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Non-degenerate Hilbert cubes in random sets

par CsaBa SANDOR

RESUME. Une légere modification de la démonstration du lemme
des cubes de Szemerédi donne le résultat plus précis suivant : si
une partie S de {1,...,n} vérifie |S| > &, alors S contient un
cube de Hilbert non dégénéré de dimension |log, logy n —3]. Dans
cet article nous montrons que dans un ensemble aléatoire avec les
probabilités Pr{s € S} = 1/2 indépendantes pour 1 < s < n,
la plus grande dimension d’un cube de Hilbert non dégénéré est
proche de log, logy n + log, log, log, n presque siirement, et nous
déterminons la fonction seuil pour avoir un k-cube non dégénéré.

ABSTRACT. A slight modification of the proof of Szemerédi’s cube
lemma gives that if a set S C [1, n| satisfies |S| > %, then S must
contain a non-degenerate Hilbert cube of dimension |log, log, n —
3|. In this paper we prove that in a random set S determined by
Pr{s € S} = % for 1 < s < n, the maximal dimension of non-
degenerate Hilbert cubes is a.e. nearly log, log, n+log, log, logy n
and determine the threshold function for a non-degenerate k-cube.

1. Introduction

Throughout this paper we use the following notations: let [1,n] de-
note the first n positive integers. The coordinates of the vector A#m) =
(ap,ai,...,ar) are selected from the positive integers such that Z?:o a; <
n. The vectors B Ai(k’n) are interpreted similarly. The set S, is a
subset of [1,n]. The notations f(n) = o(g(n)) means lim,_, % =0. An
arithmetic progression of length k is denoted by APy. The rank of a matrix
A over the field F is denoted by rp(A). Let R denote the set of real numbers,
and let F9 be the finite field of order 2.

Let n be a positive integer, 0 < p,, < 1. The random set S(n,p,) is the
random variable taking its values in the set of subsets of [1,n] with the law
determined by the independence of the events {k € S(n,p,)}, 1 <k <n
with the probability Pr{k € S(n,pn)} = pn. This model is often used for
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250 Csaba SANDOR

proving the existence of certain sequences. Given any combinatorial number
theoretic property P, there is a probability that S(n,p,) satisfies P, which
we write Pr{S(n, p,) = P). The function r(n) is called a threshold function
for a combinatorial number theoretic property P if

(i) When p,, = o(r(n)), limp—oc Pr{S(n,pn) = P} =0,

(ii) When r(n) = o(p(n)), lim, o Pr{S(n,p,) = P} =1,
or visa versa. It is clear that threshold functions are not unique. However,
threshold functions are unique within factors m(n), 0 < liminf,, ..o m(n) <
lim sup,,_,.o m(n) < oo, that is if p, is a threshold function for P then p),
is also a threshold function iff p,, = O(p},) and p/, = O(py,). In this sense
we can speak of the threshold function of a property.

We call H C [1,n] a Hilbert cube of dimension k or, simply, a k-cube if
there is a vector A% such that

k
H=H,un = {ap + Zeiai ce € {0,1}}.
i=1
The positive integers aq,...,ax are called the generating elements of the
Hilbert cube. The k-cube is non-degenerate if |[H| = 2* i.e. the vertices

of the cube are distinct, otherwise it is called degenerate. The maximal
dimension of a non-degenerate Hilbert cube in S, is denoted by H 4. (Sn),
i.e. Hpaz(Sn) is the largest integer [ such that there exists a vector Aln)
for which the non-degenerate Hilbert cube H (1,n) C Sp.

Hilbert originally proved that if the positive integers are colored with
finitely many colors then one color class contains a k-cube. The density
version of theorem was proved by Szemerédi and has since become known
as "Szemerédi’s cube lemma". The best known result is due to Gunderson

and Rodl (see [3]):

Theorem 1.1 (Gunderson and Rédl). For every d > 3 there exists ng
(2% — 2/1n2)? so that, for every n > ng, if A C [1,n] satisfies |A]

1
on' e , then A contains a d-cube.

<
>

A direct consequence is the following:

Corollary 1.2. Every subset Sy, such that |S,| > § contains a |log, logy n]-
cube.

