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Computing the cardinality of CM elliptic curves
using torsion points

par François MORAIN

Résumé. Soit E/Q une courbe elliptique avec multiplications
complexes par un ordre d’un corps quadratique imaginaire K. Le
corps de définition de E est le corps de classe de rayon Ω asso-
cié à l’ordre. Si le nombre premier p est scindé dans Ω, on peut
réduire E modulo un des facteurs de p et obtenir une courbe E
définie sur Fp. La trace du Frobenius de E est connue au signe
près et nous cherchons à déterminer ce signe de la manière la plus
rapide possible, avec comme application l’algorithme de primalité
ECPP. Dans ce but, nous expliquons comment utiliser l’action du
Frobenius sur des points de torsion d’ordre petit obtenus à partir
d’invariants de classes qui généralisent les fonctions de Weber.

Abstract. Let E/Q be an elliptic curve having complex mul-
tiplication by a given quadratic order of an imaginary quadratic
field K. The field of definition of E is the ring class field Ω of the
order. If the prime p splits completely in Ω, then we can reduce
E modulo one the factors of p and get a curve E defined over Fp.
The trace of the Frobenius of E is known up to sign and we need
a fast way to find this sign, in the context of the Elliptic Curve
Primality Proving algorithm (ECPP). For this purpose, we pro-
pose to use the action of the Frobenius on torsion points of small
order built with class invariants generalizing the classical Weber
functions.

1. Introduction
Let K be an imaginary quadratic field of discriminant −D. For any

integer t, let Ot be the order of conductor t of K, ∆t = −t2D its discrim-
inant, and ht = h(∆t) its class number. We denote by Ωt the ring class
field modulo t over K. By class field theory, the extension Ωt/K can be

Manuscrit reçu le 28 août 2006.
Projet TANC, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS,

École polytechnique, INRIA, Université Paris-Sud. The author is on leave from the French De-
partment of Defense, Délégation Générale pour l’Armement.

Mots clefs. Elliptic curves, complex multiplication, modular curves, class invariants, ECPP
algorithm, SEA algorithm.



664 François Morain

constructed using the minimal polynomial of the modular function j over a
set of representatives {i1, i2, . . . , iht} of the class group Cl(Ot). An elliptic
curve E of invariant j(ir) can be defined over Ωt and has complex multi-
plication (CM) by Ot. We denote by H∆t [j](X) the minimal polynomial of
the j’s, namely

H∆t [j](X) =
ht∏
r=1

(X − j(ir))

which is known to have rational integer coefficients.
Let p be a rational prime number which splits completely in Ωt, or equiv-

alently which is the norm of an integer of Ωt (that is p = (U2 +Dt2V 2)/4
for rational integers U and V ). Then we can reduce E modulo a prime di-
visor P of p to get an elliptic curve E/Fp having CM by Ot. If π denotes
the Frobenius of E, then it can be viewed as an element of Ot of norm p,
that is (assuming that ∆t 6∈ {−3,−4}):

(1.1) π = (±U ± tV
√
−D)/2.

The cardinality of E(Fp) is the norm of π − 1, or more simply p+ 1∓ U .
The j-invariant of E/Fp is the reduction of one of the j(ir)’s modulo
p, that is a root of H(X) = H∆t [j](X) modulo p. Building E is done as
follows: find a root j of H(X) in Fp, and deduce from that the equation of
E. When j 6∈ {0, 1728}, we may take any equation E(j, c):

Y 2 = X3 + a4(j)c2X + a6(j)c3

where c is any element of Fp and

(1.2) a4(j) = 3j
1728− j

, a6(j) = 2j
1728− j

.

We will note E(j) for E(j, 1). If its cardinality is p + 1 − a, then a curve
E(j, c) has cardinality p + 1 −

(
c
p

)
a (where

(
a
b

)
stands for the Legendre

symbol). A curve with
(
c
p

)
= −1 is a twist of E(j). The problem is now

to compute #E(j) modulo p, or equivalently, fix the sign of U in equation
(1.1).

In the course of implementing the ECPP algorithm [3, 20] or for cryp-
tographic reasons, it is important to compute this cardinality rapidly. We
could of course try both signs of U yielding cardinalities m, find some ran-
dom points P on E(j) and check whether [m]P = OE on E. This approach
is somewhat probabilistic and we prefer deterministic and possibly faster
solutions.

In the case where D is fundamental and prime to 6, the solution is to use
Stark’s approach [29], together with tricks described in [19]. This method
is efficient, provided we can afford some precomputations. Note that in the
special case where ht = 1, which includes j = 0, 1728, one already knows
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the answer (see [3, 13, 23] and the references given therein). For D = 20,
we have the isolated result of [15] (see also section 6.2 below). Since the
first version1 of the present article, Ishii [12] has given the answer for D of
class numbers 2 or 3 and divisible by 3, 4, or 5.

In the ECPP algorithm, class invariants obtained from functions on Γ0(`)
are used to build Ωt/K in an efficient way [11]. When

(−D
`

)
6= −1, we

actually build an elliptic curve having rational torsion subgroup of order `,
and sometimes a rational point inside it. Application of the Frobenius on
such a point gives us the sign we are looking for. This is all the more true
when ` is small and X1(`) is “close” to X0(`).

Section 2 describes properties of the modular equations defining X0(`)
for prime ` and their relations to complex multiplication over Q. In Section
3, we briefly describe the necessary results used in the SEA algorithm.
Section 4 contains our main contribution. We treat the special cases ` = 3
in Section 5 and ` = 5 in Section 6. Section 7 describes the very interesting
case of ` = 7 and for the sake of completeness that of ` = 11. Section 8 is
devoted to the particular case ` = 2, in which we study the properties of 4-
torsion points. We provide numerical examples for each case. We conclude
with remarks on the use of our results in our implementation of ECPP.

The books [8, 27] are a good introduction to all the material described
above.

