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Approximation of values of hypergeometric
functions by restricted rationals

par Carsten ELSNER, Takao KOMATSU et Iekata SHIOKAWA

Résumé. Nous calculons des bornes supérieures et inférieures
pour l’approximation de fonctions hyperboliques aux points 1/s
(s = 1, 2, . . . ) par des rationnels x/y, tels que x, y satisfassent
une équation quadratique. Par exemple, tous les entiers positifs
x, y avec y ≡ 0 (mod 2), solutions de l’équation de Pythagore
x2 + y2 = z2, satisfont

|y sinh(1/s)− x| � log log y
log y

.

Réciproquement, pour chaque s = 1, 2, . . ., il existe une infinité
d’entiers x, y, premiers entre eux, tels que

|y sinh(1/s)− x| � log log y
log y

et x2 + y2 = z2 soient réalisés simultanément avec z entier. Une
généralisation à l’approximation de h(e1/s), pour h(t) fonction
rationnelle, est incluse.

Abstract. We compute upper and lower bounds for the ap-
proximation of hyperbolic functions at points 1/s (s = 1, 2, . . . )
by rationals x/y, such that x, y satisfy a quadratic equation. For
instance, all positive integers x, y with y ≡ 0 (mod 2) solving the
Pythagorean equation x2 + y2 = z2 satisfy

|y sinh(1/s)− x| � log log y
log y

.

Conversely, for every s = 1, 2, . . . there are infinitely many coprime
integers x, y, such that

|y sinh(1/s)− x| � log log y
log y

and x2 + y2 = z2 hold simultaneously for some integer z. A gen-
eralization to the approximation of h(e1/s) for rational functions
h(t) is included.

Manuscrit reçu le 24 septembre 2005.
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1. Introduction and statement of the results

In this paper, we investigate the approximation of hyperbolic functions
at points 1/s for s ≥ 1. For this purpose we apply the concept of leaping
convergents to the irrational numbers e1/s, and use the continued fraction
expansion

(1.1) e1/s = exp
(

1
s

)
=

[
1; s− 1, 1, 1, s(2k − 1)− 1, 1, 1

]
k≥2

.

For n = 2, 3, . . ., set

(1.2)
Pn

Qn
:=

[
1; s− 1, 1, 1, s(2k − 1)− 1, 1, 1

]n

k=2
, (Pn, Qn) = 1 .

We call the fractions Pn/Qn leaping convergents. By Theorem 1 of [5] one
has for all integers n that the leaping convergents satisfy both

Pn+2 = 2s(2n+ 3)Pn+1 + Pn(1.3)

and

Qn+2 = 2s(2n+ 3)Qn+1 +Qn (n ≥ 0) ,

of course with P0 = 1, P1 = 2s + 1, and Q0 = 1, Q1 = 2s − 1 as ini-
tial values. We note that the well known expansion e = [2; 1, 2k, 1]k≥1 =
[1; 0, 1, 1, 2k − 2, 1, 1]k≥2 and the recursion formulae, Theorem 1 of [1], for
its leaping convergents, is just the special case s = 1 above, in that always
[1; 0, 1, 1, . . . ] = [2; 1, . . . ]. As a consequence of these recurrence formulae,
all the integers Pn and Qn are odd.

We study rational approximation to certain values of hyperbolic func-
tions by restricted rationals x/y. For example, if x2 + y2 is a square then
always |y sinh(1/s)− x| � log log y/ log y. However, conversely, we can de-
tail infinitely many x and y with x2 + y2 square so that |y sinh(1/s)−x| �
log log y/ log y. The implied constants depend only on the positive inte-
ger s.

One readily sees that our methods yield analogous results for cosh(1/s)
and tanh(1/s) with x2 − y2 square and y2 − x2 square, respectively.

Our results rely in significant part on the Hurwitz-periodic continued
fraction expansion (1.1) of e1/s with the convergents Pk/Qk at the end
of each Hurwitz period being those of interest to us. These are therefore
’leaping convergents’ of e1/s; their properties are detailed in [5]. Our reliance
on (1.1) explains why we restrict our functions to the value 1/s.

