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Tong’s spectrum for Rosen continued fractions

par Cornelis KRAAIKAMP, Thomas A. SCHMIDT et Ionica
SMEETS

Résumé. Dans les années 90, J.C. Tong a donné une borne supé-
rieure optimale pour le minimum de k coefficients d’approximation
consécutifs dans le cas des fractions continues à l’entier le plus
proche. Nous généralisons ce type de résultat aux fractions conti-
nues de Rosen. Celles-ci constituent une famille infinie d’algorith-
mes de développement en fractions continues, où les quotients
partiels sont certains entiers algébriques réels. Pour chacun de ces
algorithmes nous déterminons la borne supérieure optimale de la
valeur minimale des coefficients d’approximation pris en nombres
consécutifs appropriés. Nous donnons aussi des résultats métri-
ques pour des plages de “mauvaises” approximations successives
de grande longueur.

Abstract. In the 1990s, J.C. Tong gave a sharp upper bound
on the minimum of k consecutive approximation constants for
the nearest integer continued fractions. We generalize this to the
case of approximation by Rosen continued fraction expansions.
The Rosen fractions are an infinite set of continued fraction algo-
rithms, each giving expansions of real numbers in terms of certain
algebraic integers. For each, we give a best possible upper bound
for the minimum in appropriate consecutive blocks of approxima-
tion coefficients. We also obtain metrical results for large blocks
of “bad” approximations.

1. Introduction
It is well-known that every x ∈ [0, 1)\Q has a unique (regular) continued

fraction expansion of the form

(1.1) x = 1

a1 + 1

a2 + . . .+ 1
an + . . .

= [ a1, a2, . . . , an, . . .].

Manuscrit reçu le 1er septembre 2006.
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Here the partial quotients an are positive integers for n ≥ 1. Finite
truncation in (1.1) yields the convergents pn/qn of x, i.e., for n ≥ 1

pn
qn

= 1

a1 + 1

a2 + . . .+ 1
an

= [ a1, a2, . . . , an],

and throughout it is assumed that pn/qn is in its lowest terms. Note that
(1.1) is a shorthand for limn→∞ pn/qn = x.

Underlying the regular continued fraction (RCF) expansion (1.1) is the
map T : [0, 1) → [0, 1), defined by

T (x) = 1
x

mod 1 = 1
x
−
⌊1
x

⌋
, x 6= 0; T (0) = 0.

Here
⌊

1
x

⌋
denotes the integer part of 1

x . The RCF-convergents of x ∈ [0, 1)\
Q have strong approximation properties. We mention here that∣∣∣∣x− pnqn

∣∣∣∣ < 1
q2n
, for n ≥ 0,

which implies, together with the well-known recurrence relations for the
pn and qn, that the rate of convergence of pn/qn to x is exponential (see
e.g. [DK]). One thus defines the approximation coefficients θn(x) of x by
θn = θn(x) = q2n |x− pn/qn|, n ≥ 0. We usually suppress the dependence
on x in our notation.

For the RCF-expansion we have the following classical theorems by Borel
(1905) and Hurwitz (1891) about the quality of the approximations.

Theorem 1. (Borel) For every irrational number x, and every n ≥ 1

min{θn−1, θn, θn+1} <
1√
5
.

The constant 1/
√

5 is best possible.

Borel’s result, together with a yet earlier result by Legendre [L], which
states that if p, q ∈ Z, q > 0, and gcd(p, q) = 1, then∣∣∣∣x− pq

∣∣∣∣ < 1
2q2

implies that
(
p
q

)
=
(
pn
qn

)
, for some n ≥ 0,

implies the following result by Hurwitz.

Theorem 2. (Hurwitz) For every irrational number x there exist infin-
itely many pairs of integers p and q, such that∣∣∣∣x− pq

∣∣∣∣ < 1√
5

1
q2
.

The constant 1/
√

5 is best possible.
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By removing all irrational numbers which are equivalent to the ‘golden
mean’ g = 1

2(
√

5− 1) (i.e., those irrationals whose RCF-expansion consists
of 1s from some moment on), we have that∣∣∣∣x− pq

∣∣∣∣ < 1√
8

1
q2
,

for infinitely many pairs of integers p and q. These constants 1/
√

5 and
1/
√

8 are the first two points in the so-called Markoff spectrum; see [CF]
or [B] for further information on this spectrum, and the related Lagrange
spectrum.

Note that the theorem of Borel does not suffice to prove Hurwitz’s theo-
rem; one needs Legendre’s result to rule out the existence of rationals p/q
which are not RCF-convergents, but still satisfy |x− p/q| < 1/(

√
5 q2).

In [T1, T2], Tong generalized Borel’s results to the nearest integer con-
tinued fraction expansion (NICF). These are continued fractions of the form

x = ε1

b1 + ε2

b2 + . . .+ εn
bn + . . .

