

Csaba SÁNDOR

Non-degenerate Hilbert cubes in random sets

Tome 19, nº 1 (2007), p. 249-261.

© Université Bordeaux 1, 2007, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

Non-degenerate Hilbert cubes in random sets

par Csaba SÁNDOR

RÉSUMÉ. Une légère modification de la démonstration du lemme des cubes de Szemerédi donne le résultat plus précis suivant : si une partie S de $\{1,\ldots,n\}$ vérifie $|S|\geq \frac{n}{2}$, alors S contient un cube de Hilbert non dégénéré de dimension $\lfloor \log_2\log_2n-3\rfloor$. Dans cet article nous montrons que dans un ensemble aléatoire avec les probabilités $\Pr\{s\in S\}=1/2$ indépendantes pour $1\leq s\leq n$, la plus grande dimension d'un cube de Hilbert non dégénéré est proche de $\log_2\log_2n+\log_2\log_2\log_2n$ presque sûrement et nous déterminons la fonction seuil pour avoir un k-cube non dégénéré.

ABSTRACT. A slight modification of the proof of Szemerédi's cube lemma gives that if a set $S \subset [1,n]$ satisfies $|S| \geq \frac{n}{2}$, then S must contain a non-degenerate Hilbert cube of dimension $\lfloor \log_2 \log_2 n - 3 \rfloor$. In this paper we prove that in a random set S determined by $\Pr\{s \in S\} = \frac{1}{2}$ for $1 \leq s \leq n$, the maximal dimension of non-degenerate Hilbert cubes is a.e. nearly $\log_2 \log_2 n + \log_2 \log_2 \log_2 n$ and determine the threshold function for a non-degenerate k-cube.

1. Introduction

Throughout this paper we use the following notations: let [1, n] denote the first n positive integers. The coordinates of the vector $\mathbf{A}^{(k,n)} = (a_0, a_1, \ldots, a_k)$ are selected from the positive integers such that $\sum_{i=0}^k a_i \leq n$. The vectors $\mathbf{B}^{(k,n)}$, $\mathbf{A}_{\mathbf{i}}^{(k,n)}$ are interpreted similarly. The set S_n is a subset of [1, n]. The notations f(n) = o(g(n)) means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. An arithmetic progression of length k is denoted by AP_k . The rank of a matrix A over the field \mathbb{F} is denoted by $r_{\mathbb{F}}(A)$. Let \mathbb{R} denote the set of real numbers, and let \mathbb{F}_2 be the finite field of order 2.

Let n be a positive integer, $0 \le p_n \le 1$. The random set $S(n, p_n)$ is the random variable taking its values in the set of subsets of [1, n] with the law determined by the independence of the events $\{k \in S(n, p_n)\}, 1 \le k \le n$ with the probability $\Pr\{k \in S(n, p_n)\} = p_n$. This model is often used for

Manuscrit recu le 30 novembre 2005.

Supported by Hungarian National Foundation for Scientific Research, Grant No. T 49693 and 61908.

proving the existence of certain sequences. Given any combinatorial number theoretic property P, there is a probability that $S(n, p_n)$ satisfies P, which we write $\Pr\{S(n, p_n) \models P\}$. The function r(n) is called a threshold function for a combinatorial number theoretic property P if

- (i) When $p_n = o(r(n))$, $\lim_{n\to\infty} \Pr\{S(n, p_n) \models P\} = 0$,
- (ii) When r(n) = o(p(n)), $\lim_{n\to\infty} \Pr\{S(n,p_n) \models P\} = 1$, or visa versa. It is clear that threshold functions are not unique. However, threshold functions are unique within factors m(n), $0 < \liminf_{n\to\infty} m(n) \le \limsup_{n\to\infty} m(n) < \infty$, that is if p_n is a threshold function for P then p'_n is also a threshold function iff $p_n = O(p'_n)$ and $p'_n = O(p_n)$. In this sense we can speak of the threshold function of a property.

We call $H \subset [1, n]$ a Hilbert cube of dimension k or, simply, a k-cube if there is a vector $\mathbf{A}^{(k,n)}$ such that

$$H = \mathbf{H}_{\mathbf{A}^{(k,n)}} = \{a_0 + \sum_{i=1}^k \epsilon_i a_i : \epsilon_i \in \{0,1\}\}.$$

The positive integers a_1, \ldots, a_k are called the generating elements of the Hilbert cube. The k-cube is non-degenerate if $|H| = 2^k$ i.e. the vertices of the cube are distinct, otherwise it is called degenerate. The maximal dimension of a non-degenerate Hilbert cube in S_n is denoted by $H_{max}(S_n)$, i.e. $H_{max}(S_n)$ is the largest integer l such that there exists a vector $\mathbf{A}^{(l,n)}$ for which the non-degenerate Hilbert cube $\mathbf{H}_{\mathbf{A}^{(l,n)}} \subset S_n$.

Hilbert originally proved that if the positive integers are colored with finitely many colors then one color class contains a k-cube. The density version of theorem was proved by Szemerédi and has since become known as "Szemerédi's cube lemma". The best known result is due to Gunderson and Rödl (see [3]):

Theorem 1.1 (Gunderson and Rödl). For every $d \geq 3$ there exists $n_0 \leq (2^d - 2/\ln 2)^2$ so that, for every $n \geq n_0$, if $A \subset [1, n]$ satisfies $|A| \geq 2n^{1-\frac{1}{2^{d-1}}}$, then A contains a d-cube.