2. Modular curves and class invariants
2.1. Modular polynomials. Let ` be a prime number. The curve X0(`)
parametrizes the cyclic isogenies of degree ` associated to an elliptic curve E
defined over a field k. An equation for X0(`) can be obtained as the minimal
polynomial of a modular function f whose stabilizer in SL2(Z) is Γ0(`). This
modular polynomial, noted Φ[f ](X, J) is such that Φ[f ](f(z), j(z)) = 0 for
all z such that =z > 0, where j(z) is the ordinary modular function.

Dedekind’s η function is

η(τ) = q1/24 ∏
m≥1

(1− qm)

where q = exp(2iπτ). It is used to build suitable functions for Γ0(`) (see
for instance [21, 22]). For example, if

w`(z) = η(z/`)
η(z)

and s = 12/ gcd(12, ` − 1), then w2s
` is a modular function for Γ0(`). The

equations for small prime values of ` are given in Table 1 (see for instance
[18]).

1http://arxiv.org/ps/math.NT/0210173

http://arxiv.org/ps/math.NT/0210173
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` Φ[w`]
2 (X + 16)3 − JX
3 (X + 27) (X + 3)3 − JX
5
(
X2 + 10X + 5

)3 − JX
7
(
X2 + 13X + 49

) (
X2 + 5X + 1

)3 − JX
Table 1. Table of modular equations Φ[w`](X, J).

Among other classes of functions for other modular groups, we find the
classical functions of Weber:

γ2(z) = 3
√
j(z), γ3(z) =

√
j(z)− 1728

for which the corresponding modular equations are quite simple.

2.2. CM theory. View the class group Cl(∆t) as a set of reduced qua-
dratic primitive binary forms of discriminant ∆t, say

Cl(∆t) = {(A,B,C), B2 − 4AC = ∆t}

with ht forms in it. For a given Q = (A,B,C), let τQ = (−B+
√

∆t)/(2A).
Then j(τQ) is an algebraic integer that generates Ωt/K. Moreover, the
associated curve EQ of invariant j(τQ) has CM by Ot.

Suppose j(τ) ∈ Ωt. If u is some function on some Γ0(`), then the roots
of Φ[u](X, j(τ)) are algebraic integers. They generate an extension of Ωt of
degree dividing `+ 1. The striking phenomenon, known for a long time, is
that sometimes these roots lie in Ωt itself. We will note H∆t [u](X) for the
minimal polynomial of the invariant u.

Among the simplest results in this direction, we have the following, dat-
ing back to Weber [31]. Suppose α is a quadratic integer with minimal
polynomial

Aα2 +Bα+ C = 0
such that gcd(A,B,C) = 1 and B2 − 4AC = ∆t.

Theorem 2.1. If 3 - A, 3 | B, then

Q(γ2(α)) =
{

Q(j(α)) if 3 - ∆t,
Q(j(3α)) if 3 | ∆t.

A companion result is:

Theorem 2.2. Suppose 2 - A. We assume that

B ≡
{

0 mod 4 if 2 | ∆t,
1 mod 4 if 2 - ∆t.
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Then
Q(
√
−Dγ3(α)) = Q(j(α)), if 2 - ∆t,
Q(γ3(α)) = Q(j(2α)), if 2 | ∆t.

Finding a complete system of conjugate values for γ2(α) (resp. γ3(α)),
as well as for a lot of such functions, is explained in [24].

3. The foundations of the SEA algorithm
3.1. Division polynomials and their properties. For an elliptic E,
we let E[n] denote the group of n-torsion points of E (over Q). We let
fEn (X) (or simply fn(X)) denote the n-th division polynomial whose roots
are the abscissae of the n-torsion points of E. See [26] for its definition and
properties. For instance for the curve E : Y 2 = X3 +aX+b, the first values
are:

f0(X) = 0, f1(X) = 1, f2(X) = 1,

f3(X) = 3X4 + 6 aX2 + 12 bX − a2,

f4(X) = 2X6 + 10 aX4 + 40 bX3 − 10 a2X2 − 8 a bX − 2 a3 − 16 b2.
Recurrence relations for computing fn are given by:

f2n = fn(fn+2f
2
n−1 − fn−2f

2
n+1),

f2n+1 =


fn+2f

3
n − f3

n+1fn−1(16(X3 + aX + b)2) if n is odd,

16(X3 + aX + b)2fn+2f
3
n − f3

n+1fn−1 if n is even.

3.2. Explicit factors of fEn (X). Let E be an elliptic curve. Suppose that
we have some modular polynomial Φ[f ](X, J) for a function f on Γ0(`).
Then a root v of Φ[f ](X, j(E)) gives rise to a curve which is `-isogenous
to E, and to a factor of fE` (X). This is the essence of the ideas of Elkies
and Atkin that improve Schoof’s algorithm for computing the cardinality
of curves over finite fields [1, 25, 10]. The computations can be done using
Vélu’s formulas [30] (see also [18] for technicalities related to the actual
computations). We end up with a factor gE` (X) of fE` (X).

In Table 2, for prime `, we suppose v` is a root of Φ[w`](X, j) and we
give the factor gE(j)

` (X) of fE(j)
` (X) that can be obtained.

3.3. The splitting of Φ[f ](X, j(E)) in Fp. We take the following result
from [1] (see also [25]). Let ` and p be two distinct primes, and E/Fp an
elliptic curve. Put #E = p+1−U ,D = 4p−U2. We denote the splitting type
of a squarefree polynomial P (X) by the degrees of its factors. For instance,
a polynomial of degree 4 having two linear factors and one quadratic factor
will be said to have splitting type (1)(1)(2).
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` factor
2 (v2 − 8)X + v2 + 16,
3
(
v2

3 + 18 v3 − 27
)
X + v2

3 + 30 v3 + 81,
5
(
v2

5 + 4 v5 − 1
)2 (
v2

5 + 22 v5 + 125
)
X2

+2
(
v2

5 + 4 v5 − 1
) (
v2

5 + 10 v5 + 5
) (
v2

5 + 22 v5 + 125
)
X

+
(
v2

5 + 22 v5 + 89
) (
v2

5 + 10 v5 + 5
)2
,

7
(
v4

7 + 14 v3
7 + 63 v2

7 + 70 v7 − 7
)3
X3

+3
(
v2

7 + 13 v7 + 49
) (
v2

7 + 5 v7 + 1
) (
v4

7 + 14 v3
7 + 63 v2

7 + 70 v7 − 7
)2
X2

+3
(
v2

7 + 13 v7 + 33
) (
v2

7 + 13 v7 + 49
) (
v2

7 + 5 v7 + 1
)2

×
(
v4

7 + 14 v3
7 + 63 v2

7 + 70 v7 − 7
)
X

+
(
v2

7 + 13 v7 + 49
) (
v2

7 + 5 v7 + 1
)3 (v4

7 + 26v3
7 + 219v2

7 + 778v7 + 881)

Table 2. Factors of fE(j)
` .

