not have nice recursion formulas for D(N,SI
b )

as for D(N,SI
2) and we need another trick to achieve the proof. It rests on

the general properties of functions ψ, here ψI
b = ψI,+

b , since ψI,−
b = 0. It is

the purpose of the following lemma.

Lemma 5.4. For every integer M ≥ 1, we have

D(bM, SI
b ) = D(M,SI

b ) and |D(M + 1, SI
b )−D(M,SI

b )| ≤ 1.

Proof. Recall that (with 1 ≤M ≤ bn for the last term)

D(M,SI
b ) =

∞∑
j=1

ψI
b

(
M

bj

)
=

n∑
j=1

ψI
b

(
M

bj

)
+
M

bn
.
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From the properties of functions ψ (see [4] 3.2), we know that ψI
b is con-

tinuous, 1-periodic and maximum of piecewise affine functions with coeffi-

cients less than b − 1 in absolute value. Thus, fn(x) =
n∑

j=1

ψI
b

(
x

bj

)
is bn–

periodic and piecewise affine with coefficients bounded in absolute value by
(b− 1)(1

b + · · ·+ 1
bn ) = 1− 1

bn .
Therefore, |D(M + 1, SI

b ) − D(M,SI
b )| = |fn(M + 1) − fn(M) + 1

bn | ≤
1− 1

bn + 1
bn = 1.

The first formula is obvious with the sum up to infinity and ψI
b (0) = 0.

�

Coming back to D+(bN − l,XIτ
b ) and D−(bN − l,XIτ

b ) and applying l
times our Lemma (only once for the last case), we obtain successively (with
D+(N,SI

b ) = D(N,SI
b )): for all 0 ≤ l ≤ b− 1

D+(bN − l,XIτ
b ) ≥ D(N,SI

b ) = D(bN, SI
b ) ≥ D(bN − l, SI

b )− l,

for all 0 ≤ l ≤ b− 2

D−(bN − l,XIτ
b ) ≥ D(N,SI

b ) = D(bN, SI
b ) ≥ D(bN − l, SI

b )− l and

D−(bN − b+ 1, XIτ
b ) ≥ D(N − 1, SI

b )− 1
b

= D(bN − b, SI
b )− 1

b

≥ D(bN − b+ 1, SI
b )− 1

b
− 1·

Finally, taking the worst lower bound to gather all cases together, we obtain

D+(bN − l,XIτ
b ) ≥ D(N,SI

b )− (b− 1) and

D−(bN − l,XIτ
b ) ≥ D(N,SI

b )− (b− 1) since b ≥ 3

which give the lower bounds of Theorem 3 with D = D+ +D− and D∗ =
max(D+, D−).

If b = 2, we must keep 1
b + 1 = 3

2 for D− and we obtain the result of
Theorem 2.

Again the last assertion results from

D(N,Xb) ≤ 2D∗(N,Xb) ≤ 2D∗(N,SI
b )

= 2D(N,SI
b ) ≤ D(N,XIτ

b ) + 2(b− 1).

�

Questions. 1. The sequence XIτ
b is not digital except for b = 2, in which

case we have XIτ
2 = XC2

2 . Are there digital (0, 1)–sequences XC
b having the

worst distribution with respect to D like XIτ
b , i.e. D(N,XC

b ) ≥ 2D(N,SI
b )−

c, at least for infinitely many N ?
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2. The question of finding the worst (0, 1)–sequences with respect to D∗

and D is solved by the result of Kritzer [8] and by Theorems 1 and 3
(apart from an additive constant for D). What’s about for T ∗ and T ?
This question seems harder to handle, because the L2–discrepancies involve
integrals instead of extrema.
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