A direct consequence is the following:

Corollary 1.2. Every subset S_n such that $|S_n| \ge \frac{n}{2}$ contains a $\lfloor \log_2 \log_2 n \rfloor$ -cube.

A slight modification of the proof gives that the above set S_n must contain a non-degenerate $\lfloor \log_2 \log_2 n - 3 \rfloor$ -cube.

Obviously, a sequence S has the Sidon property (that is the sums $s_i + s_j$, $s_i \leq s_j$, $s_i, s_j \in S$ are distinct) iff S contains no 2-cube. Godbole, Janson, Locantore and Rapoport studied the threshold function for the Sidon property and gave the exact probability distribution in 1999 (see [2]):

Theorem 1.3 (Godbole, Janson, Locantore and Rapoport). Let c > 0 be arbitrary. Let P be the Sidon property. Then with $p_n = cn^{-3/4}$,

$$\lim_{n \to \infty} \Pr\{S(n, p_n) \models P\} = e^{-\frac{c^4}{12}}.$$

Clearly, a subset $H \subset [1, n]$ is a degenerate 2-cube iff it is an AP_3 . Moreover, an easy argument gives that the threshold function for the event " AP_3 -free" is $p_n = n^{-2/3}$. Hence

Corollary 1.4. Let c > 0 be arbitrary. Then with $p_n = cn^{-3/4}$,

$$\lim_{n\to\infty} \Pr\{S(n,p_n) \text{ contains no non-degenerate } 2\text{-cube}\} = e^{-\frac{e^4}{12}}.$$

In Theorem 1.5 we extend the previous Corollary.

Theorem 1.5. For any real number c>0 and any integer $k\geq 2$, if $p_n=cn^{-\frac{k+1}{2^k}}$,

$$\lim_{n\to\infty} \Pr\{S(n,p_n) \text{ contains no non-degenerate } k\text{-cube}\} = e^{-\frac{c^{2^k}}{(k+1)!k!}}.$$

In the following we shall find bounds on the maximal dimension of nondegenerate Hilbert cubes in the random set $S(n, \frac{1}{2})$. Let

$$D_n(\epsilon) = \lfloor \log_2 \log_2 n + \log_2 \log_2 \log_2 n + \frac{(1-\epsilon)\log_2 \log_2 \log_2 n}{\log 2 \log_2 \log_2 n} \rfloor$$

and

$$E_n(\epsilon) = [\log_2 \log_2 n + \log_2 \log_2 \log_2 n + \frac{(1+\epsilon)\log_2 \log_2 \log_2 n}{\log 2 \log_2 \log_2 n}].$$

The next theorem implies that for almost all n, $H_{max}(S(n, \frac{1}{2}))$ concentrates on a single value because for every $\epsilon > 0$, $D_n(\epsilon) = E_n(\epsilon)$ except for a sequence of zero density.

Theorem 1.6. For every $\epsilon > 0$

$$\lim_{n \to \infty} \Pr\{D_n(\epsilon) \le H_{max}(S(n, \frac{1}{2})) \le E_n(\epsilon)\} = 1.$$

2. Proofs

In order to prove the theorems we need some lemmas.

Lemma 2.1. For $k_n = o(\frac{\log n}{\log \log n})$ the number of non-degenerate k_n -cubes in [1, n] is $(1 + o(1))\binom{n}{k_n + 1}\frac{1}{k_n !}$, as $n \to \infty$.

Proof. All vectors $\mathbf{A}^{(k_n,n)}$ are in 1-1 correspondence with all vectors $(v_0, v_1, \ldots, v_{k_n})$ with $1 \leq v_1 < v_2 < \cdots < v_{k_n} \leq n$ in \mathbb{R}^{k_n+1} according to the formulas $(a_0, a_1, \ldots, a_{k_n}) \mapsto (v_0, v_1, \ldots, v_{k_n}) = (a_0, a_0 + a_1, \ldots, a_0 + a_1 + \cdots + a_{k_n})$; and $(v_0, v_1, \ldots, v_{k_n}) \mapsto (a_0, a_1, \ldots, a_{k_n}) = (v_0, v_1 - v_0, \ldots, v_{k_n} - v_{k_n-1})$. Consequently,

$$\binom{n}{k_n+1} = |\{\mathbf{A}^{(k_n,n)} : \mathbf{H}_{\mathbf{A}^{(k_n,n)}} \text{ is non-degenerate}\}| + |\{\mathbf{A}^{(k_n,n)} : \mathbf{H}_{\mathbf{A}^{(k_n,n)}} \text{ is degenerate}\}|.$$