Theorem 3.1. Let f be a function for Γ0(`) and write
Ψ(X) ≡ Φ[f ](X, j(E)) mod p.

If
(−D
`

)
= 0, then Ψ splits as (1)(`) or (1) · · · (1).

If
(−D
`

)
= +1, then Ψ splits as (1)(1)(r) · · · (r) where r | `− 1 and r > 1

if ` 6= 2.
If
(−D
`

)
= −1, then Ψ splits as (r) · · · (r) where r > 1 and r | `+ 1.

If k denotes the number of factors of Ψ, then (−1)k =
(p
`

)
.

3.4. Elkies’s ideas. We briefly summarize Elkies’s idea [10]. Let π be the
Frobenius of the curve, sending any point P = (x, y) of E(Fp) to (xp, yp).

Theorem 3.2. Let χ(X) = X2 − UX + p denote the characteristic poly-
nomial of the Frobenius π of the elliptic curve E of cardinality p+ 1− U .
When

(−D
`

)
6= −1, the restriction of π to E[`] (denoted by π|E[`]) has at

least one eigenvalue. To each eigenvalue λ of π|E[`] corresponds a factor of
degree (`− 1)/2 of f`. We deduce that U ≡ λ+ p/λ mod `.

We will note g`,λ(X) the factor of fE(j)
` (X) associated to the eigenvalue

λ. Let ω denote the order of λ modulo ` and σ = ω/2 if ω is even and ω
otherwise. With these notations, one can show the following result:

Proposition 3.1. The splitting type of g`,λ(X) mod p is (σ)(σ) · · · (σ) with
κ factors such that (`− 1)/2 = κσ.

From this, we deduce:

Corollary 3.1. The polynomial g`,λ(X) splits completely modulo p if and
only if λ = ±1 mod `.

Note also the following result of Dewaghe [9] in the formulation of [16].
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Proposition 3.2. Let r = Resultant(g`,λ(X), X3 + a4(j)X + a6(j)). Then(
λ

`

)
=
(
r

p

)
Classically, this enables us to fix the sign of λ when ` ≡ 3 mod 4.

4. Stating the problem
Let 4p = U2+DV 2. We want to find the equation of a curve E/Fp having

cardinality m = p+ 1− U . The general algorithm is the following:
procedure BuildEWithCM(D,U, V, p)

{ Input: 4p = U2 +DV 2 }
1. For some invariant u, compute the minimal polynomial HD[u](X).
2. Find a root x0 of HD[u](X) modulo p.
3. for all roots j of Φ[u](x0, J) mod p do

a. compute E(j).
b. If #E(j) = p+ 1 +U instead of p+ 1−U , replace E(j) by a twist.

4.1. Eliminating bad curves. In general, the degree of Φ[u](x0, J) is
larger than 1 and we expect several roots in J , not all of which are invariants
of the curves we are looking for.

In order to eliminate bad curves, we can use the following result. First,
note that the discriminant of the curve E is

∆(E(j)) = 212 · 36j2/(j − 1728)3.

Proposition 4.1. Let 4p = U2 +DV 2. The number ∆(E(j)) is a square
modulo p in the following cases:

(i) D odd;
(ii) 4 | D and 2 | V .

Proof:
(i) If α is as in Theorem 2.2, we deduce that

√
−Dγ3(α) is in OK ,

which means that H−D[
√
−Dγ3] splits modulo p and therefore j − 1728 =

−Du2 mod p and we have
(−D
p

)
= +1 by hypothesis.

(ii) Theorem 2.2 tells us that Q(γ3(α)) = Q(j(2α)). But p splits in the
order O2 and therefore in Ω2t, which shows that the minimal polynomial
of γ3 splits modulo p, proving the result. 2

Coming back to our problem, we see that when the above result applies,
a good curve is such that

(∆(E(j))
p

)
must be equal to 1.

4.2. Fixing the sign of the trace. We can assume that we are left with
only one possible j and that we want to compute the cardinality of E(j)
as quickly as possible. Let us explain our idea. Let D = DV 2. Suppose
that ` 6= p is an odd prime (the case ` = 2 will be dealt with later) and
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`

)
6= −1. In that case, Theorem 3.2 applies and if we can find one

eigenvalue λ, we can find U mod `. If U 6≡ 0 mod `, then we can find the
sign of U . Note that if ` | D, then U 6≡ 0 mod `.

The most favorable case is when ` | D, because then there is only one
eigenvalue λ (it can be a double one) and λ ≡ U/2 mod `. Having λ gives
us immediately the sign of U . A very favorable case is when ` ≡ 3 mod 4,
using Dewaghe’s idea.

Apart from this, there is another interesting sub-case, when we can find
a rational root x0 of gE`,λ, using for instance some class invariant. In that
case, we can form y20 = x3

0 + ax0 + b mod p and test whether y0 is in Fp or
not. If it is, then λ = 1, since (x0, y0) is rational and π(P ) = P . Otherwise,
λ = −1.

Our idea is then to use the general framework for some precise values of
`, and use rational roots of g`,λ obtained via class invariants. When ` = 3,
we are sure to end with a rational root of fE(j)

3 (X), as is the case for ` = 2
and fE(j)

4 . Moreover, we can use some invariant that give us the torsion
points directly. We also give examples for ` = 5, 7, 11.