,

generated by the operator T 1
2

:
[
−1

2 ,
1
2

)
→
[
−1

2 ,
1
2

)
, defined by

(1.2) T 1
2
(x) = ε

x
−
⌊
ε

x
+ 1

2

⌋
, x 6= 0; T (0) = 0,

where ε denotes the sign of x. Since the NICF-expansion of any number
x can be obtained from the RCF-expansion via a process called singular-
ization (see [DK] or [IK] for details), the sequence of NICF-convergents
(rk/sk)k≥0 is a subsequence (pn/qn)n≥0 of the sequence of RCF-conver-
gents of x. Due to this, the approximation by NICF-convergents is faster;
see e.g. [A], or [IK]. In [BJW] it was shown that the approximation by
NICF-convergents is also closer; for almost all x one has that

lim
k→∞

1
k

k−1∑
i=0
ϑk =

√
5− 2

2 logG
= 0.24528 . . .

whereas

lim
n→∞

1
n

k−1∑
i=0
θi = 1

4 log 2
= 0.36067 . . . ,

where ϑk = ϑk(x) = s2k |x− rk/sk| is the kth NICF-approximation coeffi-
cient of x, and G = g + 1.

In contrast to this, it was shown in [JK] that for almost every x there are
infinitely many arbitrary large blocks of NICF-approximation coefficients
ϑn−1, . . . , ϑn+k, which are all larger than 1/

√
5. In spite of this, it is also
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shown in [JK] that for all irrational numbers x there exist infinitely many
k for which ϑk < 1/

√
5.

In [T1] and [T2], Tong sharpened the results from [JK], by showing that
for the NICF there exists a ‘pre-spectrum,’ i.e., there exists a sequence
of constants (ck)k≥1, monotonically decreasing to 1/

√
5, such that for all

irrational numbers x the minimum of any block of k+ 2 consecutive NICF-
approximation coefficients is smaller than ck.

Theorem 3. (Tong) For every irrational number x and all positive inte-
gers n and k one has

min{ϑn−1, ϑn, . . . , ϑn+k} <
1√
5

+ 1√
5

(
3−
√

5
2

)2k+3

.

The constant ck = 1√
5 + 1√

5

(
3−
√

5
2

)2k+3
is best possible.

In [HK], Hartono and Kraaikamp showed how Tong’s result follows from
a geometrical approach based on the natural extension of the NICF. We
further this approach to find Tong’s spectrum for an infinite family of con-
tinued fractions generalizing the NICF; these Rosen fractions are briefly
described in the next section.

Although the appropriate terms are only defined in the following section,
the reader may wish to compare Tong’s Theorem with the following, whose
proof appears in Section 3. (The constants τk are given in the statement of
Theorem 10.)

Theorem 4. Fix an even q = 2p, with p ≥ 2. For every Gq-irrational
number x and all positive n and k, one has

min{Θn−1,Θn, . . . ,Θn+k(p−1)} <
−τk−1

1 + (λ− 1)τk−1
.

The constant ck−1 = −τk−1
1+(λ−1)τk−1

is best possible.

We prove an analogous result for all odd indices of these Gq in Section 4.
In both cases, we prove a Borel-type result. Furthermore, our approach
allows us to give various metric results.

2. Rosen continued fractions
In 1954, David Rosen (see [R]) introduced a family of continued frac-

tions now bearing his name. The Rosen fractions form an infinite family of
continued fractions generalizing the NICF. Although Rosen introduced his
continued fractions to study certain Fuchsian groups, we are only concerned
with their Diophantine approximation properties.
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Define λq = 2 cos πq for each q ∈ {3, 4, . . .}. For q fixed, to simplify nota-
tion we usually write λ for λq. For each q the Rosen or λ-expansion (λCF)
of x is found by using the map fq :

[
−λ2 ,

λ
2

)
→
[
−λ2 ,

λ
2

)
, defined by

(2.1) fq(x) = ε
x
− λr(x), x 6= 0; fq(0) = 0,

where r(x) =
⌊
ε

λx
+ 1

2

⌋
and εx = 1/|x|. We usually write r instead of r(x).

Since λ3 = 1, we see that for q = 3 the map fq is the NICF-operator T 1
2

from (1.2). For x ∈ [−λ/2, λ/2), the map fq yields a continued fraction of
the form
x = ε1
r1λ+ ε2

r2λ+ . . .+ εn
rnλ+ . . .

=: [ε1 : r1, ε2 : r2, . . . , εn : rn, . . .],

where εi ∈ {±1} and ri ∈ N. As usual, finite truncations yield the conver-
gents Rn/Sn, for n ≥ 0, i.e., Rn/Sn = [ε1 : r1, ε2 : r2, . . . , εn : rn]. The
(Rosen) approximation coefficients of x are defined by

Θn = Θn(x) = S2
n

∣∣∣∣x− RnSn
∣∣∣∣ , for n ≥ 0.

For x ∈ [−λ/2, λ/2), we define the future (tn) and the past (vn) of x at
time n by

tn = [εn+1 : rn+1, εn+2 : rn+2, . . .], vn = [1 : rn, εn : rn−1, . . . , ε2 : r1].