By the definition of a non-degenerate cube the cardinality of the set $\{\mathbf{A}^{(k_n,n)}: \mathbf{H}_{\mathbf{A}^{(k_n,n)}} \text{ is non-degenerate}\}\$ is equal to

$$k_n!$$
|{non-degenerate k_n -cubes in $[1, n]$ }|,

because permutations of a_1, \ldots, a_k give the same k_n -cube. It remains to verify that the number of vectors $\mathbf{A}^{(k_n,n)}$ which generate degenerate k_n -cubes is $o(\binom{n}{k_n+1})$. Let $\mathbf{A}^{(k_n,n)}$ be a vector for which $\mathbf{H}_{\mathbf{A}^{(k_n,n)}}$ is a degenerate k_n -cube. Then there exist integers $1 \leq u_1 < u_2 < \ldots < u_s \leq k_n$, $1 \leq v_1 < v_2 < \ldots < v_t \leq k_n$ such that

$$a_0 + a_{u_1} + \ldots + a_{u_s} = a_0 + a_{v_1} + \ldots + a_{v_t}$$

where we may assume that the indices are distinct, therefore $s + t \leq k_n$. Then the equation

$$x_1 + x_2 + \ldots + x_s - x_{s+1} - \ldots - x_{s+t} = 0$$

can be solved over the set $\{a_1, a_2, \ldots, a_{k_n}\}$. The above equation has at most $n^{s+t-1} \leq n^{k_n-1}$ solutions over [1, n]. Since we have at most k_n^2 possibilities for (s, t) and at most n possibilities for a_0 , therefore the number of vectors $\mathbf{A}^{(k_n, n)}$ for which $\mathbf{H}_{\mathbf{A}^{(k_n, n)}}$ is degenerate is at most $k_n^2 n^{k_n} = o(\binom{n}{k_n+1})$. \square

In the remaining part of this section the Hilbert cubes are nondegenerate.

The proofs of Theorem 1.5 and 1.6 will be based on the following definition. For two intersecting k-cubes $\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}$ let $\mathbf{H}_{\mathbf{A}^{(k,n)}} \cap \mathbf{H}_{\mathbf{B}^{(k,n)}} = \{c_1, \ldots, c_m\}$ with $c_1 < \ldots < c_m$, where

$$c_d = a_0 + \sum_{l=1}^k \alpha_{d,l} a_l = b_0 + \sum_{l=1}^k \beta_{d,l} b_l, \quad \alpha_{d,l}, \beta_{d,l} \in \{0,1\}$$

for $1 \leq d \leq m$ and $1 \leq l \leq k$. The rank of the intersection of two k-cubes $\mathbf{H}_{\mathbf{A}^{(k,n)}}$, $\mathbf{H}_{\mathbf{B}^{(k,n)}}$ is defined as follows: we say that $r(\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}) = (\mathbf{s}, \mathbf{t})$ if for the matrices $A = (\alpha_{d,l})_{m \times k}$, $B = (\beta_{d,l})_{m \times k}$ we have $r_{\mathbb{R}}(A) = s$ and $r_{\mathbb{R}}(B) = t$. The matrices A and B are called matrices of the common vertices of $\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}$.

Lemma 2.2. The condition $r(\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}) = (s,t)$ implies that $|\mathbf{H}_{\mathbf{A}^{(k,n)}} \cap \mathbf{H}_{\mathbf{B}^{(k,n)}}| \leq 2^{\min\{s,t\}}.$

Proof. We may assume that $s \leq t$. The inequality $|\mathbf{H}_{\mathbf{A}^{(k,n)}} \cap \mathbf{H}_{\mathbf{B}^{(k,n)}}| \leq 2^s$ is obviously true for s = k. Let us suppose that s < k and the number of common vertices is greater than 2^s . Then the corresponding (0-1)-matrices A and B have more than 2^s different rows, therefore $r_{\mathbb{F}_2}(A) > s$, but we know from elementary linear algebra that for an arbitrary (0-1)-matrix M we have $r_{\mathbb{F}_2}(M) \geq r_{\mathbb{R}}(M)$, which is a contradiction.

Lemma 2.3. Suppose that the sequences $\mathbf{A}^{(k,n)}$ and $\mathbf{B}^{(k,n)}$ generate non-degenerate k-cubes. Then

enerate k-cubes. Then
$$(1) |\{(\mathbf{A}^{(k,n)}, \mathbf{B}^{(k,n)}) : r(\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}) = (s,t)\}| \le 2^{2k^2} \binom{n}{k+1} n^{k+1-\max\{s,t\}}$$
for all $0 \le s, t \le k$:

 $for \ all \ 0 \leq s, t \leq k;$ $(2) \ |\{(\mathbf{A}^{(k,n)}, \mathbf{B}^{(k,n)}) : r(\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}) = (r,r), |\mathbf{H}_{\mathbf{A}^{(k,n)}} \cap \mathbf{H}_{\mathbf{B}^{(k,n)}}| = 2^r\}| \leq 2^{2k^2} \binom{n}{k+1} n^{k-r}$ $for \ all \ 0 \leq r < k;$

 $for all \ 0 \leq r < k;$ $(3) |\{(\mathbf{A}^{(k,n)}, \mathbf{B}^{(k,n)}) : r(\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}) = (k,k), |\mathbf{H}_{\mathbf{A}^{(k,n)}} \cap \mathbf{H}_{\mathbf{B}^{(k,n)}}| > 2^{k-1}\}| \leq 2^{2k^2 + 2k} \binom{n}{k+1}.$