A slight modification of the proof gives that the above set S,, must con-
tain a non-degenerate |log,logy n — 3]-cube.

Obviously, a sequence S has the Sidon property (that is the sums s; +
sj, si < sj, si,8; € S are distinct) iff S contains no 2-cube. Godbole,
Janson, Locantore and Rapoport studied the threshold function for the
Sidon property and gave the exact probability distribution in 1999 (see

[2]):
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Theorem 1.3 (Godbole, Janson, Locantore and Rapoport). Let ¢ > 0 be
arbitrary. Let P be the Sidon property. Then with p, = cn~3/4,

A
Jim Pr{S(n,p,) E P} =e 12.

Clearly, a subset H C [1,n] is a degenerate 2-cube iff it is an AP;.
Moreover, an easy argument gives that the threshold function for the event
"APs-free" is p, = n~2/3. Hence

Corollary 1.4. Let ¢ > 0 be arbitrary. Then with p, = cn~3/4,

'

c

lim Pr{S(n,p,) contains no non-degenerate 2-cube} = e 12.
n—oo

In Theorem 1.5 we extend the previous Corollary.

Theorem 1.5. For any real number ¢ > 0 and any integer k > 2, if
k+1

— 5
Pn=2cn 2%,
k
.2

lim Pr{S(n,pn) contains no non-degenerate k-cube} = e *+DE
n—oo

In the following we shall find bounds on the maximal dimension of non-
degenerate Hilbert cubes in the random set S(n, 3). Let

(1 — €) log, logs log, nJ

Dn(€) = [logy logy n + log, log, logy 7 + log 2 log, logy 12

and

(1+ €)log, logy logy n
log 2log, logy n

|

En(€) = [logy logy n + log, logs logy 1 +
The next theorem implies that for almost all n, Hy,qe(S(n, 1)) concentrates
on a single value because for every ¢ > 0, D,(e) = Ey(¢) except for a
sequence of zero density.

Theorem 1.6. For every ¢ > 0

lim Pr{Dp(€) < Hymaw(S(n, =) < En(e)} = 1.

n—00 2

2. Proofs

In order to prove the theorems we need some lemmas.

logn
loglogn
in [1,n] is (1 + 0(1))(kn11)k%!, as n — oo.

Lemma 2.1. For k, = o(

) the number of non-degenerate ky,-cubes
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Proof. All vectors A=) are in 1-1 correspondence with all vectors (vo, v1,

e Uk,) With 1 < v < v < -+- < v, < nin RF»+1 according to the
formulas (ag, a1, ...,ax,) — (vo,v1,...,v,) = (ag,a0 + ai,...,ap + a1 +
-+ ay,); and (vo,v1,...,v,) — (ao,ai,...,ak,) = (vo,v1 —vo,...,Vk, —

U, —1). Consequently,

(kz Z 1) = [{AF=") T H .0 is non-degenerate}|
n

+ [{A%m)  H (1, ) is degenerate} .

By the definition of a non-degenerate cube the cardinality of the set
{A(k"’") : H (k,.n) is non-degenerate} is equal to

kn!|{non-degenerate k,-cubes in [1,n]}|,

because permutations of ai,...,a; give the same k,-cube. It remains to
verify that the number of vectors A(*»") which generate degenerate k-
cubes is o((;, ", |)). Let A1) be a vector for which H 5 (1,..) is a degenerate
kn-cube. Then there exist integers 1 < u; < ug < ... <ug < kp, 1 <wv <

vy < ... < v <k, such that
ap+ay, +...+ 0y, = a0+ Gy, + ...+ Ay,

where we may assume that the indices are distinct, therefore s + ¢ < k,,.
Then the equation

1 +x2+ ..+ Ts—Tsp1 — ... — Tsyt =0

can be solved over the set {aj,as...,a, }. The above equation has at most
nstt=1 < pkn=1 golutions over [1,7n]. Since we have at most k2 possibilities
for (s,t) and at most n possibilities for ag, therefore the number of vectors

Anm) for which H , (4,0 is degenerate is at most k2nn = o((,1). O

In the remaining part of this section the Hilbert cubes are non-
degenerate.