5. The case ` = 3

We suppose that 4p = U2 +DV 2. The first subsection makes precise the
above results.

5.1. Using 3-torsion points. We begin with an easy lemma that can be
proved by algebraic manipulations:

Lemma 5.1. Let v be any root of Φc3(X, j) = 0. Then a root of fE(j)
3 (X)

is given by

x3 = −(v + 27)(v + 3)
v2 + 18v − 27

.

Proposition 5.1. Let p be a prime representable as 4p = U2
0 +DV 2

0 , for
which 3 | DV 2

0 and #E = p + 1 − U . Suppose P = (x3, y3) is a 3-torsion
point on E(j) for which x3 is rational. Let s = x3

3 + a4(j)x3 + a6(j) mod p.
Then U ≡ 2

(
s
p

)
mod 3.

Proof: This is a simple application of Theorem 3.2. 2

5.2. Solving the equation Φc3(X, j(E)) = 0.

5.2.1. The case
(−D

3
)
6= −1. A solution of this equation is given by w12

3 ,
which lies in Ω1 with the hypothesis made on D.
Numerical examples. Let H−15[w12

3 ] = X2 + 81X + 729, p = 109, 4p =
142 + 15× 42, v3 = 3, x3 = 104, E : Y 2 = X3 + 94X + 99; U = ±14. Since
λ = 1 mod 3, we conclude that U = 14 and E has 109 + 1− 14 points.
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Take D = 20 and p = 349. We find (U, V ) = (±26,±6). We compute:

H−20[w12
3 ] = X2 + (70− 22

√
−20)X − 239− 154

√
−20.

Using
√
−20 = 237 mod p, a root of this polynomial is v3 = 257, from

which j = 224 and E(j) : Y 2 = X3 + 45X + 30. Now λ = −1, which gives
us that #E = 349 + 1 + 26.

5.2.2. The case
(−D

3
)

= −1. We may find the roots of the degree 4
equation Φc3(X, j(α)) = 0 directly.

In Skolem’s approach [28], to compute the roots of a general quartic
(with a1 and a3 not both zero)

P (X) = X4 + a1X3 + a2X2 + a3X + a4
one uses the four roots Xi of P to define

(5.1)


z1 = X1 +X2 −X3 −X4,
z2 = X1 −X2 +X3 −X4,
z3 = X1 −X2 −X3 +X4.

Writing yi = z2i , the yi’s are roots of

(5.2) R(y) = y3 + b1y2 + b2y + b3
in which

(5.3)


b1 = 8a2 − 3a21,
b2 = 3a41 − 16a21a2 + 16a1a3 + 16a22 − 64a4,
b3 = −(a31 − 4a1a2 + 8a3)2.

Conversely, if the yi’s are the roots of R and if the zi’s are chosen in such
a way that

−z1z2z3 = a31 − 4a1a2 + 8a3,
then the Xi’s defined by (5.1) (together with X1 +X2 +X3 +X4 = −a1)
are the roots of P .

In our case, we find that

R(Y ) = Y 3 − 1728Y 2 − 576(j(α)− 1728)Y − 64(j(α)− 1728)2

and the compatibility relation is z1z2z3 = 8(j(α)−1728). Since we suppose
that 3 - D, we replace j(α) by γ2(α)3. In that case, the roots of R(Y ) are

4(ζ2i3 γ2(α)2 + 12ζi3γ2(α) + 144)

for i = 0, 1, 2. Studying the roots of these numbers as class invariants
could probably be done using Shimura’s reciprocity law (see e.g., [24]). The
function √

γ2(α)2 + 12γ2(α) + 144
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has been introduced via a different route by Birch in [4] and the theorems
proven there could be used in our context, though we refrain from doing so
in this article.

Let us summarize the algorithm to find the roots of Φc3(X, j(E)) modulo
p when 3 - D, 3 | V (which implies p ≡ 1 mod 3):

1. compute γ2 mod p;
2. compute the values yi = 4(ζ2i3 γ2(α)2 + 12ζi3γ2(α) + 144) mod p for
i = 1, 2;

3. compute zi = √yi mod p for i = 1, 2 and z3 = 8(γ3
2 − 1728)/(z1z2)

from which X1 = z1 + z2 + z3 − 36 is a root of Φc3(X, j).
Notice that ζ3 mod p can be computed as follows (see [2] for more on this

sort of ideas): since 3 | p − 1, we can find a such that a(p−1)/3 6≡ 1 mod p.
Put ζ3 = a(p−1)/3. It satisfies ζ23 + ζ3 + 1 ≡ 0 mod p. Therefore, finding
a root costs two squareroots and one modular exponentiation, once γ2 is
known.
Numerical examples. Consider (D, p, U, V ) = (40, 139,±14,±3). A root
of H−40[γ2](X) = X2 − 780X + 20880 modulo p is 110. Using ζ3 = 96, we
compute v3 = 109 and x3 = 135. Then E : Y 2 = X3 + 124X + 129 has
λ = 1 and U = 14.

6. The case ` = 5

6.1. Using w5. We assume here that
(−D

5
)
6= −1 and 5 | DV 2. In that

case, we can use some power of w5 as invariant to get a root v5 of Φc5(X, j),
thus yielding a factor gE(j)

5 of fE(j)
5 . Writing:

A = v25 + 22v5 + 125, B = v25 + 4v5 − 1, C = v25 + 10v5 + 5,
one has:

g
E(j)
5 (X) = X2 + 2(C/B)X + (1− 36/A)(C/B)2.

Putting Y = (B/C)X leads us to (Y + 1)2 − 36/A. At this point, since

j = (v25 + 10 v5 + 5)3

v5

we also have:

j − 1728 =
(
v5

2 + 22 v5 + 125
) (
v5

2 + 4 v5 − 1
)2

v5

or A = v5(j − 1728)/B2.