Proof. (1) We may assume that $s \leq t$. In this case we have to prove that the number of corresponding pairs $(\mathbf{A}^{(k,n)}, \mathbf{B}^{(k,n)})$ is at most $\binom{n}{k+1} 2^{2k^2} n^{k+1-t}$. We have already seen in the proof of Lemma 2.1 that the number of vectors $\mathbf{A}^{(k,n)}$ is at most $\binom{n}{k+1}$. Fix a vector $\mathbf{A}^{(k,n)}$ and count the suitable vectors $\mathbf{B}^{(k,n)}$. Then the matrix B has t linearly independent rows, namely $r_{\mathbb{R}}((\beta_{d_i,l})_{t\times k}) = t$, for some $1 \leq d_1 < \cdots < d_t \leq m$, where

$$a_0 + \sum_{l=1}^k \alpha_{d_i,l} a_l = b_0 + \sum_{l=1}^k \beta_{d_i,l} b_l, \quad \alpha_{d_i,l}, \beta_{d_i,l} \in \{0,1\} \quad \text{ for } 1 \le i \le t.$$

The number of possible b_0 s is at most n. For fixed $b_0, \alpha_{d_i,l}, \beta_{d_i,l}$ let us study the system of equations

$$a_0 + \sum_{l=1}^k \alpha_{d_i,l} a_l = b_0 + \sum_{l=1}^k \beta_{d_i,l} x_l, \quad \alpha_{d_i,l}, \beta_{d_i,l} \in \{0,1\} \quad \text{ for } 1 \leq i \leq t.$$

The assumption $r_{\mathbb{R}}(\beta_{d_i,l})_{t\times k}=t$ implies that the number of solutions over [1,n] is at most n^{k-t} . Finally, we have at most 2^{kt} possibilities on the left-hand side for $\alpha_{d_i,l}$ s and, similarly, we have at most 2^{kt} possibilities on the right-hand side for $\beta_{d_i,l}$ s, therefore the number of possible systems of equations is at most 2^{2k^2} .

(2) The number of vectors $\mathbf{A}^{(k,n)}$ is $\binom{n}{k+1}$ as in (1). Fix a vector $\mathbf{A}^{(k,n)}$ and count the suitable vectors $\mathbf{B}^{(k,n)}$. It follows from the assumptions

 $r(\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}) = (r,r), |\mathbf{H}_{\mathbf{A}^{(k)}} \cap \mathbf{H}_{\mathbf{B}^{(k)}}| = 2^r \text{ that the vectors } (\alpha_{d,1}, \dots, \alpha_{d,k}), d = 1, \dots, 2^r \text{ and the vectors } (\beta_{d,1}, \dots, \beta_{d,k}), d = 1, \dots, 2^r, \text{ respectively form } r\text{-dimensional subspaces of } \mathbb{F}_2^k$. Considering the zero vectors of these subspaces we get $a_0 = b_0$. The integers b_1, \dots, b_k are solutions of the system of equations

$$a_0 + \sum_{l=1}^k \alpha_{d,l} a_l = b_0 + \sum_{l=1}^k \beta_{d,l} x_l \quad \alpha_{d,l}, \beta_{d,l} \in \{0,1\} \quad \text{ for } 1 \le d \le 2^r.$$

Similarly to the previous part this system of equation has at most n^{k-r} solutions over [1, n] and the number of choices for the r linearly independent rows is at most 2^{2k^2} .

(3) Fix a vector $\mathbf{A}^{(k,n)}$. Let us suppose that for a vector $\mathbf{B}^{(k,n)}$ we have $r(\mathbf{H}_{\mathbf{A}^{(k,n)}}, \mathbf{H}_{\mathbf{B}^{(k,n)}}) = (k,k)$ and $|\mathbf{H}_{\mathbf{A}^{(k,n)}} \cap \mathbf{H}_{\mathbf{B}^{(k,n)}}| > 2^{k-1}$. Let the common vertices be

$$a_0 + \sum_{l=1}^k \alpha_{d,l} a_l = b_0 + \sum_{l=1}^k \beta_{d,l} b_l, \quad \alpha_{d,l}, \beta_{d,l} \in \{0,1\} \quad \text{ for } 1 \le d \le m,$$

where we may assume that the rows d_1, \ldots, d_k are linearly independent, i.e. the matrix $B_k = (\beta_{d_i,l})_{k \times k}$ is regular. Write the rows d_1, \ldots, d_k in matrix form as

$$\underline{a} = b_0 \underline{1} + B_k \underline{b},$$

with vectors $\underline{a} = (a_0 + \sum_{l=1}^k \alpha_{d_i,l} a_l)_{k \times 1}$, $\underline{1} = (1)_{k \times 1}$ and $\underline{b} = (b_i)_{k \times 1}$. It follows from (1) that

$$\underline{b} = B_k^{-1}(\underline{a} - b_0\underline{1}) = B_k^{-1}\underline{a} - b_0B_k^{-1}\underline{1}.$$