Our results may seem eccentric but are in fact quite natural. Given that
p/q is a good approximation to exp(a) it is not too surprising that, say for
q sufficiently large, x/y = (p2−q2)/2pq will be a fairly good approximation
to sinh(a). Our producing infinitely many x and y with x2 + y2 square so
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that |y sinh(1/s)− x| � log log y/ log y is therefore a matter of spelling out
the details of this remark.

The converse claim, that always |y sinh(1/s) − x| � log log y/ log y for
x2 +y2 square is more delicate. We develop the tools to show, in either case
y = 2pq or y = p2 − q2, that p/q is a convergent of exp(1/s), and that this
suffices to prove the claim.

Here, and in the sequel, s always is some fixed positive integer. Just so,
here and throughout x and y denote relatively prime positive integers – of
course large enough so that our related remarks make sense, for instance
so that log log y is positive.

In [2, Theorem 1.1] a general result on diophantine approximation with
rationals restricted on Pythagorean numbers is proved.

Proposition 1.1 (C.E., 2003). Let ξ > 0 be a real irrational number such
that the quotients of the continued fraction expansion of at least one of the
numbers η1 := ξ +

√
1 + ξ2 and η2 := (1 +

√
1 + ξ2)/ξ are not bounded.

Then there are infinitely many pairs of positive integers x, y satisfying

|ξy − x| = o(1) with x2 + y2 square .

Conversely, if the quotients of both of the numbers η1 and η2 are bounded,
then there exists some δ > 0 such that

|ξy − x| ≥ δ

for all positive integers x, y with x2 + y2 square.

It can easily be seen that the irrationality of ξ does not allow the numbers
η1 and η2 to be rationals. The following result ([2, Corollary 1.1]) can
be derived from the preceding proposition and from the metric theory of
continued fractions:

Proposition 1.2. To almost all real numbers ξ (in the sense of the Lebesgue
measure) there are infinitely many pairs of integers x 6= 0, y > 0 satisfying

|ξy − x| = o(1) and x2 + y2 square .

Many exceptional numbers ξ not belonging to that set of full measure
are given by certain quadratic surds ([2, Corollary 1.2]):

Proposition 1.3. Let r > 1 be a rational such that ξ :=
√
r2 − 1 is an

irrational number. Then the inequality

|ξy − x| > δ

holds for some δ > 0 (depending only on r) and for all positive integers x, y
with x2 + y2 square.
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The lower bound δ can be computed explicitly. Proposition 1.3 follows
from Proposition 1.1 by setting ξ :=

√
r2 − 1.

Lemma 1.1. Let ξ be an irrational number. Let ϕ(t) and ψ(t) be positive
decreasing functions of t ≥ t0(> 0) tending to zero as t tends to infinity
such that, for any fixed α > 0,

ϕ(αt) < Aϕ(t) , ψ(αt) > Bψ(t)

for all t ≥ t0, where A,B > 0 are constants depending only on α. Assume
that

|yξ − x| < ϕ(y) for infinitely many x, y(≥ t0) ∈ Z ,(1.4)
|yξ − x| > ψ(y) for all x, y(≥ t0) ∈ Z .(1.5)

Then, for any a, b, c, d ∈ Z with ad−bc 6= 0, the inequalities (1.4) and (1.5)
hold with

ξ′ =
aξ + b

cξ + d

and D1ϕ(t), D2ψ(t) in place of ξ and ϕ(t), ψ(t), respectively, where D1

and D2 are constants depending possibly on a, b, c, and d.

We omit the proof of this lemma, since it can be easily done in each of
the cases ξ′ = aξ, ξ + b, ξ/c, and 1/ξ.

Lemma 1.2. For n ≥ 1 we have

n log(ns) < logQn < n log(2ns) .

The preceding lemmas are used to prove the results stated below in
Theorems 1.1, 1.2, and 1.3. Let h(x) be a function with

(1.6) h ∈ C(1)[1 + δ; 3] → R , min
1+δ≤t≤3

|h′(t)| > 0 ,

where δ is some arbitrary small positive real number. Particularly, h′(x)
takes its minimum and maximum for 1 + δ ≤ x ≤ 3. In our applications we
choose h(x) as rational functions.