The map fq acts as a one-sided shift on the Rosen expansion of x: fnq (x) =
tn. We define the natural extension operator to keep track of both tn and
vn.

Definition. For a fixed q the natural extension map T is given by

T (x, y) =
(
fq(x),

1
rλ+ εy

)
.

In [BKS] it was shown that for every q ≥ 3 there exists a region Ωq ⊂ R2,
for which T : Ωq → Ωq is bĳective almost everywhere (with respect to an
invariant measure, see Equation (3.1), that is absolutely continuous with
respect to Lebesgue measure). In Section 3 (for q even) and Section 4 (for
q odd) we recall the exact form of Ωq. See also [N1], where Ωq was obtained
for q even.

For x = [ε1 : r1, ε2 : r2, . . .] one has T n(x, 0) = (tn, vn). The approxi-
mation coefficients of x can be given in terms of tn and vn (see also [DK])
as

(2.2) Θn−1 = vn
1 + tnvn

, Θn = εn+1tn
1 + tnvn

.
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For simplicity, we say that a real number r/s is a Gq-rational if it has
finite Rosen expansion, all other real numbers are called Gq-irrationals.
In [HS], Haas and Series derived a Hurwitz-type result using non-trivial
hyperbolic geometric techniques. They showed that for every Gq-irrational
x there exist infinitely many Gq-rationals r/s, such that Θ(x, r/s) ≤ Hq,
where Hq is given by

Hq =


1
2

if q is even,
1

2
√

(1− λ2 )2 + 1
if q is odd.

In this paper we derive a Borel-type result, by showing that for every Gq-
irrational x there are infinitely many n ≥ 1 such that Θn ≤ Hq. The even
and odd case differ and we treat them separately. In both cases we focus
on regions where min{Θn−1,Θn, . . .} < Hq.

In fact, the Borel-type result we derive does not immediately imply the
Hurwitz-type result of Haas and Series. Nakada [N2] showed that the Le-
gendre constant Lq is smaller thanHq (recall that for the RCF this Legendre
constant is 1/2, thus is larger than the Hurwitz constant 1/

√
5). Still, the

Haas and Series results can be proved using continued fraction properties
by means of a map which yields the Rosen-convergents and the so-called
first medians; see [KNS].

3. Tong’s spectrum for even indices q = 2p

In this section q is even, we fix q = 2p. The region of the natural extension
Ωq is the smallest region where T is bĳective. Usually we write Ω instead
of Ωq. We have the following result from [BKS].

Theorem 5. ([BKS]) The domain Ω upon which T is bĳective is given by

Ω =
p⋃
j=1
Jj ×Kj .

Here Jj is defined as follows: Let φj = T j
(
−λ2

)
, then Jj = [φj−1, φj)

for j ∈ {1, 2, . . . , p − 1} and Jp =
[
0, λ2

)
. Further, Kj = [0, Lj ] for j ∈

{1, 2, . . . , p − 1} and Kp = [0, R], where Lj and R are derived from the
relations

(R0) : R = λ− Lp−1,
(R1) : L1 = 1/(λ+R),
(Rj) : Lj = 1/(λ− Lj−1) for j ∈ {2, · · · , p− 1},
(Rp) : R = 1/(λ− Lp−1).
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0− 2
3λ

λ
2−λ2 φ1 φ2

R = 1
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v = f(t)

v = g(t)

D1

D2

Figure 1. The region of the natural extension Ω8, with D
of Lemma 7.

The map fq sends each interval Ji to Ji+1 for i = 1, . . . , p − 1. Further,
we denote Ω+ = {(t, v) ∈ Ω | t > 0}.

In [BKS] it is shown that T preserves a probability measure, ν, that is
absolutely continuous with respect to Lebesgue measure. Its density is

(3.1) gq(t, v) =


Cq

(1 + tv)2 , for (t, v) ∈ Ωq,

0, otherwise,

where Cq = 1
log[(1 + cos πq )/ sin πq ]

is a normalizing constant. It is also

shown in [BKS], that the dynamical system (Ω, ν, T ) is weak Bernoulli
(and therefore ergodic).

The following proposition on the distribution of the Θn, also in [BKS],
is a consequence of the Ergodic Theorem and the strong approximation
properties of the Rosen fractions; see [DK], or [IK], Chapter 4.

Proposition 6. Let q ≥ 3 be even. For almost all Gq-irrational numbers
x the two-dimensional sequence

T n(x, 0) = (tn, vn) , n ≥ 1

is distributed over Ωq according to the density function gq(t, v) given in
Equation (3.1).
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3.1. Consecutive pairs of large approximation constants: The re-
gion D. To find Tong’s spectrum we start by looking at two consecutive
large approximation coefficients Θn−1 and Θn. In view of (2.2) we define
D ⊂ Ω by

(3.2) D =
{

(t, v) ∈ Ω | min
{
v

1 + tv
,
|t|

1 + tv

}
>

1
2

}
.