Let $B_k^{-1}\underline{1} = (d_i)_{k \times 1}$ and $B_k^{-1}\underline{a} = (c_i)_{k \times 1}$. Obviously, the number of subsets $\{i_1, \ldots, i_l\} \subset \{1, \ldots, k\}$ for which $d_{i_1} + \ldots + d_{i_l} \neq 1$ is at least 2^{k-1} , therefore there exist $1 \leq u_1 < \ldots < u_s \leq k$ and $1 \leq v_1 < \ldots < v_t \leq k$ such that $a_0 + a_{u_1} + \ldots + a_{u_s} = b_0 + b_{v_1} + \ldots + b_{v_t}$, and $d_{v_1} + \ldots + d_{v_t} \neq 1$. Hence

$$a_0 + a_{u_1} + \ldots + a_{u_s} = b_0 + b_{v_1} + \ldots + b_{v_t} = b_0 + c_{v_1} + \ldots + c_{v_t} - b_0(d_{v_1} + \ldots + d_{v_t})$$

$$b_0 = \frac{a_0 + a_{u_1} + \ldots + a_{u_s} - c_{v_1} - \ldots - c_{v_t}}{1 - (d_{v_1} + \ldots + d_{v_t})}.$$

To conclude the proof we note that the number of sets $\{u_1, \ldots, u_s\}$ and $\{v_1, \ldots, v_t\}$ is at most 2^{2k} and there are at most 2^{k^2} choices for B_k and \underline{a} , respectively. Finally, for given B_k , \underline{a} , b_0 , $1 \le u_1 < \ldots < u_s \le k$ and $1 \le v_1 < \ldots < v_t \le k$, the vector $\mathbf{B}^{(k,n)}$ is determined uniquely.

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1] p. 41, 95-98.). Let X_i be the indicator function of the event A_i and $S_N = X_1 + \ldots + X_N$. For indices i, j write $i \sim j$ if $i \neq j$ and

the events A_i, A_j are dependant. We set $\Gamma = \sum_{i \sim j} \Pr\{A_i \cap A_j\}$ (the sum over ordered pairs).

Lemma 2.4. If
$$E(S_n) \to \infty$$
 and $\Gamma = o(E(S_n)^2)$, then $X > 0$ a.e.

In many instances, we would like to bound the probability that none of the bad events $B_i, i \in I$, occur. If the events are mutually independent, then $\Pr\{\cap_{i \in I} \overline{B_i}\} = \prod_{i \in I} \Pr\{\overline{B_i}\}$. When the B_i are "mostly" independent, the Janson's inequality allows us, sometimes, to say that these two quantities are "nearly" equal. Let Ω be a finite set and R be a random subset of Ω given by $\Pr\{r \in R\} = p_r$, these events being mutually independent over $r \in \Omega$. Let $E_i, i \in I$ be subsets of Ω , where I a finite index set. Let B_i be the event $E_i \subset R$. Let X_i be the indicator random variable for B_i and $X = \sum_{i \in I} X_i$ be the number of E_i s contained in R. The event $\cap_{i \in I} \overline{B_i}$ and X = 0 are then identical. For $i, j \in I$, we write $i \sim j$ if $i \neq j$ and $E_i \cap E_j \neq \emptyset$. We define $\Delta = \sum_{i \sim j} \Pr\{B_i \cap B_j\}$, here the sum is over ordered pairs. We set $M = \prod_{i \in I} \Pr\{\overline{B_i}\}$.

Lemma 2.5 (Janson's inequality). Let $\varepsilon \in]0,1[$ and let $B_i, i \in I, \Delta, M$ be as above and assume that $Pr\{B_i\} \leq \varepsilon$ for all i. Then

$$M \le Pr\{\cap_{i \in I} \overline{B_i}\} \le Me^{\frac{1}{1-\varepsilon}\frac{\Delta}{2}}.$$

Proof of Theorem 1.5. Let $\mathbf{H}_{\mathbf{A}_{\mathbf{1}}^{(k,n)}}, \dots, \mathbf{H}_{\mathbf{A}_{\mathbf{N}}^{(k,n)}}$ be the distinct non-degenerate k-cubes in [1,n]. Let B_i be the event $\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}} \subset S(n,cn^{-\frac{k+1}{2^k}})$. Then $\Pr\{B_i\} = c^{2^k}n^{-k-1} = o(1) \text{ and } N = (1+o(1))\binom{n}{k+1}\frac{1}{k!}$. It is enough to prove

$$\Delta = \sum_{i \sim j} \Pr\{B_i \cap B_j\} = o(1)$$

since then Janson's inequality implies

$$\begin{split} \Pr\{S(n,cn^{-\frac{k+1}{2^k}}) \text{ does not contain any k-cubes}\} \\ &= \Pr\{\cap_{i=1}^N \overline{B_i}\} \\ &= (1+o(1))(1-(cn^{-\frac{k+1}{2^k}})^{2^k})^{(1+o(1))\binom{n}{k+1}\frac{1}{k!}} \\ &= (1+o(1))e^{-\frac{c^{2^k}}{(k+1)!k!}}. \end{split}$$