Lemma 1.3. Let s ≥ 1 be an integer, and let h(x) be as above. Then there
are positive real constants C1 and C2 satisfying

C1 ·
log logQn

Q2
n logQn

≤
∣∣∣∣h(e1/s)− h

(
Pn

Qn

)∣∣∣∣ ≤ C2 ·
log logQn

Q2
n logQn

(n ≥ 3) ,

where Pn and Qn are defined by (1.3). The constants C1 and C2 can be
computed effectively and they depend on the function h and on s.

The application of this theorem to various functions h leads to the fol-
lowing approximation results.
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Theorem 1.1. Let s be a positive integer and x and y relatively prime
positive integers with y ≡ 0 (mod 2) such that x2 + y2 is a square. Then

(1.7)
∣∣∣∣y sinh

(
1
s

)
− x

∣∣∣∣ � log log y
log y

with an effectively computable implied constant depending only on s. None-
theless, there are infinitely many pairs x, y as just described, so that

(1.8)
∣∣∣∣ y · sinh

(
1
s

)
− x

∣∣∣∣ � log log y
log y

,

again with the implied constant depending only on s.
Indeed we explicitly compute the upper bound (see the proof below) as

function of s and moreover note that in the inequality all the x may be
supposed restricted to be divisible by some arbitrary nominated positive in-
tegers.

Theorem 1.2. Let s be a positive integer and x and y relatively prime
positive integers with y ≡ 0 (mod 2) such that x2 − y2 is a square. Then∣∣∣∣y cosh

(
1
s

)
− x

∣∣∣∣ � log log y
log y

with an effectively computable implied constant depending only on s. None-
theless, there are infinitely many pairs x, y as just described, so that∣∣∣∣ y · cosh

(
1
s

)
− x

∣∣∣∣ � log log y
log y

,

again with the implied constant depending only on s.

Theorem 1.3. Let s be a positive integer and x and y relatively prime
positive integers with y ≡ 1 (mod 2) such that y2 − x2 is a square. Then∣∣∣∣y tanh

(
1
s

)
− x

∣∣∣∣ � log log y
log y

with an effectively computable implied constant depending only on s. None-
theless, there are infinitely many pairs x, y as just described, so that∣∣∣∣ y · tanh

(
1
s

)
− x

∣∣∣∣ � log log y
log y

,

again with the implied constant depending only on s.

We shall prove Lemmas 1.2 and 1.3 in section 2, and Theorem 1.1 in
section 3. The arguments in the proofs of Theorems 1.2 and 1.3 are similarly
as in the proof of Theorem 1.1. Therefore we restrict ourselves to some
remarks.
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2. Proof of Lemmas 1.2 and 1.3.

Proof of Lemma 1.2: The proof is done by induction and by easy esti-
mations. For s ≥ 1 and n ≥ 1 we have

Qn >
(2n− 1)!
(n− 1)!

sn ≥ (ns)n

and

Qn <
(2n)!
n!

sn ≤ (2ns)n .

Proof of Lemma 1.3: Let ak and pk/qk be the kth partial quotient and
the kth convergent of an irrational number ξ. Then one gets

(2.1)
1

(2 + ak+1)q2k
<

∣∣∣∣ξ − pk

qk

∣∣∣∣ < 1
ak+1q

2
k

(k ≥ 1) .

For all s ≥ 1, we choose k = 3n, which yields

a3n+1 = (2n+ 1)s− 1 , p3n = Pn , q3n = Qn (n ≥ 0) .

Then (2.1) implies that
(2.2)

1
((2n+ 1)s+ 1)Q2

n

<

∣∣∣∣e1/s − Pn

Qn

∣∣∣∣ < 1
((2n+ 1)s− 1)Q2

n

(n ≥ 0) .

Let
D1 := 1 +

log(2s)
log 2

.

Then from Lemma 1.2, and log(2ns) ≤ D1 log n (n ≥ 2), one has

(2.3) n log n < logQn < D1n log n (n ≥ 2) .