The proofs of Theorem 1.5 and 1.6 will be based on the following defini-
tion. For two intersecting k-cubes H 4 (x,n), Hg,n) let Hpn) N Hgkny =

{c1,...,em} with ¢1 < ... < ¢, where
k k

¢4 = ap + Zad,lal =bo + Zﬂd,zbl, aqy, Bay € {0,1}
=1 =1

for 1 <d<mand 1l <[ <k. The rank of the intersection of two k-cubes
H, v.n), Hgk.n) is defined as follows: we say that r(H  x.n), Hgx.n))=(s,t)
if for the matrices A = (g 1)mxk, B = (Ba1)mxkr we have rgr(A) = s and
rr(B) = t. The matrices A and B are called matrices of the common
vertices of H 5 (x,n), Hg (k).
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Lemma 2.2. The condition r(Hp x.n), Hge.n) = (s,t) implies that
‘HA(ICJL) N HB(k,n)| < 2min{s,t} .

Proof. We may assume that s < ¢t. The inequality [H @ NHgx.n| < 2°
is obviously true for s = k. Let us suppose that s < k and the number of
common vertices is greater than 2°. Then the corresponding (0—1)-matrices
A and B have more than 2° different rows, therefore ry,(A) > s, but we
know from elementary linear algebra that for an arbitrary (0 — 1)-matrix
M we have rp, (M) > rg(M), which is a contradiction. O

Lemma 2.3. Suppose that the sequences A%™) and B generate non-
degenerate k-cubes. Then
(1) |{( A (k) B (k, ")) : T(HA(k,n),HB(k,n)) = (S,t)}| ,
< 92k (kil)nk+1fmaw{s,t}
for all0 < s,t <k;
(2) |{(A(k’")a]23(k’n)) s (Hp g, Hgoom ) = (r,7), [Hawm N Hpoem | =
27‘}| < 22k (k:l_l)nk—r
for all0 <r < k;
(3) {(AER) BE) : p(Hpwm), Hgom ) = (K, k), [Hp ) N Hpeon | >

zk—l}’ < 22k2+2k (kj-l) )

Proof. (1) We may assume that s < ¢. In this case we have to prove that the
number of corresponding pairs (A" B®#:) is at most (kil)22k2nk+1*t.
We have already seen in the proof of Lemma 2.1 that the number of vec-

tors A(F™) is at most (kil). Fix a vector A% and count the suitable
vectors B Then the matrix B has t linearly independent rows, namely

TR((Ba;1)exk) = t, for some 1 < dy < --- < dy < m, where

k
ao+ > g a =bo+ Y Baibi,  d,Ba0 € {0,1}  for 1 <i <t
=1 =1
The number of possible bgs is at most n. For fixed by, g, 1, B4, let us study
the system of equations

k k
ap + Zadi’lal =by + Zﬁd“ll‘l, Oédi,lyﬁdi,l € {O, 1} for 1 <i<t.
=1 =1
The assumption rr(Bg,1)txkr = t implies that the number of solutions over
[1,n] is at most n*~t. Finally, we have at most 2" possibilities on the
left-hand side for oy, ;s and, similarly, we have at most 2kt possibilities on
the right-hand side for 3y, ;s, therefore the number of possible systems of
equations is at most 92k*
(2) The number of vectors A% ig (111) as in (1). Fix a vector Akn)

and count the suitable vectors B*). Tt follows from the assumptions
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r(Hp k), Hgtn) = (1,7), [Hpa NHgao| = 27 that the vectors (aq,. . .,
agr), d =1,...,2" and the vectors (8q4,1,...,04k), d =1,...,2", respec-
tively form r-dimensional subspaces of F5. Considering the zero vectors of
these subspaces we get ag = bg. The integers by, ..., by are solutions of the
system of equations

k k
ap + Zad,lal =by + Zﬁd,lxl Oéd,hﬁd,l € {0, 1} forl1 <d<2r.
=1 =1

Similarly to the previous part this system of equation has at most n*~"

solutions over [1,n] and the number of choices for the r linearly independent
rows is at most 22%°,

(3) Fix a vector A% Let us suppose that for a vector B(*"™) we have
r(H (o), Hg o)) = (K, k) and |H 6,0y NHge,n)| > 2871, Let the common
vertices be

k k
ao + > aquar =bo+ > Baibi, ay Bag € {0,1}  for 1 <d<m,

=1 =1
where we may assume that the rows dy, ..., dj are linearly independent, i.e.
the matrix By = (84,1)kxk is regular. Write the rows di, ..., d; in matrix
form as
(1) a = bol + Byb,

with vectors a = (ag + Zle g 10)kx1, L = (1)rx1 and b = (bi)kx1. It
follows from (1) that
b= DB} (a—bol) = B;'a—byB; 1.