It remains to verify that $\sum_{i\sim j} \Pr\{B_i \cap B_j\} = o(1)$. We split this sum according to the ranks in the following way

$$\begin{split} & \sum_{i \sim j} \Pr\{B_i \cap B_j\} = \sum_{s=0}^k \sum_{t=0}^k \sum_{r(\mathbf{H}_{\mathbf{A}_i^{(k,n)}, \mathbf{H}_{\mathbf{A}_j^{(k,n)}}) = (s,t)} \Pr\{B_i \cap B_j\} \\ & = 2 \sum_{s=1}^k \sum_{t=0}^{s-1} \sum_{r(\mathbf{H}_{\mathbf{A}_i^{(k,n)}, \mathbf{H}_{\mathbf{A}_j^{(k,n)}}) = (s,t)} \Pr\{B_i \cap B_j\} \\ & + \sum_{r=0}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\} \\ & + \sum_{r(\mathbf{H}_{\mathbf{A}_i^{(k,n)}, \mathbf{H}_{\mathbf{A}_j^{(k,n)}}) = (r,r)} \Pr\{B_i \cap B_j\} \\ & + \sum_{r=1}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\} \\ & + \sum_{r(\mathbf{H}_{\mathbf{A}_i^{(k,n)}, \mathbf{H}_{\mathbf{A}_j^{(k,n)}}) = (r,r)} \Pr\{B_i \cap B_j\} \\ & + \sum_{r(\mathbf{H}_{\mathbf{A}_i^{(k,n)}, \mathbf{H}_{\mathbf{A}_j^{(k,n)}}) = (k,k)} \Pr\{B_i \cap B_j\} + \sum_{i \sim j} \Pr\{B_i \cap B_j\}. \\ & + \sum_{r(\mathbf{H}_{\mathbf{A}_i^{(k,n)}, \mathbf{H}_{\mathbf{A}_j^{(k,n)}}) = (k,k)} \Pr\{B_i \cap B_j\} + \sum_{r(\mathbf{H}_{\mathbf{A}_i^{(k,n)}, \mathbf{H}_{\mathbf{A}_j^{(k,n)}}) = (k,k)} \Pr\{B_i \cap B_j\}. \end{split}$$

The first sum can be estimated by Lemmas 2 and 2.3(1)

$$\sum_{s=1}^{k} \sum_{t=0}^{s-1} \sum_{\substack{i \sim j \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}) = (s,t)}} \Pr\{B_i \cap B_j\}$$

$$\leq \sum_{s=1}^{k} \sum_{t=0}^{s-1} 2^{2k^2} \binom{n}{k+1} n^{k+1-s} (cn^{-\frac{k+1}{2^k}})^{2 \cdot 2^k - 2^t}$$

$$= n^{o(1)} \sum_{s=1}^{k} n^{2^{s-1} \frac{k+1}{2^k} - s} = n^{o(1)} (n^{\frac{k+1}{2^k} - 1} + n^{\frac{k+1}{2} - k}) = o(1),$$

since the sequence $a_s = 2^{s-1} \frac{k+1}{2^k} - s$ is decreasing for $1 \le s \le k+1 - \log_2(k+1)$ and increasing for $k+1 - \log_2(k+1) < s \le k$.

To estimate the second sum we apply Lemma 2.3(2)

$$\sum_{r=0}^{k-1} \sum_{\substack{i \sim j \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}) = (r,r) \\ |\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}| = 2^{r}}} \\ \leq \sum_{r=0}^{k-1} 2^{2k^{2}} \binom{n}{k+1} n^{k-r} (cn^{-\frac{k+1}{2^{k}}})^{2 \cdot 2^{k} - 2^{r}} \\ = n^{-1+o(1)} \sum_{r=0}^{k-1} n^{2^{r} \frac{k+1}{2^{k}} - r} = n^{-1+o(1)} (n^{\frac{k+1}{2^{k}}} + n^{\frac{k+1}{2} - (k-1)}) = o(1).$$

The third sum can be bounded using Lemma 2.3(1):

$$\begin{split} \sum_{r=1}^{k-1} & \sum_{i \sim j} & \Pr\{B_i \cap B_j\} \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}) = (r,r) \\ |\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}| < 2^r \\ & \leq \sum_{r=1}^{k-1} 2^{2k^2} \binom{n}{k+1} n^{k+1-r} (cn^{-\frac{k+1}{2^k}})^{2 \cdot 2^k - 2^r + 1} \\ & \leq n^{o(1) - \frac{k+1}{2^k}} \sum_{r=1}^{k-1} n^{2^r \frac{k+1}{2^k} - r} = n^{o(1) - \frac{k+1}{2^k}} (n^{2\frac{k+1}{2^k} - 1} + n^{\frac{k+1}{2} - (k-1)}) = o(1). \end{split}$$

Similarly, for the fourth sum we apply Lemma 2.3(1)

milarly, for the fourth sum we apply Lemma 2.3(1)
$$\sum_{\substack{i \sim j \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}) = (k,k) \\ |\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}| \leq 2^{k-1}}} \Pr\{B_i \cap B_j\} \leq n^{o(1)} n^{k+2} (cn^{-\frac{k+1}{2^k}})^{1.5 \cdot 2^k} = o(1).$$

To estimate the fifth sum we note that $|\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}} \cup \mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}}| \geq 2^k + 1$. It follows from Lemma 2.3(3) that

bllows from Lemma 2.3(3) that
$$\sum_{\substack{i\sim j\\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)},\mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}})=(k,k)\\ |\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k,n)}\cap\mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k,n)}}|>2^{k-1}}}} \Pr\{B_i\cap B_j\} \leq 2^{2k^2+2k}n^{k+1}(cn^{-\frac{k+1}{2^k}})^{2^k+1} = o(1),$$

which completes the proof.