So (tn, vn) ∈ D if and only if min{Θn−1,Θn} > 1
2 . We have the following

result describing D.

Lemma 7. Define functions f and g by

(3.3) f(x) = 1
2− x

and g(x) = 2|x| − 1
x
.

For all even q, D consists of two connected components D1 and D2. The
subregion D1 is bounded by the lines t = −λ2 , v = L1 and the graph of f ; D2
is bounded by the graph of g from the right, by the graph of f from below
and by the boundary of Ω; see Figure 1.

Proof. For the approximation coefficients one has
v

1 + tv
≤ 1

2
⇔ v ≤ f(t),

|t|
1 + tv

≤ 1
2
⇔


v ≤ g(t) if t < 0

v ≥ g(t) if t ≥ 0.

Since for t > 0 the graphs of f and g meet at t = 1, and 1 > λ
2 , it

follows that points for which min
{
v

1+tv ,
|t|

1+tv

}
< 1

2 must satisfy t < 0 and
v > g(t). It is easy to check that for all even q the only intersection points of
the graphs of the functions f and g in the region of the natural extension
are given by

(
−λ2 ,

2
λ+4

)
, (−L1, Lp−1) and (−Lp−1, L1). The fact that D

consists of the two pieces follows from φ0 ≤ −Lp−1 = 1− λ ≤ φ1. �

Having control on the approximation coefficients Θn−1 and Θn, we turn
our attention to Θn+1 on D. It follows from (2.2) and the definition of T
that

(3.4) Θn+1 = εn+2(1− εn+1rn+1tnλ)(λrn+1 + εn+1vn)
1 + tnvn

.

In order to express Θn+1 locally as a function of only tn and vn, we divide
D into regions where rn+1, εn+1 and εn+2 are constant. This gives three
regions; see Table 1 for the definition of A, B, and C, the new subregions
involved in this. See also Figure 2.
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Region rn+1 εn+1 εn+2 Θn+1

A : −2
3λ
≤ tn ≤ −1

λ+1 2 −1 −1 (1 + 2tnλ)(vn − 2λ)
1 + tnvn

B : −1
λ
≤ tn <

−2
3λ

1 −1 1 (1 + tnλ)(λ− vn)
1 + tnvn

C ∪ D1 : −λ
2 ≤ tn <

−1
λ

1 −1 −1 (1 + tnλ)(vn − λ)
1 + tnvn

Table 1. Subregions of D giving constant coefficients.
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

−λ
2 1−λ

φ1

φp−3
−1

1+λ

•

• 1
1+λ

−1
λ

−2
3λ

−2
5λ 0

λ− 1

Figure 2. The regions in D.

Solving for Θn+1 = 1/2, leads to

h(t) = 2λ2t+ 2λ+ 1
2λt− t+ 2

,
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whose graph divides C into two parts. Let C1 denote the left-hand side of
this graph, there and on D1 one has Θn+1 >

1
2 ; on the remainder, C2, one

has Θn+1 <
1
2 . Note that T takes the graph of h to the graph of g.

On its right-hand side region B is bounded by the graph of g. In view of
Equation (3.4) and Table 1, we consider the graph of

`(t) = 2λ2t+ 2λ− 1
2λt+ t+ 2

, for t 6= −2
2λ+ 1

.

An easy calculation shows that the graphs of ` and g intersect only at the
point (−1/(λ+ 1), λ− 1), and that for t > −2/(2λ+ 1) the graph of g lies
above that of `. Furthermore, `′(t) > 0 for t 6= −2

2λ+1 , and `
(
−1
λ

)
= λ ; we

conclude that Θn+1 < 1/2 on region B.

Lemma 8. With notation as above, the subset of D on which Θn+1 > 1/2
is exactly the union of regions D1, C1 and region A. On region A one has
Θn+1 > Θn−1 > Θn.

Proof. The remarks directly above show that we need now only consider
region A.

It immediately follows from (2.2) and the fact that vn > −tn on A, that
Θn−1 > Θn. To show that Θn+1 > Θn−1 we need to show

(1 + 2tnλ)(vn − 2λ) > vn.

or equivalently
−4λ2tn + 2λtnvn − 2λ > 0.

We use vn > −tn again, so it is enough to show

−4λ2tn − 2λt2n − 2λ ≥ 0.

The last statement is true if tn ∈ [−λ−
√
λ2 − 1,−λ+

√
λ2 − 1], which does

indeed hold on region A.
Since min{Θn−1,Θn} > 1

2 on D, the result follows. �

Now, by definition, fq(t) = −1/t − λ for t ∈ [−λ/2,−2/3λ). It fol-
lows that the T orbit of any point of the Ci either eventually leaves D, or
eventually enters A. Thus, we naturally focus on the interval t ∈ Jp−1 =
[φp−2, 0). For almost every Gq-irrational x ∈

[
−λ2 ,

λ
2

)
there is an n such

that T n(x, 0) = (tn, vn) and tn ∈ Jp−2. Divide the interval Jp−2 into three
parts. If tn ∈

[
φp−2,

−2
3λ

)
, then min{Θn−1,Θn,Θn+1} < 1

2 . If tn ∈
[
−1
λ+1 , 0

)
,

then (tn, vn) /∈ D so min{Θn−1,Θn} < 1
2 . However, if tn ∈

[
−2
3λ ,

−1
λ+1

)
, then

it may be that (tn, vn) ∈ A and thus min{Θn−1,Θn,Θn+1} > 1
2 .