Let Bk_ll = (d;)kx1 and Bk_lg = (¢;)kx1- Obviously, the number of subsets
{i1,...4;} € {1,...,k} for which d;, +...+d;, # 11is at least 251, therefore
there exist 1 <u; < ... <us < kand 1 <wv; <...< v <k such that
ao+ Qy, + ...+ ay, =bg+by, +...+ by, and dy, +...+d,, # 1. Hence

ag+ay, +...4+ay, = bo+by, +...4+by, = bo+cy, +...+Fcy, —bo(dy, +. .. +dy,)

ap+ay, +...+ 0y, —Cy; — ... — Cyy
by =
1—(dy, +...+dy,)
To conclude the proof we note that the number of sets {u,...,us} and
{v1,...,v} is at most 22k and there are at most 28 choices for By, and

a, respectively. Finally, for given By, a, bg, 1 < u; < ... < us < k and
1<v <...<wv <k, the vector B®*:) is determined uniquely. O

In order to prove the theorems we need two lemmas from probability
theory (see e.g. [1] p. 41, 95-98.). Let X; be the indicator function of the
event A; and Sy = X1 + ...+ Xy. For indices i, j write i ~ j if i # j and
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the events A;, A; are dependant. We set I' = >
over ordered pairs).

Pr{A; N A;} (the sum

i~j

Lemma 2.4. If E(S,) — co and I = o(E(S,,)?), then X > 0 a.e.

In many instances, we would like to bound the probability that none of
the bad events B;, i € I, occur. If the events are mutually independent, then
Pr{NicrB;} = [lic; Pr{B;}. When the B; are "mostly" independent, the
Janson’s inequality allows us, sometimes, to say that these two quantities
are "nearly" equal. Let Q) be a finite set and R be a random subset of 2 given
by Pr{r € R} = p,, these events being mutually independent over r € .
Let E;, i € I be subsets of 2, where I a finite index set. Let B; be the event
E; C R. Let X; be the indicator random variable for B; and X =} ,.; X;
be the number of E;s contained in R. The event N;c;B; and X = 0 are
then identical. For ,j € I, we write ¢ ~ j if i # j and E; N E; # 0. We
define A =37, ;Pr{B; N B}, here the sum is over ordered pairs. We set

M = Tlier PY{E}'

Lemma 2.5 (Janson’s inequality). Let € €]0,1[ and let B;,i € I, A, M be
as above and assume that Pr{B;} < e for alli. Then

M < Pr{ne/B;} < MeT= 2,

Proof of Theorem 1.5. Let H , (k,n), ..., H () be the distinct non-degen-
1 N
kE+1
erate k-cubes in [1,n]. Let B; be the event H o:n) C S(n,cn 2F"). Then
Pr{B;} = #'n*"1 =o(1) and N = (1+o(1))(kil)%. It is enough to prove

A =>"Pr{B;NB;} =o(l)

inj
since then Janson’s inequality implies

Pr{S(n, cn_%) does not contain any k-cubes}
= Pr{n,B;}
= (L4 o(1)(1 — (en™ 5 )G i

k
2

=(1+o0(1))e ®FDH,
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It remains to verify that 3>, ; Pr{B; N B,} = o(1). We split this sum ac-
cording to the ranks in the following way

> Pr{B;NB;} = zkjf: > Pr{B; N B}
i~ s=01t=0

in~vj

T(HAfk,n) 7HA§k,n) ):(Svt)

[y

s—
=2 > Pr{B; N B}
s=1t=0 inj
T(HA(A:,n) ’HA(k,n) ):(Svt)
i J

k—1
+2 > Pr{B; N B;}
r=0 i~vj

T(HAi(k-,n) H, (k,m) )=(r,r)