6.1.1. The case U ≡ ±2 mod 5. We deduce that p ≡ 1 mod 5 and
g
E(j)
5 (X) has two rational roots.

Examples. Take D = 35 for which
H−35[w6

5](X) = X2 + 50X + 125.
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Take (p, U, V ) = (281,±33,±1). We first use v5 = 163 to compute E(j) :
Y 2 = X3 + 32X + 115 and gE(j)

5 (X) = X2 + 245X + 198. From this, we
get x5 = 227 and find that x3

5 + a4(j)x5 + a6(j) is a square in Fp, so that
#E(j) = p+ 1 + 33.

Consider now D = 91 for which
(−91

5
)

= +1. We find:

H−91[w6
5] = X2 + (130− 40

√
−91)X − 99− 8

√
−91.

Taking (p, U, V ) = (571,±3,±5), we use
√
−91 = 342 mod p, find v5 = 216

from which j = 533 and E(j) : Y 2 = X3 + 181X + 311. Then gE(j)
5 (X) =

X2 + 213X + 412 which has a root x5 = 315. We find that λ = −1 and
U = 3.

6.1.2. The case U ≡ ±1 mod 5. One has p ≡ 4 mod 5 and gE(j)
5 (X)

is irreducible; the eigenvalue is λ = U/2 ≡ ±2 mod 5. We can compute it
using the techniques of SEA, that is test the identity

(Xp, Y p) = [±2](X,Y ) mod gE(j)
5 (X).

(Actually, checking the equality on the ordinates is enough.) Depending on
the implementation, this can cost more than testing [m]P on E.
Example. Consider (D, p, U, V ) = (35, 109,±11,±3). One computes v5 =
76 and gE(j)

5 (X) = X2 + 13X + 13. We compute
(Xp, Y p) ≡ (108X + 96, Y (72X + 43)) = [2](X,Y ).

Therefore, U = −11.
Consider (D, p, U, V ) = (91, 569,±1,±5). We find E(j) : Y 2 = X3 +

558X + 372, gE(j)
5 (X) = X2 + 100X + 201 and

(Xp, Y p) ≡ [2](X,Y )
so that U = −1.

6.2. A remark on the case D = 20. We will take a route different from
that in [15]. Write p = a2 + 5b2. Let ε0 = (1 +

√
5)/2 be the fundamental

unit of Q(
√

5). We have

a4 = −162375
87362

− 89505
√

5
174724

, a6 = −54125
43681

− 29835
√

5
87362

and f5(X) has the factor:

X2 +
(

695
418

+ 225
√

5
418

)
X + 129925

174724
+ 45369

√
5

87362
of discriminant:

∆ = 32

112 · 192

(
7 +
√

5
2

)4(9 +
√

5
2

)2 √5
ε50
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which is congruent to ε0
√

5 modulo squares. Now, by [14], we have(
ε0
√

5
p

)
=
(
p

5

)
4
.

When p ≡ 1 mod 20, ∆ is a square modulo p and there are two abscissas
in Fp. Now, a ≡ ±1 mod 5 and thus

#E(j) ≡ 1 + 1± 2 mod 5.

We can distinguish the two cases by computing y5: It is in Fp if and only if
m ≡ 0 mod 5.

7. Numerical examples for ` ≡ 3 mod 4

7.1. The case ` = 7.

Lemma 7.1. Let v7 be a root of Φc7(X, j) and put

A(v7) = v47 + 14 v37 + 63 v27 + 70 v7 − 7.

Then

Resultant(gE(j)
7,λ (X), X3 + a4(j)X + a6(j)) = −3jv7A(v7)S(v7)2

for some rational fraction S with integer coefficients.

Proof: using Maple, we evaluate Resultant(g7,λ, X3 + a4(j)X + a6(j)) as

−212 · 39 ·
(
v7

2 + 13 v7 + 49
)3 (
v7

2 + 5 v7 + 1
)9
/A9

from which the result follows. 2

Take D = 91 for which

H−91[w4
7] = X2 + 77X + 49.

Take (p, U, V ) = (107,±8,±2). We find v7 = 62 from which gE(j)
7 (X) =

X3 + 104X2 + 44X + 73. Using E(j) : Y 2 = X3 + 101X + 103, we find
r = 13 and

(13
p

)
= 1 and therefore U = 8.

For (D, p, U, V ) = (20, 569,±36,±7), we compute:

H−20[w4
7](X) = X2 + (15−

√
−20)X + 41− 6

√
−20

one of which roots modulo p is v7 = 195 (taking
√
−20 = 320). Then

E(j) : Y 2 = X3 + 289X + 3 has gE(j)
7 (X) = X3 + 111X2 + 185X + 94 from

which U = 36.
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7.2. The case ` = 11. In that case, the modular equation is quite large.
However, if we restrict to the case where 3 - D, we can use the modular
equation relating w4

11 and γ2:
X12 − 1980X9 + 880 γ2X

8 + 44 γ2
2X

7 + 980078X6 − 871200 γ2X
5 + 150040 γ2

2X
4

+
(
47066580− 7865 γ3

2
)
X3 +

(
154 γ4

2 + 560560 γ2
)
X2 +

(
1244 γ2

2 − γ5
2
)
X + 121.

Consider (D, p, U, V ) = (88, 103,±18,±1). First, we find:

H−88[w4
11](X) = X2 − 66X + 121

a root of which is w11 = 21. Plugging this into the modular equation, we
find γ2 = 63, from which j = 66 and E(j) : Y 2 = X3 + 73X + 83. Using
the techniques of SEA, we find that

g11 = X5 + 81X4 + 22X3 + 55X2 + 99X + 15

and the resultant is 98, so that U = 18.
Note that the techniques needed to compute g11 are probably too heavy

to make this case useful. However, we provide it as a non-trivial example.

8. The case ` = 2

The points of 2-torsion cannot be used in our context, since they have
y-coordinate 0. So we must try to use 4-torsion points instead. We suppose
that −D is fundamental.