Lemma 9. The transformation T maps A bĳectively onto region D1.
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Proof. The vertices of A are mapped onto the vertices of region D1 by T :(−2
3λ
, λ− 1

)
7→

(−λ
2
,

1
λ+ 1

)
,( −1

λ+ 1
, λ− 1

)
7→

(
1− λ, 1

λ+ 1

)
,(−2

3λ
,
3λ− 4

2

)
7→

(−λ
2
,

2
λ+ 4

)
.

It is easily checked that T takes the graph of g to the graph of f . Since
T is continuous and bĳective and sends straight lines to straight lines, this
completes the proof. �

Under T , region D1 is mapped onto a region with upper vertices (φ1, L2)
and (−Lp−2, L2). For i = 2, . . . , p− 1 we find a region with upper vertices
(φi−1, Li) and (−Lp−i, Li) after applying T i to A. The lower part of this
region is bounded by the ith transformation of the curve g(t) under T .
After p − 1 applications of T this results in a region with upper vertices
(φp−2, Lp−1), (−L1, Lp−1). Clearly, this region intersects with A. We call
p− 1 consecutive applications of T a round.

That part of T p−1(A) lying to the left of t = −2
3λ is in region B; the

images of these points under a subsequent application of T have positive
t-coordinate. We call flushing an application of T to such points — the
points are flushed from D. The remainder of T p−1(A) is a subset of A.

Theorem 10. Any point (t, v) of A is flushed after exactly k rounds if and
only if

τk−1 ≤ t < τk,

where τ0 = −2
3λ and

τk =
[(
−1 : 2, (−1 : 1)p−2

)k
,

(−2
3λ

:
)]
.

For any x with τk−1 ≤ tn < τk,

min{Θn−1,Θn, . . . ,Θn+k(p−1)−1,Θn+k(p−1)} >
1
2
,

while

min{Θn−1,Θn, . . . ,Θn+k(p−1),Θn+k(p−1)+1} <
1
2
.

Proof. A point (t, v) ∈ A gets flushed after exactly k rounds if k is minimal
such that T k(p−1)(t, v) has its first coordinate smaller than −2

3λ . We look at
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pre-images of t = −2
3λ under fq:

f−1
q

(−2
3λ

)
=
[
−1; 1,

(−2
3λ

:
)]
,

f−(p−1)
q

(−2
3λ

)
=
[
−1; 2, (−1 : 1)p−2,

(−2
3λ

:
)]
,

...

f−k(p−1)
q

(−2
3λ

)
=
[(
−1; 2, (−1 : 1)p−2

)k
,

(−2
3λ

:
)]

= τk.

The result thus clearly follows. �

3.2. Metrical results. We define Ak = {(t, v) ∈ A | t ≥ τk} for k ≥ 0.
From Theorem 10 and the ergodicity of T (cf. Proposition 6) we have
the following metrical theorem on the distribution of large blocks of “big”
approximation coefficients.

Theorem 11. For almost all x (with respect to Lebesgue measure) and
k ≥ 1, the limit

lim
N→∞

1
N

#
{

1 ≤ j ≤ N | min{Θj−1,Θj , . . . ,Θj+k(p−1)} >
1
2

and Θj+k(p−1)+1 <
1
2

}
exists and equals ν(Ak−1 \ Ak) = ν(Ak−1)− ν(Ak).

In order to apply Theorem 11 we compute ν(A) and ν(Ak):

ν(A) = Cq
∫ −L1

t=−2
3λ

∫ Lp−1

v=g(t)

1
(1 + tv)2 dv dt

= −Cq
∫ −L1

−2
3λ

(
1

2t2
+ 1
t
− Lp−1

1 + Lp−1t

)
dt

= Cq
( −1

2L1
+ log

∣∣∣∣Lp−1 + −1
L1

∣∣∣∣+ 3λ
4
− log

∣∣∣∣Lp−1 −
3λ
2

∣∣∣∣) .(3.5)

Using the normalizing constant Cq from Definition 3.1, L1 = 1
λ+ 1

and
Lp−1 = λ− 1, it follows from (3.5) that

ν(A) = 1
log[(1 + λ/2)/ sin π/q]

(
λ− 2

4
+ log 4

λ+ 2

)
.
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Similarly,

ν(Ak) = Cq
∫ −L1

t=τk

∫ Lp−1

v=g(t)

1
(1 + tv)2 dv dt

= Cq
[ (−λ− 1)τk − 1

2τk
+ log

∣∣∣∣ 2τk
(λ− 1)τk + 1

∣∣∣∣ ] .
Example. If q = 8 we have ν(A) = 4.6 · 10−4, ν(A1) = 7.6 · 10−7, and
ν(A2) = 6.7 · 10−10. So Theorem 11 yields that for almost every x about
4.6 ·10−2 % of the blocks of consecutive approximation coefficients of length
6 have the property that

min{Θj−1,Θj , . . . ,Θj+3} >
1
2

and Θj+4 <
1
2
,

while about 7.6 · 10−5 % of the blocks of length 9 have the property that

min{Θj−1,Θj , . . . ,Θj+6} >
1
2

and Θj+7 <
1
2
.