J
|HAi(k',n) WHA}k,m [=2"

k—1
S SRS SR

r=1 inj

T(HAi(k’n) 7HA§k,n) ):(T7T)
|HA§k,n) QHAJgk,m [<2
+ > Pr{B; N B;} + > Pr{B; N B;}.
le zN
r(H A(k ny H A(k n))=(k,k) r(H A(k ny H A(k ny))=(k;k)
|H (k nyNH kn)|<2k ! IHAgk,n)ﬂH Jk oy [>2F71

The first sum can be estimated by Lemmas 2 and 2.3(1)

[y

S—

k
> > Pr{B; N B;}
s=11t=0 i~
T(HA(kn) ’HAjk,n) ):(Svt)

k s—1
2k2 n k+1l—s 2.9k _ot
R A

s=1t=0

95— 1Ek4+1

no Zn ok T = nO(l)(n%_]L + nkgl_k) =o(1),

since the sequence as = 23*1% — s is decreasing for 1 < s < k+4+1—

logy(k + 1) and increasing for k + 1 — logy(k+ 1) < s < k.
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To estimate the second sum we apply Lemma 2.3(2)

k—1
> > Pr{B; N B;}
r=0 i~vj

7‘(:H:A&i(k,n) vHA‘gk,n) ):(Tv"')

\HAgk,n)ﬂHAjgk,n) |=2"

kol 2 n _k+1 k T
< Z 22k b1 nk—r(cn Y )2~2 -2
r=0

k—1
_ - lto(D) Z an%—r _ n—1+o(1)(n2T + nT_(k_l)) = o(1).
r=0

The third sum can be bounded using Lemma 2.3(1):

kil > Pr{B; N B;}

i~vg
T(HAEk,n) 7HA§k,n) ):(7",?")

|H

J
A.(k,n) nHAgk,n) |<2T
i 3

= k2 T ktl—r,  —EHL ook _oryq
< Z 2 n (en™ 2F)
r=1

k+1
fo—

< oD LN okl no(l)—%(nQ%—l 4 n%—(k—l)) =0(1)
r=1

Similarly, for the fourth sum we apply Lemma 2.3(1)

k
Z Pr{B;N B;} < no(l)nk”(cn*%’“l)l'mk = o(1).
i~j

r(H hom L ) )=(0)

J
k—1
‘HAEk,n)mHA‘gk,n) [<2

To estimate the fifth sum we note that [H, @ UH, x| > 2F 1. It
i j
follows from Lemma 2.3(3) that
k1
Z Pr{B; N B;} < 22k2+2knk+1(cn oF )2k+1 = o(1),
—~
T(HAi(k,n) 7HA§k,n) ):(k’k)

J
k—1
\HAi(k,n)ﬂHAJgk,n) [>2

which completes the proof. O
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Proof of Theorem 1.6. Let € > 0 and for simplicity let D,, = D, (¢) and
E, = E,(¢). In the proof we use the estimations

(1—¢) logg logg logg n
22Dn < 2210g2 logo n+logg logg logg H+W2102g'2n2

_ nlog2 logy n+(1—e+0(1)) log, log, logy n

and

(14-€) logo logo logg n

2En+1 2210g2 logg n+logy logg logg n+ Tog2logs logg 1

2
_ nlog2 log, n+(14+€e+o0(1)) log, logy logy n

In order to verify Theorem 1.6 we have to show that

. 1 :
(2) Jim Pr{S(n, 5) contains a D,,-cube} =1
and
. 1 .
(3) Jim Pr{S(n, 5) contains an (E, + 1)-cube} = 0.
To prove the limit in (4) let H, un); .-, Hy 0, be the different non-
1 N

degenerate D,,-cubes in [1,n|, B; be the event H, wnn C S(n, %), X; be

the indicator random variable for B; and Sy = X3 T4 X ~ be the number
of H, ,n) C S(n, %) The linearity of expectation gives by Lemma 2.1 and

inequality (2)

n 1 D
E(Sy)=NE(X;) = (1+o0(1 —272"
> n10g2 log, n+(1+0(1)) log, log, log, ny = log, logy n—(1—e+0(1)) log, log, logy n