We also get from (2.2) that

(2.4)
1

4nsQ2
n

<

∣∣∣∣e1/s − Pn

Qn

∣∣∣∣ < 1
2nsQ2

n

(n ≥ 2) .

Next, it follows from the right inequality in (2.3) that log logQn < D2 log n
holds for some positive constant D2, e.g.

D2 := 1 +
log log 15

log 15
+

logD1

log 2
≥ 1 +

log log n
log n

+
logD1

log n
(n ≥ 2) .

Then the left inequality in (2.3) yields

n <
logQn

log n
<

D2 logQn

log logQn
,(2.5)

or
1
n
>

D3 log logQn

logQn
(n ≥ 2 , D3 := D−1

2 ) .
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Conversely, we get by similar arguments for n ≥ 3 from (2.3) that log n <
log logQn. Hence

n >
logQn

D1 log n
>

logQn

D1 log logQn
,(2.6)

or
1
n
<

D1 log logQn

logQn
(n ≥ 3) .

From (2.4), (2.5) and (2.6) we get

1
4s
· D3 log logQn

Q2
n logQn

<

∣∣∣∣e1/s − Pn

Qn

∣∣∣∣ < 1
2s
· D1 log logQn

Q2
n logQn

,

and therefore we have for positive constants D4 := D3/4s and D5 := D1/2s:

(2.7)
D4 log logQn

Q2
n logQn

<

∣∣∣∣e1/s − Pn

Qn

∣∣∣∣ < D5 log logQn

Q2
n logQn

(s ≥ 1 , n ≥ 3) .

For every integer n ≥ 1 there exists a real number α satisfying simultane-
ously

(2.8)
∣∣∣∣h(e1/s)− h

(
Pn

Qn

)∣∣∣∣ = |h′(α)| ·
∣∣∣∣e1/s − Pn

Qn

∣∣∣∣ ,
(2.9) e1/s ≤ α ≤ Pn

Qn
or

Pn

Qn
≤ α ≤ e1/s .

By
P2

Q2
=

p6

q6
≤ P2k

Q2k
< e1/s <

P2k−1

Q2k−1
≤ p9

q9
=

P3

Q3
(k ≥ 2)

we conclude from (2.9) with n ≥ 2 that

(2.10) 1 <
P2

Q2
≤ α ≤ P3

Q3
.

Let

(2.11) t1 :=
P2

Q2
and t2 :=

P3

Q3
.

By (2.10) we know that

(2.12) t1 ≤ α ≤ t2 ,

and by the hypotheses on the function h the positive numbers

D6 := min
t1≤t≤t2

|h′(t)| and D7 := max
t1≤t≤t2

|h′(t)|

exist; put δ := t1 − 1 in (1.6). D6 and D7 depend on h only. Thus we
get from (2.7), (2.8) and (2.12) the bounds in Lemma 1.3 with constants
C1 := D4D6 and C2 := D5D7. This completes the proof of the lemma.
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3. Proof of Theorems 1.1, 1.2, 1.3.

Proof of Theorem 1.1: For the upper bound in (1.8) let

(3.1) h(t) :=
1
2
·
(
t− 1

t

)
(1 < e1/2s ≤ t ≤ 3) .

One easily computes

(3.2) h′(t) =
1
2

+
1

2t2
such that

5
9
≤ h′(t) ≤ 1 (1 ≤ t ≤ 3) .

Now we apply Lemma 1.3. Put xn := P 2
n −Q2

n, yn := 2PnQn. Particularly,
Pn > Qn. Furthermore,

(3.3) h(e1/s) = sinh
(

1
s

)
, h

(
Pn

Qn

)
=

P 2
n −Q2

n

2PnQn
=

xn

yn
.

We know for all integers n ≥ 2 that 1 < t1 ≤ Pn/Qn ≤ t2 < 3 with t1, t2
defined in (2.11). This implies

t1Q
2
n ≤ PnQn =

yn

2
≤ t2Q

2
n (n ≥ 2) .

