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Sequences of algebraic integers and density
modulo 1

par Roman URBAN

Résumé. Nous établissons la densité modulo 1 des ensembles de
la forme

{µmλnξ + rm : n,m ∈ N},
où λ, µ ∈ R sont deux entiers algébriques de degré d ≥ 2, qui sont
rationnellement indépendants et satisfont des hypothèses tech-
niques supplémentaires, ξ 6= 0, et rm une suite quelconque de
nombres réels.

Abstract. We prove density modulo 1 of the sets of the form

{µmλnξ + rm : n,m ∈ N},

where λ, µ ∈ R is a pair of rationally independent algebraic in-
tegers of degree d ≥ 2, satisfying some additional assumptions,
ξ 6= 0, and rm is any sequence of real numbers.

1. Introduction
It is a very well known result in the theory of distribution modulo 1 that

for every irrational ξ the sequence {nξ : n ∈ N} is dense modulo 1 (and
even uniformly distributed modulo 1) [11].

In 1967, in his seminal paper [4], Furstenberg proved the following

Theorem 1.1 (Furstenberg, [4, Theorem IV.1]). If p, q > 1 are rationally
independent integers (i.e., they are not both integer powers of the same
integer) then for every irrational ξ the set

(1.2) {pnqmξ : n,m ∈ N}

is dense modulo 1.
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One possible direction of generalizations is to consider p and q in Theo-
rem 1.1 not necessarily integer. This was done by Berend in [3].

According to [10], Furstenberg conjectured that under the assumptions
of Theorem 1.1, the set {(pn + qm)ξ : n,m ∈ N} is dense modulo 1. As
far as we know, this conjecture is still open. However, there are some re-
sults concerning related questions. For example, B. Kra in [9], proved the
following

Theorem 1.3 (Kra, [9, Theorem 1.2 and Corollary 2.2]). For i = 1, 2, let
1 < pi < qi be two rationally independent integers. Assume that p1 6= p2 or
q1 6= q2. Then, for every ξ1, ξ2 ∈ R with at least one ξi 6∈ Q, the set

{pn1qm1 ξ1 + pn2qm2 ξ2 : n,m ∈ N}

is dense modulo 1.
Furthermore, let rm be any sequence of real numbers and ξ 6∈ Q. Then,

the set

(1.4) {pn1qm1 ξ + rm : n,m ∈ N}

is dense modulo 1.

Inspired by Berend’s result [3], we prove some kind of a generalization
of the second part of Theorem 1.3 (some kind of an extension of the first
part is given in [15]). Namely, we allow algebraic integers, satisfying some
additional assumption, to appear in (1.4) instead of integers, and we prove
the following

Theorem 1.5. Let λ, µ be a pair of rationally independent real algebraic
integers of degree d ≥ 2, with absolute values greater than 1. Let λ2, . . . , λd
denote the conjugates of λ = λ1. Assume that either λ or µ has the property
that for every n ∈ N, its n-th power is of degree d, and that µ may be
expressed in the form g(λ), where g is a polynomial with integer coefficients,
i.e.,

(1.6) µ = g(λ), for some g ∈ Z[x].

Assume further that

(1.7) for each i = 2, . . . , d, either |λi| > 1 or |g(λi)| > 1,

and

(1.8) for each i = 2, . . . , d, |λi| 6= 1.

Then for any non-zero ξ, and any sequence of real numbers rm, the set

(1.9) {µmλnξ + rm : n,m ∈ N}

is dense modulo 1.
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As an example illustrating Theorem 1.5 we can consider the following
expressions

(
√

23 + 1)n(
√

23 + 2)m + 2mβ or (3 +
√

3)n(
√

3)m5 + 7mβ, β ∈ R.

Remark. We believe that assumption (1.6) is not necessary to conclude
density modulo 1 of the sets of the form (1.9).

Another kind of a generalization of Furstenberg’s Theorem 1.1, which we
are going to use in the proof of our result, is to consider higher-dimensional
analogues. A generalization to a commutative semigroup of non-singular
d × d-matrices with integer coefficients acting by endomorphisms on the
d-dimensional torus Td = Rd/Zd, and to the commutative semigroups of
continuous endomorphisms of other compact abelian groups was given by
Berend in [1] and [2], respectively (see Sect. 2.3). Recently some results for
non-commutative semigroups of endomorphisms of Td have been obtained
in [5, 6, 13].

The structure of the paper is as follows. In Sect. 2 we recall some notions
and facts from ergodic theory and topological dynamics. Following Berend
[1, 2], we recall the definition of an ID-semigroup of endomorphisms of the
d-dimensional torus Td. Then we state Berend’s theorem, [1], which gives
conditions that guarantee that a given semigroup of endomorphisms of Td
is an ID-semigroup. This theorem is crucial for the proof of our main result.
Finally in Sect. 3, using some ideas from [9, 3] we prove Theorem 1.5.

Acknowledgements. The author wishes to thank the anonymous referee
for remarks that improved the overall presentation of the result.