_ n(eJro(l)) log, log, logy n

Therefore E(Sy) — oo, as n — 0o. By Lemma 2.4 it remains to prove that

S"Pr{BiN B;} = o(E(Sx)?)

i~j

where 7 ~ j means that the events B;, B; are not independent i.e. the cubes
H A(Dn,n),H AP have common vertices. We split this sum according to
i 3
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the ranks
Dy, Dy
S Pr{BNB;}=> Y > Pr{B; N B;}
invj 5=0t=0 i~
T(HAi(Dn,n) »HAJgDn,n) )=(s,t)
< > Pr{B; N B;}

i~j
T(HAi(Dn,n) 1HA§D",n) )=(0,0)

D, s
+2) ) > Pr{B; N B;}.

s=11t=0 inj

T(HAi(Dn,n) 7HA§Dn,n) ):(Svt)

The condition T(HAgD"’")’HAJﬁD"’")) = (0,0) implies that

’HAi(D"’n) U HAéD"’n)’ — 2Dn+1 _ 17
thus by Lemma 2.3(2)

Z Pr{B; N B;} < 92D7 Dng—2PN*141

i’ Dy +1

T(HAEDn n) ,HA;Dn ,7))=(0,0)
n 2
72—2Dn
(((Dn + 1) ) )
=o(F

In the light of Lemmas 2 and 2.3(1) the second term in (6) can be estimated
as

Dn s
>0 > Pr{B; N B;}
s=1t=0 i~vj

T(HAi(Dn,n) 7HA§Dn,n) ):(Szt)

D, s
n 2 D t
< 22Dn Dn+175272-2 n42
<22 (Dn + 1) "

s=11t=0
n 1 __.p 22"
- e R Wt
((D”+1>Dn' s=1t= 0
2 Dy, 2s
= — 2 neWH N~ 2
((Dn—i-l) D,! > 52:21 ns
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Finally, the function f(x) = 2%” decreases on (—oo, log, logn — 2log, log 2]
and increases on [log, logn — 2log, log 2, 00), therefore by (2)

Dy 525 20n

T emd 2

o n nbn

) _ n71+o(1) ’

which proves the limit in (4).
In order to prove the limit in (5) let H w1, Hgwwarm be the
1 K

distinct (Ey,+1)-cubes in [1, n] and let F; be the event H y(5,+1.n) C S(n, 1).
By (3) we have 1

K
Pr{S, contains an (E, + 1)-cube} = Pr{UX | F;} < ZPr{Fi} <
i=1
n oFn+1 nlogs logy n+(1+0(1)) log, log, logy n
2” < = 0(1)5
E,+2 nlogs logy n+(1+e+0(1)) log, log, logy n
which completes the proof. O

3. Concluding remarks

The aim of this paper is to study non-degenerate Hilbert cubes in a
random sequence. A natural problem would be to give analogous theorems
for Hilbert cubes, where degenerate cubes are allowed. In this situation the
dominant terms may come from arithmetic progressions. An APy forms
a k-cube. One can prove by the Janson inequality (see Lemma 2.5) that for
afixed k> 2

: — 2 . et
lim Pr{S(n,cn” 1) contains no AP, 1} =e 2 .
n—oo

An easy argument shows (using Janson’s inequality again) that for all ¢ > 0,
with p, = en=2/5

(3]

c

Jim. Pr{S(n,p,) contains no 4-cubes} = e~ 5.

Conjecture 3.1. Fork >4

k1

_72 . —_———
lim Pr{S(n,cn” ¥1) contains no k-cubes} = e~ 2k .
n—oo

A simple calculation implies that in the random sequence S(n, %) the
length of the longest arithmetic progression is a.e. nearly 2log, n, therefore
it contains a Hilbert cube of dimension (2 — €) log, n.

Conjecture 3.2. For every e >0

. the maximal dimension of Hilbert cubes
lim Pr < 1y . =1.
in S(n,5)is < (2+¢€)logyn



Non-degenerate Hilbert cubes in random sets 261

N. Hegyvari (see [5]) studied the special case where the generating el-
ements of Hilbert cubes are distinct. He proved that in this situation
the maximal dimension of Hilbert cubes is a.e. between c;logn and
cslognloglogn. In this problem the lower bound seems to be the correct
magnitude.
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