8.1. Splitting fE(j)
4 . Curves having rational 2-torsion are parametrized

by X0(2), or equivalently, j(E) = (u+ 16)3/u. Notice that:

(8.1) j − 1728 = γ2
3 = (u+ 64) (u− 8)2

u
.

Using algebraic manipulations (and Maple), fE(j)
4 (X) factors as the prod-

uct of polynomials P2(X)P4(X) where:

P2(X) = X2 + 2 u+ 16
u− 8

X + (u− 80) (u+ 16)2

(u− 8)2 (u+ 64)
,

P4(X) = X4−2 u+ 16
u− 8

X3−12 (u+ 16)2

(u+ 64) (u− 8)
X2−2 (7 u+ 16) (u+ 16)3

(u+ 64) (u− 8)3 X

−
(
5u2 + 640u− 256

)
(u+ 16)4

(u+ 64)2 (u− 8)4 .

The polynomial P2 has discriminant:

∆2(u) = 122 (u+ 16)2

(u− 8)2 (u+ 64)
.
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The polynomial P4 has the following property. If (u + 64)/u = v2, then it
splits as a product of two quadratic polynomials:

Ga(X) = X2 + 2
(
v2 + 3

)
v (v + 3)

X +
(
v2 + 12 v − 9

) (
v2 + 3

)2
(v + 3)2 (v − 3)2 v2

,

Gb(X) = X2 + 2
(
v2 + 3

)
v (v − 3)

X +
(
v2 − 12 v − 9

) (
v2 + 3

)2
(v + 3)2 (v − 3)2 v2

.

Proposition 8.1. Suppose that (D, p, V ) satisfies one of the conditions of
Proposition 4.1 and that u is a square. Then P2 splits modulo p.

Proof: Equation (8.1) tells us that u(u + 64) is a square modulo p, which
implies that ∆2(u) is also a square. 2

Notice that generally, at least one of the roots of Φc2(X, j), denoted by
u, will be the square of some Weber function, see [24].

8.2. Eigenvalues modulo 2k. Our idea is to use the roots of the charac-
teristic polynomial χ(X) = X2 − UX + p modulo powers of 2 and deduce
from this the sign of U when possible. This subsection is devoted to prop-
erties of these roots.

Since p ≡ 1 mod 2, χ(X) has roots modulo 2 if and only if U ≡ 0 mod 2.
Modulo 4, χ(X) has roots if and only if U ≡ (p + 1) mod 4, which we
suppose from now on. It is not enough to look at this case, since we have
U ≡ 0 mod 4 or U ≡ 2 mod 4 and in both cases, and we cannot deduce from
this alone the sign of U . We will need to look at what happens modulo 8.
We list below the cases where χ(X) has roots modulo 8 and then relate
this with the splitting of p.

Lemma 8.1. The solutions of X2 ≡ 4 mod 8 are ±2.

Lemma 8.2. Write ε = ±1. We give in the following table the roots of
χ(X) modulo 8:

p mod 8\U mod 8 0 2ε 4
1 ∅ {ε, ε+ 4} ∅
3 ∅ ∅ {±1,±3}
5 ∅ {−ε,−ε+ 4} ∅
7 {±1,±3} ∅ ∅

Proposition 8.2. Let 4p = U2 + DV 2. The polynomial χ(X) has roots
modulo 8 exactly in the following cases:

(i) 4 | D and 2 | V ;
(ii) 4 - D and [(4 | V ) or (2 || V and D ≡ 7 mod 8)].
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Proof:
(i) If V is even, we deduce that U2 ≡ 4p ≡ 4 mod 8, χ(X) is one of
X2 − 2εX + 1 or X2 − 2εX + 5 by Lemma 8.1. The result follows from
Lemma 8.2.

What can be said when V is odd? When 4 || D, this means that p =
(U/2)2 +(D/4)V 2, implying that U ≡ 0 mod 4 and p ≡ 1 mod 4 (since −D
is fundamental, D/4 ≡ 1 mod 4), but then U 6≡ p+ 1 mod 4.

When 8 | D, then p = (U/2)2 + (D/4)V 2 with U ≡ ±2 mod 8, but
p ≡ 3 mod 4 and again U 6≡ p+ 1 mod 4.

(ii) In that case, U and V have the same parity. If U and V are odd, this
implies m = p+ 1−U is odd, so that we do not have 2-torsion points. If U
and V are even, so is m and p = (U/2)2 +D(V/2)2.

If V/2 is even of the form 2V ′, then p = (U/2)2 + 4DV ′2; U/2 must be
odd and p ≡ 1 mod 4 and we conclude as in case (i).

If V/2 is odd, then p = (U/2)2 +DV ′2 with V ′ odd, which implies U/2
even, that is U ≡ 0 mod 8 or U ≡ 4 mod 8. One has p ≡ (U/2)2 +D mod 8.
If D ≡ 7 mod 8, then (U, p) = (0, 7) mod 8 or (4, 3) mod 8 and the two
characteristic polynomials have four roots modulo 8. If D ≡ 3 mod 8, then
(U, p) = (0, 3) or (4, 7) modulo 8 and χ(X) has no roots. 2

8.3. Computing the cardinality of CM-curves. This section makes
use of the theory of isogeny cycles described in [7, 6].

With the notations of the preceding section, we suppose we are in the
case where U = 2ε mod 8, or equivalently 4 | D and 2 | V , or 4 - D and
4 | V .

From Proposition 8.1, we know that the factor P2(X) of fE(j)
4 has at

least two roots modulo p. If x4 is one of these and s = x3
4 + ax4 + b, we let

y4 =
√
s (a priori in Fp2) and P = (x4, y4). Now π(P ) = ±P according to

the fact that s is a square or not. We have our eigenvalue λ4 ≡ ±1 mod 4.
By the theory of isogeny cycles, the eigenspace C4 generated by P can be
lifted to an eigenspace C8 of E[8] associated to the eigenvalue λ8 which is
congruent to λ4 modulo 4. Since U = 2ε mod 8, we know from Lemma 8.2
that only one of the possible values of λ8 reduces to a given λ4, which gives
us ε.