3.3. Tong’s spectrum for even q. We are now ready to determine the
Tong spectrum for these Rosen continued fractions. Recall that Theorem 4
states that the minimum of 1 + k(p − 1) consecutive values of Θj , begin-
ning with Θn−1 is less than ck−1 := −τk−1

1+(λ−1)τk−1
, where the τj are given in

Theorem 10.

Proof of Theorem 4. We start with k = 1. Assume that (tn, vn) ∈ D,
otherwise we are done. For a certain 0 ≤ i ≤ p − 2 we have (tn+i, vn+i)
is either in A or flushed to Ω+. In the latter case Θn+i <

1
2 and we are

done. So assume that (t, v) = (tn+i, vn+i) ∈ A. It follows from Lemma 8
that min{Θn−1,Θn,Θn+1} = Θn on A. We give an upper bound for this
minimum, by determining the maximum value of Θn.

On A one has Θn = −tn
1+tnvn , so we must find the point (t, v) ∈ A where

m(t, v) := −t
1+tv attains its maximum. We have

∂m(t, v)
∂t

= −1
(1 + tv)2 < 0 and ∂m(t, v)

∂v
= t2

(1 + tv)2 > 0.

Thus Θn attains its maximum at the upper left corner
(
−2
3λ , λ− 1

)
of A.

This maximum equals 2
λ+2 = c0.

It is left to show that c0 is the best possible constant. We need to check
that for the first p− 2 points in either direction on the orbit of

(
−2
3λ , λ− 1

)
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one has min{Θn−1,Θn} ≥ c0. These points on the orbit of
(
−2
3λ , λ− 1

)
are([

(−1 : 1)p−2,

(−2
3λ

:
)]
, L1

)
,

([
(−1 : 1)p−1,

(−2
3λ

:
)]
, L2

)
, . . . ,([

(−1 : 1),
(−2

3λ
:
)]
, Lp−2

)
,

(−2
3λ
, λ− 1

)
,

(−λ
2
, L1

)
,

(φ1, L2) , (φ2, L3) , . . . , (φp−3, Lp−2).

We consider the curves Θn−1 = c0 and Θn = c0, thus

f1(x) = 2
λ+ 2− 2x

and g1(x) = −(λ+ 2)x− 2
2x

.

The graph of f1(x) intersects the x-axis at the point
(
0, 2
λ+2

)
. For the

heights Li we easily find that Lp−2 > . . . > L3 > L2 >
2
λ+2 .

Thus, each of the first p − 2 points in either direction of the orbit has
either y-coordinate greater than L2 or is one of the points

(
−λ2 , L1

)
or([

(−1 : 1)p−2,
(
−2
3λ :

)]
, L1

)
. At the point

(
−λ2 , L1

)
the value of Θn−1 is

exactly c1 = 2
λ+2 . Further, we know that ∂Θn−1

∂tn
> 0 on region C, so

Θn−1

([
(−1 : 1)p−2,

(−2
3λ

:
)]
, L1

)
> Θn−1

(
−λ

2
, L1

)
.

Together this means that for all these points one finds Θn−1 ≥ c0. The
graph of g1(x) intersects with the x-axis in the point

(
−2
λ+2 , 0

)
. We have

−λ
2
< φ1 < . . . < φp−1 <

[
−1 : 1,

(−2
3λ

:
)]
<
−2
λ+ 2

,

so for the relevant points on the orbit of
(
−2
3λ , λ− 1

)
we have Θn > c0 .

This proves the case k = 1. For general k, assume that the starting point
(tn, vn) ∈ A did not get flushed during the first k− 1 rounds, otherwise we
are done. Consider again a point (t, v) = (tn+i, vn+i) inA with 0 ≤ i ≤ p−2.
From Theorem 10 this means that t ≥ τk−1. We find that the maximum
of Θn occurs at the upper-left corner of the region where (t, v) is located.
This maximum is given by

Θn(τk−1, λ− 1) = −τk−1
1 + (λ− 1)τk−1

= ck−1.

The proof that this is the best possible is similar to the case k = 1. �

Note that
lim
k→∞
τk = [(−1 : 2, (−1 : 1)p−2)] = −1

λ+ 1
,
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yielding

(3.6) lim
k→∞

−τk
1 + (λ− 1)τk

= 1
2
.