Proof of Theorem 1.6. Let $\epsilon > 0$ and for simplicity let $D_n = D_n(\epsilon)$ and $E_n = E_n(\epsilon)$. In the proof we use the estimations

$$2^{2^{D_n}} \le 2^{\log_2 \log_2 n + \log_2 \log_2 \log_2 n + \frac{(1-\epsilon)\log_2 \log_2 \log_2 \log_2 n}{\log_2 \log_2 \log_2 \log_2 n}}$$
$$= n^{\log_2 \log_2 n + (1-\epsilon+o(1))\log_2 \log_2 \log_2 n}$$

and

$$2^{2^{E_n+1}} \ge 2^{\log_2 \log_2 n + \log_2 \log_2 \log_2 n + \frac{(1+\epsilon)\log_2 \log_2 \log_2 \log_2 n}{\log_2 \log_2 \log_2 \log_2 n}}$$
$$= n^{\log_2 \log_2 \log_2 n + (1+\epsilon+o(1))\log_2 \log_2 \log_2 \log_2 n}$$

In order to verify Theorem 1.6 we have to show that

(2)
$$\lim_{n \to \infty} \Pr\{S(n, \frac{1}{2}) \text{ contains a } D_n\text{-cube}\} = 1$$

and

(3)
$$\lim_{n \to \infty} \Pr\{S(n, \frac{1}{2}) \text{ contains an } (E_n + 1)\text{-cube}\} = 0.$$

To prove the limit in (4) let $\mathbf{H}_{\mathbf{A}_{\mathbf{1}}^{(D_n,n)}}, \ldots, \mathbf{H}_{\mathbf{A}_{\mathbf{N}}^{(D_n,n)}}$ be the different non-degenerate D_n -cubes in [1,n], B_i be the event $H_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}} \subset S(n,\frac{1}{2})$, X_i be the indicator random variable for B_i and $S_N = X_1 + \ldots + X_N$ be the number of $\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}} \subset S(n,\frac{1}{2})$. The linearity of expectation gives by Lemma 2.1 and inequality (2)

$$E(S_N) = NE(X_i) = (1 + o(1)) \binom{n}{D_n + 1} \frac{1}{D_n!} 2^{-2^{D_n}}$$

$$\geq n^{\log_2 \log_2 n + (1 + o(1)) \log_2 \log_2 \log_2 n} n^{-\log_2 \log_2 n - (1 - \epsilon + o(1)) \log_2 \log_2 \log_2 n}$$

$$= n^{(\epsilon + o(1)) \log_2 \log_2 \log_2 n}.$$

Therefore $E(S_N) \to \infty$, as $n \to \infty$. By Lemma 2.4 it remains to prove that

$$\sum_{i \sim j} \Pr\{B_i \cap B_j\} = o(E(S_N)^2)$$

where $i \sim j$ means that the events B_i, B_j are not independent i.e. the cubes $\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(D_n,n)}}$ have common vertices. We split this sum according to

the ranks

$$\begin{split} \sum_{i \sim j} \Pr\{B_i \cap B_j\} &= \sum_{s=0}^{D_n} \sum_{t=0}^{D_n} \sum_{\substack{i \sim j \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(D_n,n)}}) = (s,t)}}} \Pr\{B_i \cap B_j\} \\ &\leq \sum_{\substack{i \sim j \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(D_n,n)}}) = (0,0)}} \Pr\{B_i \cap B_j\} \\ &+ 2 \sum_{s=1}^{D_n} \sum_{t=0}^{s} \sum_{\substack{i \sim j \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(D_n,n)}}) = (s,t)}} \Pr\{B_i \cap B_j\}. \end{split}$$

The condition $r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}}) = (0,0)$ implies that

$$|\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}} \cup \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(D_n,n)}}| = 2^{D_n+1} - 1,$$

thus by Lemma 2.3(2)

$$\sum_{\substack{i \sim j \\ r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(D_n,n)}}) = (0,0)}} \Pr\{B_i \cap B_j\} \le 2^{2D_n^2} \binom{n}{D_n + 1} n^{D_n} 2^{-2^{D_N + 1} + 1}$$

$$= o\left(\left(\binom{n}{D_n + 1} \frac{1}{D_n!} 2^{-2^{D_n}} \right)^2 \right)$$

$$= o(E(S_N)^2).$$

In the light of Lemmas 2 and 2.3(1) the second term in (6) can be estimated as

$$\sum_{s=1}^{D_n} \sum_{t=0}^{s} \sum_{r(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(D_n,n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(D_n,n)}}) = (s,t)} \Pr\{B_i \cap B_j\}
\leq \sum_{s=1}^{D_n} \sum_{t=0}^{s} \binom{n}{D_n + 1} 2^{2D_n^2} n^{D_n + 1 - s} 2^{-2 \cdot 2^{D_n} + 2^t}
= \left(\binom{n}{D_n + 1} \frac{1}{D_n!} 2^{-2^{D_n}} \right)^2 n^{o(1)} \sum_{s=1}^{D_n} \sum_{t=0}^{s} \frac{2^{2^t}}{n^s}
= \left(\binom{n}{D_n + 1} \frac{1}{D_n!} 2^{-2^{D_n}} \right)^2 n^{o(1)} \sum_{s=1}^{D_n} \frac{2^{2^s}}{n^s} .$$