In practice, x4 is relatively inexpensive to use when u is the square of a
Weber function, which happens in the case 4 | D or D ≡ 7 mod 8 (for this,
one uses an invariant for −4D instead of −D, and both class groups have
the same class number, see [3]). When D ≡ 3 mod 4, ht = 3h1, which is not
as convenient; still, a root of Φc2(X, j) exists, since it is in Ω2 and p splits
in it.
Examples. First take (D, p, U, V ) = (20, 29,±6,±2). We find u = 7, j = 23
and E(j) : Y 2 = X3 +3X+2. From this, P2 has a root x4 = 7 and λ8 = −1,
so that U = −6.
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Now take (D, p, U, V ) = (40, 41,±2,±2). We compute u = 16, j = 39,
E(j) : Y 2 = X3 + 30X + 20, x4 = 19 and λ8 = −1 implying U = −2.

Let us turn to odd D’s. Take (D, p, U, V ) = (15, 409,±26,±8). Then
u = 102, j = 93, E : Y 2 = X3 + 130X + 223, x4 = 159 yielding λ8 = −1
and U = −26.

8.4. The case D odd. In that case, Φc2(X, J) will have three roots in Fp
or Fp2 , that we can compute directly. This could be useful for the cases not
treated by the the preceding section.

Let us try to solve the equation

Φc2(X, J) = X3 + 48X2 + 768X − JX + 4096 = 0

directly. As in [5] (already used in [17]), we first complete the cube letting
Y = X + 16 to get:

(8.2) Y 3 − JY + 16 J = 0.

We look for α and β such that this equation can be rewritten:

Y 3 − 3αβY + αβ(α+ β) ≡ 0.

The coefficients α and β are solutions of

W 2 − 48W + J/3 = 0

whose discriminant is ∆ = (−4/3)(J − 1728). Having α and β (in Fp or
Fp2), we solve

z3 = α
β

and we get a root

Y = βz − α
z − 1

of (8.2).

Since D is odd,
√
−Dγ3 is an invariant, so that we can write:

∆ = −4
3

(√
−Dγ3√
−D

)2

.

The computation of the roots then depends on
(−3
p

)
= 1. It is not clear that

the above mentioned approach is really faster than the naive one.
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9. Applications to ECPP and conclusion
In ECPP, the situation is as follows. We are given j and m = p+ 1− U

for some known U . We have to build an elliptic curve E having invariant
j and cardinality m. We use the results of the preceding sections in the
following way. We build a candidate E and compute its cardinality m′. If
m′ = m, then E is the correct answer, otherwise, we have to twist it. All
the material of this article is now included in the author’s program.

In [11], a comparison of all possible class invariants for a given D was
made using the height of their minimal polynomial. Though it is clear that
it is easier to use invariants of small height, the results of the present article
show that we might as well favor those invariants that give us a fast way
of computing the right equation instead.

For instance, if (D, 6) = 1, using Stark’s ideas whenever possible is a
good thing. When 3 | D or 7 | D, w3 or w7 should be preferred since we
have a fast answer. Note now a new phenomenon. If we are interested in
a prescribed p, we should use an invariant which depends on D, but also
on p, or more precisely on the small factors of V . For instance, if 3 | V , we
can use the direct solution of Φc3(X, J). If not, we may use some case where(−D
`

)
= +1, and ` | V .

The present work has enlarged the set of D’s for which the corresponding
E’s are easy to find. Nevertheless, there are cases which are badly covered
(for instance odd primes which are non quadratic residues modulo 8, 3, 5,
7, such as D = 163) and that will require new ideas to be treated.

Acknowledgments. The author wants to thank A. Enge for his careful
reading of the manuscript and suggesting many improvements. The referee
should be thanked also for his suggestions.

Note added in proof. K. Rubin and A. Silverberg have two recent
preprints on different methods to solve our motivating problem.

References
[1] A. O. L. Atkin, The number of points on an elliptic curve modulo a prime (II). Draft.

Available on http://listserv.nodak.edu/archives/nmbrthry.html, 1992.
[2] A. O. L. Atkin, Probabilistic primality testing, In P. Flajolet and P. Zimmermann, editors,

Analysis of Algorithms Seminar I. INRIA Research Report XXX, 1992. Summary by F.
Morain. Available as http://pauillac.inria.fr/algo/seminars/sem91-92/atkin.ps.

[3] A. O. L. Atkin and F. Morain, Elliptic curves and primality proving. Math. Comp.
61(203) (July 1993), 29–68.

[4] B. J. Birch, Weber’s class invariants. Mathematika 16 (1969), 283–294.
[5] C. Cailler, Sur les congruences du troisième degré. Enseign. Math. 10 (1902), 474–487.
[6] J.-M. Couveignes, L. Dewaghe, and F. Morain, Isogeny cycles and the Schoof-Elkies-

Atkin algorithm. Research Report LIX/RR/96/03, LIX, April 1996.

http://listserv.nodak.edu/archives/nmbrthry.html
http://pauillac.inria.fr/algo/seminars/sem91-92/atkin.ps


680 François Morain

[7] J.-M. Couveignes and F. Morain, Schoof’s algorithm and isogeny cycles. In L. Adleman
and M.-D. Huang, editors, Algorithmic Number Theory, volume 877 of Lecture Notes in
Comput. Sci., pages 43–58. Springer-Verlag, 1994. 1st Algorithmic Number Theory Sympo-
sium - Cornell University, May 6-9, 1994.

[8] D. A. Cox, Primes of the form x2 + ny2. John Wiley & Sons, 1989.
[9] L. Dewaghe, Remarks on the Schoof-Elkies-Atkin algorithm. Math. Comp. 67(223) (July

1998), 1247–1252.
[10] N. D. Elkies, Elliptic and modular curves over finite fields and related computational is-

sues. In D. A. Buell and J. T. Teitelbaum, editors, Computational Perspectives on Number
Theory: Proceedings of a Conference in Honor of A. O. L. Atkin, volume 7 of AMS/IP Stud-
ies in Advanced Mathematics, pages 21–76. American Mathematical Society, International
Press, 1998.