Lemma 12. Let F denote the fixed point set in D of T (p−1). Then
(i) F = { T i(−1/(λ+ 1), λ− 1) | i = 0, 1, . . . , p− 1};

(ii) For every x and every n ≥ 0, (tn, vn) /∈ F ;
(iii) For every Gq-irrational number x there are infinitely many n for

which (tn, vn) /∈ D;
(iv) For each i = 0, 1, . . . , p − 1, let xi = f iq(−1/(λ + 1)) . Then for all
n ≥ 0, T n(xi, 0) /∈ D. However, T k(p−1)(xi, 0) converges from below
along the vertical line x = xi to T i(−1/(λ+ 1), λ− 1).

Proof. (i) Since T (p−1) fixes (−1/(λ + 1), λ − 1), F certainly contains the
T -orbit of (−1/(λ + 1), λ − 1). On the other hand, any point of D not in
this orbit is eventually flushed from D.

(ii) The second coordinate of any element of F is Gq-irrational, but for
all x, the points (tn, vn) have Gq-rational second coordinate.

(iii) From the previous item, for any Gq-irrational x the T -orbit of (x, 0)
avoids F , hence each time this orbit encounters D, it is flushed out within a
finite number of iterations. We conclude indeed that for every Gq-irrational
x there are infinitely many n for which (tn, vn) /∈ D.

(iv) The final item is easily checked. �

Combining Theorem 4, Equation (3.6) and the previous lemma, we have
the following result.

Theorem 13. For every Gq-irrational x there are infinitely many n ∈ N
for which

Θn ≤ Hq = 1
2
.

The constant 1/2 is best possible.

4. Tong’s spectrum for odd indices q = 2h+ 3

The classical case of q = 3 is Tong’s result itself; a geometric argument
is given in [HK]. In our treatment, the case of q = 5 is also exceptional
and we do not give full details for it. See in particular the remarks after
Lemmata 15 and 16.

The results for the odd case are derived similarly to those of the even
case. However, this case has more complicated dynamics, complicating the
arguments. We begin with the definition of the natural extension.
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0 λ
2−λ2

φ1 φ2 φ3φ4 φ5 φ6

L1
L2

L3
L4

L5
L6

L7 R

Figure 3. The region of the natural extension Ω9.

Again let φj = f jq (−λ/2). Set h = q−3
2 and define Jj , j ∈ {1, . . . , 2h+2},

by

J2k = [φh+k, φk), for k ∈ {1, . . . , h},
J2k+1 = [φk, φh+k+1), for k ∈ {0, 1, . . . , h},

and J2h+2 = [0, λ2 ). LetKj = [0, Lj ] for j ∈ {1, . . . , 2h+1} and letK2h+2 =
[0, R], where R is the solution of

R2 + (2− λ)R− 1 = 0.

Theorem 14. ([BKS]) Let q = 2h+3, with h ≥ 1 and Ω =
⋃2h+2
j=1 Jj×Kj.

With R defined as above, we have
(R0) : R = λ− L2h+1,
(R1) : L1 = 1/(2λ− L2h),
(R2) : L2 = 1/(2λ− L2h+1),
(Rj) : Lj = 1/(λ− Lj−2) for 2 < j < 2h+ 2,
(R2h+2) : R = 1/(λ− L2h),

while T : Ω→ Ω is bĳective off a set of Lebesgue measure zero.

In [BKS] it is shown that T preserves the probability measure ν, with
density Cq

(1 + xy)2 , where Cq = 1
log(1 +R)

is a normalizing constant. It

is also shown in [BKS] that the process (Ω, ν, T ) is weak Bernoulli and
therefore ergodic. Proposition 6 also holds in the odd case.

For odd indices q we define again the region D by

D =
{

(t, v) ∈ Ω|min
{
v

1 + tv
,
|t|

1 + tv

}
> Hq

}
.
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Figure 4. The region D for q = 9.

Clearly min{Θn−1,Θn} > Hq if and only if (tn, vn) ∈ D.
Lemma 15. Define functions f and g by

(4.1) f(x) = Hq
1−Hqx

and g(x) = |x| − Hq
Hqx

.

For all odd q ≥ 7, the region D consists of four disjoint regions:
D1 bounded by the lines x = −λ

2 and y = L1 and the graph of f ;
D2 bounded by the line x = φh+1 and y = L2 and the graph of f ;
D3 (the largest region) bounded from below by the graph of f , from the

right by the graph of g and by the boundary of Ω; and,
D4 bounded by the lines x = φh and y = L2h+1 and the graph of g.

Remark. In the exceptional case where q = 5, one finds that D consists
of a single connected component.

We begin our study of Θn+1 by decomposing D into regions where
rn+1, εn+1 and εn+2 are constant; see Table 2 for the definition of the new
subregions involved in this. See also Figure 5. Again, due to the dynamics
of the situation, we will need only focus on the T -orbit of A.