Using Qn > 3 and t2 < 3, we get logQn > log(yn/2)/3. Additionally, we
have log logQn ≤ log log(yn/2). Hence the application of Lemma 1.3 yields∣∣∣∣ sinh

(
1
s

)
− xn

yn

∣∣∣∣ ≤ C2 ·
log logQn

Q2
n logQn

< 3C2t2 ·
log log(yn/2)

(yn/2) log(yn/2)
(n ≥ 3) .

Setting C3 := 3C2t2 and x = xn/2 and y = yn/2, we get (1.8).
Finally, we restrict n on integers of the form n = 2kt with k ≥ 1. Then

it follows from Theorem 1.5 in [1] and from a Remark in [5], respectively,
that Q2kt ≡ (−1)2kt mod (2t) and P2kt ≡ 1 mod (2t). We get by (1.2),

xn = p2
3n − q23n = P 2

n −Q2
n = P 2

2kt −Q2
2kt

≡ 12 − (−1)4kt = 1− 1 = 0 mod (2kt) .

Hence xn is divisible by 2t. Since all the integers Pn and Qn are odd, we
know that xn and yn are divisible by 2 both. Put

(3.4) x :=
xn

2
and y :=

yn

2
.

Then x is divisible by t, and x, y are coprime, which follows from (Pn, Qn) =
1 and PnQn ≡ 1 mod 2. Moreover, we have

x2 + y2 =
(P 2

n −Q2
n)2

4
+ P 2

nQ
2
n =

P 4
n + 2P 2

nQ
2
n +Q4

n

4
=

(
P 2

n +Q2
n

2

)2

.

In order to prove the first statement in Theorem 1.1 we consider two positive
integers x and y such that x2+y2 is a square. It suffices to treat the case with
coprime numbers x and y: When the lower bound holds with a constant
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C ′4 for such coprime integers x and y with y ≥ 3, we get for every integer
D > 1

(3.5)
∣∣∣∣(Dy) sinh

(
1
s

)
− (Dx)

∣∣∣∣ > C ′4D · log log y
log y

≥ C ′4
4
· log log(Dy)

log(Dy)
.

Since y ≡ 0 mod 2, there are two positive coprime integers p and q with
p > q exist satisfying x = p2 − q2 and y = 2pq (because x and y are
coprime integers). For the function h defined in (3.1) we then have, using
the lower bound given in (3.2),

(3.6)
∣∣∣∣ sinh

(
1
s

)
− x

y

∣∣∣∣ > 5
9
·
∣∣∣∣e1/s − p

q

∣∣∣∣ .
It suffices to consider integers x and y satisfying
(3.7)∣∣∣∣ sinh

(
1
s

)
− x

y

∣∣∣∣ ≤ log log y
y log y

and y ≥ max{2 000 000 ; 8Q2
3 } .

Particularly we have from (3.6) and (3.7) that∣∣∣∣e1/s − p

q

∣∣∣∣ < 9
5
· log log y
y log y

<
1
2
.

This implies that

−1
2

+ e1/s <
p

q
<

1
2

+ e1/s ,

and then, by 1 < e1/s < 3,
q

2
= q ·

(
− 1

2
+ 1

)
< p < q ·

(
1
2

+ 3
)
< 4q .

It follows that y = 2pq < 8q2, which yields log y < log 8 + 2 log q ≤ 5 log q
for q ≥ 2, or

(3.8)
log y

5
< log q (q ≥ 2) .

Taking logarithms again, we get by (3.7)

log log q > log log y ·
(

1− log 5
log log y

)
>

log log y
3

.

Collecting together the relationships between q and y, we have

(3.9)

q2 < 2pq = y < 8q2

log y
5

< log q <
log y

2

log log y
3

< log log q < log log y


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for y ≥ 2 000 000. Next, we apply (3.6) and (3.7) for the second time to get
a new upper bound for |e1/s − p/q| by (3.9):

(3.10)
∣∣∣∣e1/s− p

q

∣∣∣∣ < 9
5
· log log y
y log y

<
9
5
· log log y

log y
· 1
q2

<
9
5
· 5
27
· 1
q2

=
1

3q2
.