2. Preliminaries
2.1. Algebraic numbers. We say that P ∈ Z[x] is monic if the leading
coefficient of P is one, and reduced if its coefficients are relatively prime.
A real algebraic integer is any real root of a monic polynomial P ∈ Z[x],
whereas an algebraic number is any root (real or complex) of a (not neces-
sarily monic) non-constant polynomial P ∈ Z[x]. The minimal polynomial
of an algebraic number θ is the reduced element Q of Z[x] of the least degree
such that Q(θ) = 0. If θ is an algebraic number, the roots of its minimal
polynomial are simple. The degree of an algebraic number is the degree of
its minimal polynomial.

Let θ be an algebraic integer of degree n and let P ∈ Z[x] be the minimal
polynomial of θ. The n− 1 other distinct (real or complex) roots θ2, . . . , θn
of P are called conjugates of θ.

2.2. Topological transitivity, ergodicity and hyperbolic toral en-
domorphisms. We start with some basic notions, [12, 7]. We consider
a discrete topological dynamical system (X, f) given by a compact metric
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space X and a continuous map f : X → X. We say that a topological dy-
namical system (X, f) (or simply that a map f) is topologically transitive
if for any two nonempty open sets U, V ⊂ X there exists n = n(U, V ) ∈ N
such that fn(U) ∩ V 6= ∅. One can show that f is topologically transitive
if for every nonempty open set U in X,

⋃
n≥0 f

−n(U) is dense in X (see
[8] for other equivalent definitions). If there exists a point x ∈ X such that
its orbit {fn(x) : n ∈ N} is dense in X, then we say that x is a transitive
point. Under some additional assumptions on X, the map f is topologically
transitive if and only if there is a transitive point x ∈ X. Namely, we have
the following

Proposition 2.1 ([14]). If X has no isolated point and f has a transitive
point then f is topologically transitive. If X is separable, second category
and f is topologically transitive then f has a transitive point.

Consider a probability space (X,F , µ) and a continuous transformation
f : X → X. We say that the map f is measure preserving, and that µ is
f-invariant, if for every A ∈ F we have µ(f−1(A)) = µ(A). Recall that f
is said to be ergodic if every set A such that f−1(A) = A has measure 0 or
1.

Let L be a hyperbolic matrix, that is a d× d-matrix with integer entries,
with non-zero determinant, and without eigenvalues of absolute value 1.
Then LZd ⊂ Zd, so L determines a map of the d-dimensional torus Td =
Rd/Zd. Such a map is called a hyperbolic toral endomorphism. It is known
(see e.g. [12]) that the Haar measure m of Td is invariant under surjective
continuous homomorphisms. In particular, it is L-invariant. We state two
propositions about toral endomorphisms. Their proofs can be found in [12].

Proposition 2.2. Let L : Td → Td be a hyperbolic toral endomorphism.
Then L is ergodic.

The next proposition gives an elementary and useful relation between
ergodicity and topological transitivity.

Proposition 2.3. Let L be a continuous endomorphism of Td which pre-
serves the Haar measure m. If L is ergodic then it is topologically transitive.
In particular, if L is a hyperbolic toral endomorphism then L has a transi-
tive point t ∈ Td, i.e., {Lnt : n ∈ N} is dense in Td.

We will also need the following lemma about finite invariant sets of er-
godic endomorphisms. For the proof see [1, Lemma 5.2].

Lemma 2.4. Let L : Td → Td be an ergodic endomorphism. A finite L-
invariant set is necessarily composed of torsion elements only.

2.3. ID semigroups of endomorphisms acting on Td. Following [1,
2], we say that the semigroup Σ of endomorphisms of a compact group
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G has the ID-property (or simply that Σ is an ID-semigroup) if the only
infinite closed Σ-invariant subset of G is G itself. (ID-property stands for
infinite invariant is dense.) A subset A ⊂ G is said to be Σ-invariant if
ΣA ⊂ A.

We say, exactly like in the case of real numbers, that two endomorphisms
σ and τ are rationally dependent if there are integers m and n, not both of
which are 0, such that σm = τn, and rationally independent otherwise.

Berend in [1] gave necessary and sufficient conditions in arithmetical
terms for a commutative semigroup Σ of endomorphisms of the d-dimen-
sional torus Td = Rd/Zd to have the ID-property. Namely, he proved the
following.

Theorem 2.5 (Berend, [1, Theorem 2.1]). A commutative semigroup Σ
of continuous endomorphisms of Td has the ID-property if and only if the
following hold:

(i) There exists an endomorphism σ ∈ Σ such that the characteristic
polynomial fσn of σn is irreducible over Z for every positive integer
n.

(ii) For every common eigenvector v of Σ there exists an endomorphism
σv ∈ Σ whose eigenvalue in the direction of v is of norm greater than
1.

(iii) Σ contains a pair of rationally independent endomorphisms.

Remark. Let Σ be a commutative ID-semigroup of endomorphisms of Td.
Then the Σ-orbit of the point x ∈ Td is finite if and only if x is a rational
element, i.e., x = r/q, r ∈ Zd, q ∈ N (see [1]).