OnA∪D4, one easily finds that Θn+1 > Θn−1 > Θn holds. Again flushing
occurs to the left of the line t = −2

3λ ; note that φ2h ≤ −2
3λ < φh. Thus we

study the interval [φ2h, φh) (instead of the interval [φh, 0), as in the even
case). Note that the only one of our regions in the strip defined by the
interval φ2h ≤ t ≤ φh is indeed A.

One easily shows the following result.
Lemma 16. The transformation T maps A bĳectively to region D1.
Remark. In the exceptional case where q = 5, one can easily see that
A can be defined as in general, and has a similar image. The rest of our
arguments can be appropriately adjusted so that the results announced
below go through for q = 5.
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Region rn+1 εn+1 εn+2 Θn+1

A ∪D4 : −2
3λ
≤ tn ≤ −1

λ+ 1
R

2 −1 −1 (1+2tnλ)(vn−2λ)
1 + tnvn

B : −1
λ
≤ tn <

−2
3λ

1 −1 1 (1 + tnλ)(λ− vn)
1 + tnvn

C ∪ D1 ∪ D2 : −λ
2 ≤ tn <

−1
λ

1 −1 −1 (1 + tnλ)(vn − λ)
1 + tnvn

Table 2. Regions of constant coefficients, the odd case.
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Figure 5. The regions for Θn+1 on D.

The transformations of A follow a more complex orbit than in the even
case: here, the regions make a “double loop,” related to the orbit of the
φj . Region D1 gets transformed into a region with upper right vertex
(−L2h−1, L3), this region gets transformed in a region with upper right
vertex (−L2h−3, L5) and so on until we reach a region with upper right cor-
ner (−L1, L2h+1), which lies in region D4. This region gets transformed into
a region with upper right vertex (−L2h, L2). Thereafter we find a region
with upper right corner (−L2h−2, L4) and so on, until finally the image
intersects with A after 2h + 1 steps. Here, we call a round these 2h + 1
transformations of T .
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Theorem 17. Let the constants τk be defined by

τk =
[(
−1 : 2, (−1 : 1)h,−1 : 2, (−1 : 1)h−1

)k
,

(−2
3λ

:
)]
.

Then for any (t, v) ∈ A such that τk−1 ≤ t < τk, the point (tn, vn) is
flushed after k rounds. In particular, for any x ∈ R with T n(x, 0) = (tn, vn)
satisfying τk−1 ≤ tn < τk one has

min{Θn−1,Θn, . . . ,Θn+k(2h+1),Θn+k(2h+1)} > Hq,

while
min{Θn−1,Θn, . . . ,Θn+k(2h+1),Θn+k(2h+1)+1} < Hq.

4.1. Metric results. As in the even case, we define

Ak = {(t, v) ∈ A | t > τk} for k ≥ 0.

Theorem 18. For almost all x (with respect to the Lebesgue measure) and
k ≥ 1 the limit

lim
N→∞

1
N

#
{

1 ≤ j ≤ N | min{Θj−1,Θj , . . . ,Θj+k(2h+1)} >
1
2

and Θj+k(2h+1)+1 <
1
2

}
exists and equals ν(Ak−1 \ Ak) = ν(Ak−1)− ν(Ak).

We compute again ν(A) and ν(Ak). A calculation similar to that in the
even case yields

ν(A) = D
(

log
(
R+ 1
R

)
− log

(
λR+ 2

2R

)
+ λC − 2CR

2

)
,

ν(Ak) = D
(

log
(
R+ 1
R

)
− log

∣∣∣∣1 + τk(λ− 1/R)
τk

∣∣∣∣− C(λ+R)− C
τk

)
.

Example. If q = 9 we have ν(A) = 6.2 · 10−7, ν(A1) = 6.5 · 10−13, and
ν(A2) = 6.8 · 10−19.

So we find that for almost every x about 6.5 · 10−11 % of the blocks of
consecutive approximation coefficients of length 10 have the property that

min{Θj−1,Θj , . . . ,Θj+7} >
1
2

and Θj+8 <
1
2
,

while about 6.8 · 10−17 % of the blocks of length 17 have the property that

min{Θj−1,Θj , . . . ,Θj+14} >
1
2

and Θj+15 <
1
2
.
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4.2. Tong’s spectrum for odd q. We have the following result, which
is proved similarly to Theorem 4.

Theorem 19. For every Gq-irrational number x and all positive n and k,
one has

min{Θn−1,Θn, . . . ,Θn+k(2h+1)} <
−τk−1

1 + (λ−R)τk−1
.

The constant ck−1 = −τk−1
1+(λ−R)τk−1

is best possible.

Note that limk→∞ ck = Hq. Due to this, and reasoning as in the proof
of Lemma 12 (here one considers the fixed-points in D of T 2h+1 instead of
those of T p−1), we get the following result.

Theorem 20. For every Gq-irrational x there are infinitely many n ∈ N,
such that

Θn(x) ≤ Hq.
The constant Hq is best possible.

Acknowledgements. We thank the referee for a careful reading of this
paper.
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