Finally, the function $f(x) = \frac{2^{2^x}}{n^x}$ decreases on $(-\infty, \log_2 \log n - 2 \log_2 \log 2]$ and increases on $[\log_2 \log n - 2 \log_2 \log 2, \infty)$, therefore by (2)

$$\sum_{s=1}^{D_n} \frac{2^{2^s}}{n^r} = n^{o(1)} \left(\frac{4}{n} + \frac{2^{2^{D_n}}}{n^{D_n}} \right) = n^{-1 + o(1)},$$

which proves the limit in (4).

In order to prove the limit in (5) let $\mathbf{H}_{\mathbf{C}_{\mathbf{1}}^{(E_n+1,n)}}, \dots, \mathbf{H}_{\mathbf{C}_{\mathbf{K}}^{(E_n+1,n)}}$ be the distinct (E_n+1) -cubes in [1,n] and let F_i be the event $\mathbf{H}_{\mathbf{C}_{\mathbf{i}}^{(E_n+1,n)}} \subset S(n,\frac{1}{2})$. By (3) we have

$$\Pr\{S_n \text{ contains an } (E_n+1)\text{-cube}\} = \Pr\{\bigcup_{i=1}^K F_i\} \leq \sum_{i=1}^K \Pr\{F_i\} \leq \sum_{i=1}$$

$$\binom{n}{E_n+2} 2^{-2^{E_n+1}} \leq \frac{n^{\log_2\log_2 n + (1+o(1))\log_2\log_2\log_2 \log_2 n}}{n^{\log_2\log_2 n + (1+\epsilon+o(1))\log_2\log_2\log_2 \log_2 n}} = o(1),$$

which completes the proof.

3. Concluding remarks

The aim of this paper is to study non-degenerate Hilbert cubes in a random sequence. A natural problem would be to give analogous theorems for Hilbert cubes, where degenerate cubes are allowed. In this situation the dominant terms may come from arithmetic progressions. An AP_{k+1} forms a k-cube. One can prove by the Janson inequality (see Lemma 2.5) that for a fixed $k \geq 2$

$$\lim_{n \to \infty} \Pr\{S(n, cn^{-\frac{2}{k+1}}) \text{ contains no } AP_{k+1}\} = e^{-\frac{c^{k+1}}{2k}}.$$

An easy argument shows (using Janson's inequality again) that for all c > 0, with $p_n = cn^{-2/5}$

$$\lim_{n\to\infty} \Pr\{S(n, p_n) \text{ contains no 4-cubes}\} = e^{-\frac{c^5}{8}}.$$

Conjecture 3.1. For $k \geq 4$

$$\lim_{n\to\infty} \Pr\{S(n,cn^{-\frac{2}{k+1}}) \text{ contains no } k\text{-cubes}\} = e^{-\frac{c^{k+1}}{2k}}.$$

A simple calculation implies that in the random sequence $S(n, \frac{1}{2})$ the length of the longest arithmetic progression is a.e. nearly $2\log_2 n$, therefore it contains a Hilbert cube of dimension $(2 - \epsilon)\log_2 n$.

Conjecture 3.2. For every $\epsilon > 0$

$$\lim_{n \to \infty} \Pr \left\{ \text{the maximal dimension of Hilbert cubes} \right\} = 1.$$

N. Hegyvári (see [5]) studied the special case where the generating elements of Hilbert cubes are distinct. He proved that in this situation the maximal dimension of Hilbert cubes is a.e. between $c_1 \log n$ and $c_2 \log n \log \log n$. In this problem the lower bound seems to be the correct magnitude.

References

- [1] N. Alon, J. Spencer, *The Probabilistic Method*. Wiley-Interscience, Series in Discrete Math. and Optimization, 1992.
- [2] A. GODBOLE, S. JANSON, N. LOCANTORE, R. RAPOPORT, Random Sidon Sequence. J. Number Theory 75 (1999), no. 1, 7–22.
- [3] D. S. Gunderson, V. Rödl, Extremal problems for Affine Cubes of Integers. Combin. Probab. Comput 7 (1998), no. 1, 65-79.
- [4] R. L. GRAHAM, B. L. ROTHCHILD, J. SPENCER, Ramsey Theory. Wiley-Interscience, Series in Discrete Math. and Optimization, 1990.
- [5] N. HEGYVÁRI, On the dimension of the Hilbert cubes. J. Number Theory 77 (1999), no. 2, 326–330.

Csaba SÁNDOR
Institute of Mathematics
Budapest University of Technology and Economics
Egry J. u. 1., H-1111 Budapest, Hungary
E-mail: csandor@math.bme.hu