It follows from the well-known facts of the elementary theory of continued
fractions that p/q is a convergent of e1/s ([3], Theorem 184); namely there
is an integer k ≥ 0 with

p

q
=

pk

qk
,

where pk/qk denotes the kth convergent of e1/s. Since p and q are coprime
and positive, we additionally know that p = pk and q = qk. Let ak+1 be
the corresponding quotient of the continued fraction expansion of e1/s. We
have ak+1 > 1, since otherwise it follows from ak+1 = 1 and (2.1) that∣∣∣∣e1/s − p

q

∣∣∣∣ =
∣∣∣∣e1/s − pk

qk

∣∣∣∣ > 1
3q2k

,

which contradicts (3.10). Therefore the convergent p/q equals to some frac-
tion Pn/Qn with positive integers p = Pn and q = Qn defined by (1.3).
Thus we may apply Lemma 1.3 and (3.2), (3.3), and (3.9) in order to prove
(1.7). In Lemma 1.3 the hypothesis n ≥ 3 is fulfilled by y ≥ 8Q2

3 and (3.9),
since Qn = q >

√
y/8 ≥ Q3. Therefore, we have∣∣∣∣ sinh

(
1
s

)
− x

y

∣∣∣∣ =
∣∣∣∣h(e1/s)− h

(
Pn

Qn

)∣∣∣∣ > C1 ·
log logQn

Q2
n logQn

= C1 ·
log log q
q2 log q

(3.11) >
2C1

3
· log log y
y log y

= D8 ·
log log y
y log y

.

The proofs of Theorem 1.2 and 1.3 differ from that one of Theorem
1.1 by use of different functions h corresponding to the solutions of the
diophantine equations. All the remaining arguments are the same as in the
proof of Theorem 1.1 and will be omitted.
Proof of Theorem 1.2: The basic function in the proof of Theorem 1.2 is

h(t) :=
1
2
·
(
t+

1
t

)
(1 ≤ t ≤ 3) .

Then one has

h(e1/s) = cosh
(

1
s

)
and h

(
p

q

)
=

p2 + q2

2pq
.
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Putting x := p2 + q2, y := 2pq with p > q, one gets x ≥ y > 0, and
x2 − y2 = (p2 − q2)2. Let

h′(t) =
1
2
− 1

2t2
, h′′(t) =

1
t3

(1 ≤ t ≤ 3) .

Clearly, h′(t) increases monotonously for t ≥ 1. Thus we have
1
2
− 1

2e1/s
= h′(e1/2s) ≤ h′(t) ≤ h′(3) =

4
9

(e1/2s ≤ t ≤ 3) .

Proof of Theorem 1.3: The basic function in the proof of Theorem 1.3 is

h(t) :=
t2 − 1
t2 + 1

(1 ≤ t ≤ 3) .

Then one has

h(e1/s) = tanh
(

1
s

)
and h

(
p

q

)
=

p2 − q2

p2 + q2
.

Putting x := p2 − q2, y := p2 + q2 with p > q, one gets 0 < x ≤ y, and
y2 − x2 = (2pq)2. Since h′(t) decreases monotonously for t ≥ 1, we have

3
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= h′(3) ≤ h′(t) ≤ h′(1) = 1 (1 ≤ t ≤ 3) .

Remark on Theorem 1.1: All the solutions of

x2 + y2 = 2z2 , (x, y) = 1 , z > 0 (x, y ∈ Z)

are given by

x = p2 − q2 ± 2pq , y = p2 − q2 ∓ 2pq , z = p2 + q2 (p, q ∈ Z)

(cf [6], p.13). Putting

h(t) :=
t2 + 2t− 1
t2 − 2t− 1

, h

(
p

q

)
=

p2 − q2 + 2pq
p2 − q2 − 2pq

=:
x

y
,

we can prove Theorem 1.1 with ξ :=
(
sinh(1/s) + 1

)
/
(
sinh(1/s) − 1

)
in

place of sinh(1/s). The details and more applications will be discussed in
our following paper.
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