[11] A. Enge and F. Morain, Comparing invariants for class fields of imaginary quadratic
fields. In C. Fieker and D. R. Kohel, editors, Algorithmic Number Theory, volume 2369
of Lecture Notes in Comput. Sci., pages 252–266. Springer-Verlag, 2002. 5th International
Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings.

[12] N. Ishii, Trace of Frobenius endomorphism of an elliptic curve with complex multiplication.
Available at http://arxiv.org/abs/math.NT/0401289, January 2004.

[13] A. Joux and F. Morain, Sur les sommes de caractères liées aux courbes elliptiques à
multiplication complexe. J. Number Theory 55(1) (1995), 108–128.

[14] E. Lehmer, On some special quartic reciprocity law. Acta Arith. XXI (1972), 367–377.
[15] F. Leprévost and F. Morain, Revêtements de courbes elliptiques à multiplication complexe

par des courbes hyperelliptiques et sommes de caractères. J. Number Theory 64 (1997), 165–
182.

[16] M. Maurer and V. Müller, Finding the eigenvalue in Elkies’ algorithm. Experiment.
Math. 10(2) (2001), 275–285.

[17] F. Morain, Courbes elliptiques et tests de primalité. Thèse, Université Claude Bernard–
Lyon I, September 1990.

[18] F. Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects
algorithmiques. J. Théor. Nombres Bordeaux 7 (1995), 255–282.

[19] F. Morain, Primality proving using elliptic curves: an update. In J. P. Buhler, editor,
Algorithmic Number Theory, volume 1423 of Lecture Notes in Comput. Sci., pages 111–
127. Springer-Verlag, 1998. Third International Symposium, ANTS-III, Portland, Oregon,
june 1998, Proceedings.

[20] F. Morain, Implementing the asymptotically fast version of the elliptic curve primality
proving algorithm. Math. Comp. 76 (2007), 493–505.

[21] M. Newman, Construction and application of a class of modular functions. Proc. London
Math. Soc. (3) 7 (1957), 334–350.

[22] M. Newman, Construction and application of a class of modular functions (II). Proc. Lon-
don Math. Soc. (3) 9 (1959), 373–387.

[23] R. Padma and S. Venkataraman, Elliptic curves with complex multiplication and a char-
acter sum. J. Number Theory 61 (1996), 274–282.

[24] R. Schertz, Weber’s class invariants revisited. J. Théor. Nombres Bordeaux 14 (2002),
325–343.

[25] R. Schoof, Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux
7 (1995), 219–254.

[26] J. H. Silverman, The arithmetic of elliptic curves, volume 106 of Grad. Texts in Math.
Springer, 1986.

[27] J. H. Silverman Advanced Topics in the Arithmetic of Elliptic Curves, volume 151 of Grad.
Texts in Math. Springer-Verlag, 1994.

[28] Th. Skolem, The general congruence of 4th degree modulo p, p prime. Norsk. Mat. Tidsskr
34 (1952), 73–80.

[29] H. M. Stark, Counting points on CM elliptic curves. Rocky Mountain J. Math. 26(3)
(1996), 1115–1138.

http://arxiv.org/abs/math.NT/0401289


Cardinality of CM curves 681

[30] J. Vélu, Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. I Math. 273 (July
1971), 238–241. Série A.

[31] H. Weber, Lehrbuch der Algebra, volume I, II, III. Chelsea Publishing Company, New
York, 1902.

François Morain
Laboratoire d’Informatique
de l’École polytechnique (LIX)
F-91128 Palaiseau Cedex
France
E-mail: morain@lix.polytechnique.fr
URL: http://www.lix.polytechnique.fr/Labo/Francois.Morain

mailto:morain@lix.polytechnique.fr
http://www.lix.polytechnique.fr/Labo/Francois.Morain

	1. Introduction
	2. Modular curves and class invariants
	2.1. Modular polynomials
	2.2. CM theory

	3. The foundations of the SEA algorithm
	3.1. Division polynomials and their properties
	3.2. Explicit factors of bold0mu mumu fnE(X)fnE(X)Silverman86fnE(X)fnE(X)fnE(X)fnE(X)
	3.3. The splitting of bold0mu mumu [f](X, j(E))[f](X, j(E))Morain95a[f](X, j(E))[f](X, j(E))[f](X, j(E))[f](X, j(E)) in bold0mu mumu FpFpMorain95aFpFpFpFp
	3.4. Elkies's ideas

	4. Stating the problem
	4.1. Eliminating bad curves
	4.2. Fixing the sign of the trace

	5. The case bold0mu mumu =3=3MaMu01=3=3=3=3
	5.1. Using bold0mu mumu 33MaMu013333-torsion points
	5.2. Solving the equation 

	6. The case bold0mu mumu = 5= 5Atkin92= 5= 5= 5= 5
	6.1. Using w5
	6.2. A remark on the case bold0mu mumu D=20D=20Atkin92D=20D=20D=20D=20

	7. Numerical examples for bold0mu mumu 3-5mumod5mu-43-5mumod5mu-4Lehmer723-5mumod5mu-43-5mumod5mu-43-5mumod5mu-43-5mumod5mu-4
	7.1. The case bold0mu mumu = 7= 7Lehmer72= 7= 7= 7= 7
	7.2. The case bold0mu mumu = 11= 11Lehmer72= 11= 11= 11= 11

	8. The case bold0mu mumu = 2= 2Lehmer72= 2= 2= 2= 2
	8.1. Splitting bold0mu mumu f4E(j)f4E(j)Lehmer72f4E(j)f4E(j)f4E(j)f4E(j)
	8.2. Eigenvalues modulo bold0mu mumu 2k2kSchertz022k2k2k2k
	8.3. Computing the cardinality of CM-curves
	8.4. The case bold0mu mumu DDAtMo93bDDDD odd

	9. Applications to ECPP and conclusion
	References