3. Proof of Theorem 1.5
Let λ > 1 be a real algebraic integer of degree d with minimal (monic)

polynomial Qλ ∈ Z[x],

Qλ(x) = xd + cd−1x
d−1 + . . .+ c1x+ c0.

We associate with λ the following companion matrix of Qλ,

σλ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 0 0 . . . 1
−c0 −c1 −c2 . . . −cd−1

 .

Remark. We can think of σλ as a matrix of multiplication by λ in the
algebraic number field Q(λ). Namely, if x ∈ Q(λ) has coordinates α =
(α0, α1, . . . , αd−1) in the basis consisting of 1, λ, . . . , λd−1, then λx has co-
ordinates ασλ.
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Let µ = g(λ), where g ∈ Z[x] is a polynomial with integer coefficients,
and define the matrix σµ = g(σλ).

Denote by Σ the semigroup of endomorphisms of Td generated by σλ
and σµ. The vector v = (1, λ, λ2, . . . , λd−1)t is an eigenvector of the matrix
σλ with an eigenvalue λ, that is σλv = λv. Since Σ is a commutative
semigroup, it follows that v is a common eigenvector of Σ, in particular
σµv = g(σλ)v = g(λ)v = µv.

Clearly, under the assumptions on λ and µ, the operators σλ and σµ are
rationally independent endomorphisms of Td and the characteristic polyno-
mial either of σnλ or σnµ is irreducible over Z for every n ∈ N. Furthermore,
it follows from (1.7) that the condition (ii) of Theorem 2.5 is also satisfied.
Thus we have proved the following

Lemma 3.1. Let λ and µ be as in Theorem 1.5. Let Σ be the semigroup of
endomorphisms of Td generated by σλ and σµ. Then Σ is the ID-semigroup.

The next lemma is a generalization of [9, Lemma 2.1] to the higher-
dimensional case. Let X be a compact metric space with a distance d.
Consider the space CX of all closed subsets of X. The Hausdorff metric dH
on the space CX is defined as

dH(A,B) = max{max
x∈A
d(x,B),max

x∈B
d(x,A)},

where d(x,B) = miny∈B d(x, y) is the distance of x from the set B. It is
known that if X is a compact metric space then CX is also compact.

Lemma 3.2. Let σ, τ be a pair of rationally independent and commuting
endomorphisms of Td. Assume that the semigroup Σ = 〈σ, τ〉 generated by
σ and τ satisfies the conditions of Theorem 2.5, and σ is a hyperbolic toral
endomorphism of Td. Let A be an infinite σ-invariant subset of Td. Then
for every ε > 0 there exists m ∈ N such that the set τmA is ε-dense.

Proof. It is clear that, taking the closure of A if necessary, we can assume
that A is closed. We consider the space CTd of all closed subsets of Td with
the Hausdorff metric dH . Let

F := {τnA : n ∈ N} ⊂ CTd .
Since the set A is σ-invariant, it follows that every element (set) F ∈ F is
also σ-invariant. Define,

T =
⋃
F∈F
F ⊂ Td.

Since A is an infinite set and A ⊂ T, it follows that T is infinite. Notice that
T is closed in Td, since F is closed in CTd .Moreover, T is σ- and τ -invariant.
Hence, by Theorem 2.5, we get

T = Td.
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Since σ is a hyperbolic toral endomorphism, it follows by Proposition 2.3,
that there exists t ∈ T such that the orbit {σnt : n ∈ N} is dense in Td, i.e.,

(3.3) {σnt : n ∈ N} = Td

Clearly, t ∈ F for some F ∈ F . By definition of F , there is a sequence
{nk} ⊂ N such that F = limk τnkA, and the limit is taken in the Hausdorff
metric dH . Since t ∈ F and F is σ-invariant, we get F ⊃ {σnt : n ∈ N} = Td
(see (3.3)). Hence, F = Td. Therefore, for sufficiently large k, τnkA is ε-
dense. �

Now we are ready to give

Proof of Theorem 1.5. Let α = ξ(1, λ, λ2, . . . , λd−1)t ∈ Rd be a common
eigenvector of the semigroup Σ. Consider

A = {σnλπ(α) : n ∈ N} = {π(λnξ, λn+1ξ, . . . , λn+d−1ξ)t : n ∈ N},

where π : Rd → Td is the canonical projection. By (1.8), σλ is a hyperbolic
toral endomorphism. In particular, by Proposition 2.2, σλ is ergodic. Since
π(α) is not a torsion element, it follows from Lemma 2.4 that A is infinite.
By Lemma 3.1, Σ = 〈σλ, σµ〉 is the ID-semigroup of Td. Thus, by Lemma 3.2
applied to σλ and σµ, there exists m ∈ N such that σmµ A is ε-dense. Let
vm = π(rm, 0, . . . , 0)t. Since

σmµ A+ vm = {π(µmλnξ + rm, µmλn+1ξ, . . . , µmλn+d−1ξ)t : n ∈ N}

is a translate of an ε-dense set, it is also ε-dense. Now, taking the projection
of the set σmµ A+ vm on the first coordinate we get the result. �
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