Seidai YASUDA Local ε_0 -characters in torsion rings Tome 19, nº 3 (2007), p. 763-797. $\verb|\cluster| < http://jtnb.cedram.org/item?id = JTNB_2007__19_3_763_0 >$ © Université Bordeaux 1, 2007, tous droits réservés. L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. # cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ ## Local ε_0 -characters in torsion rings ## par Seidai YASUDA RÉSUMÉ. Soit p un nombre premier et K un corps, complet pour une valuation discrète, à corps résiduel de caractéritique positive p. Dans le cas où k est fini, généralisant la théorie de Deligne [1], on construit dans [10] et [11] une théorie des ε_0 -constantes locales pour les représentations, sur un anneau local complet à corps résiduel algébriquement clos de caractéristique $\neq p$, du groupe de Weil W_K de K. Dans cet article, on généralise les résultats de [10] et [11] au cas où k est un corps arbitraire parfait. ABSTRACT. Let p be a rational prime and K a complete discrete valuation field with residue field k of positive characteristic p. When k is finite, generalizing the theory of Deligne [1], we construct in [10] and [11] a theory of local ε_0 -constants for representations, over a complete local ring with an algebraically closed residue field of characteristic $\neq p$, of the Weil group W_K of K. In this paper, we generalize the results in [10] and [11] to the case where k is an arbitrary perfect field. #### 1. Introduction Let K be a complete discrete valuation field whose residue field k is of characteristic p. When k is a finite field, the author defines in [10] local ε_0 -constants $\varepsilon_{0,R}(V,\psi)$ for a triple $(R,(\rho,V),\psi)$ where R is a strict p'-coefficient ring (see Section 2 for the definition), (ρ,V) is an object in $\operatorname{Rep}(W_K,R)$, and $\psi:K\to R^\times$ is a non-trivial continuous additive character. In [10] the author proved several properties including the formula for induced representations. In the present paper, we generalize the results of two papers [10] and [11] to the case where k is an arbitrary perfect field of characteristic p. More precisely, we define an object $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ in $\operatorname{Rep}(W_k,\widetilde{\psi})$ of rank one (where W_k is a dense subgroup of the absolute Galois group of k defined in 3.1), called the $local\ \varepsilon_0$ -character, for any triple $(R,(\rho,V),\widetilde{\psi})$ where R is a strict p'-coefficient ring, (ρ,V) an object in $\operatorname{Rep}(W_K,R)$ and $\widetilde{\psi}$ is a non-trivial invertible additive character sheaf on K. When k is finite of order q, this $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ and the local ε_0 -constants $\varepsilon_{0,R}(V,\psi)$ are related by $$\operatorname{Tr}(\operatorname{Fr}_q ; \widetilde{\varepsilon}_{0,R}(V, \widetilde{\psi})) = (-1)^{\operatorname{rank} V + \operatorname{sw}(V)} \varepsilon_{0,R}(V, \psi),$$ where $\widetilde{\psi}$ is the invertible character sheaf associated to ψ . We generalize the properties of local ε_0 -constants stated in [10] to those of local $\widetilde{\varepsilon}_0$ -characters by using the specialization argument. We also prove the product formula which describes the determinant of the etale cohomology of a R_0 -sheaf on a curve over a perfect field k as a tensor product of local $\widetilde{\varepsilon}_0$ -characters. ### 2. Notation Let \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the ring of rational integers, the field of rational numbers, the field of real numbers, and the field of complex numbers respectively. Let $\mathbb{Z}_{>0}$ (resp. $\mathbb{Z}_{\geq 0}$) be the ordered set of positive (resp. non-negative) integers. We also define $\mathbb{Q}_{\geq 0}$, $\mathbb{Q}_{>0}$, $\mathbb{R}_{\geq 0}$ and $\mathbb{R}_{>0}$ in a similar way. For $\alpha \in \mathbb{R}$, let $\lfloor \alpha \rfloor$ (resp. $\lceil \alpha \rceil$) denote the maximum integer not larger than α (resp. the minimum integer not smaller than α). For a prime number ℓ , let \mathbb{F}_{ℓ} denote the finite field of ℓ elements, \mathbb{F}_{ℓ^n} the unique extension of \mathbb{F}_{ℓ} of degree n for $n \in \mathbb{Z}_{>0}$, $\overline{\mathbb{F}}_{\ell}$ the algebraic closure of \mathbb{F}_{ℓ} , $\mathbb{Z}_{\ell} = W(\mathbb{F}_{\ell})$ (resp. $W(\overline{\mathbb{F}}_{\ell})$) the ring of Witt vectors of \mathbb{F}_{ℓ} (resp. $\overline{\mathbb{F}}_{\ell}$), $\mathbb{Q}_{\ell} = \operatorname{Frac}(\mathbb{Z}_{\ell})$) the field of fractions of \mathbb{Z}_{ℓ} . Let $\varphi : W(\overline{\mathbb{F}}_{\ell}) \to W(\overline{\mathbb{F}}_{\ell})$ be the Frobenius automorphism of $W(\overline{\mathbb{F}}_{\ell})$. For a ring R, let R^{\times} denote the group of units in R. For a positive integer $n \in \mathbb{Z}_{>0}$, let $\boldsymbol{\mu}_n(R)$ denote the group of n-th roots of unity in R, $\boldsymbol{\mu}_{n^{\infty}}(R)$ denotes the union $\bigcup_i \boldsymbol{\mu}_{n^i}(R)$. For a finite extension L/K of fields, let [L:K] denote the degree of L over K. For a subgroup H of a group G of finite index, its index is denoted by [G:H]. For a finite field k of characteristic $\neq 2$, let $(\bar{k}): k^{\times} \to \{\pm 1\}$ denote the unique surjective homomorphism. Throughout this paper, we fix once and for all a prime number p. We consider a complete discrete valuation field K whose residue field is perfect of characteristic p. We say such a field K is a p-CDVF. We sometimes consider a p-CDVF whose residue field is finite. We say such a field is a p-local field. For a p-CDVF K, let \mathcal{O}_K denote its ring of integers, \mathfrak{m}_K the maximal ideal of \mathcal{O}_K , $k_K = \mathcal{O}_K/\mathfrak{m}_K$ the residue field of \mathcal{O}_K , and $v_K : K^\times \to \mathbb{Z}$ the normalized valuation. If K is a p-local field, we also denote by $(\ ,\)_K : K^\times \times K^\times \to \{\pm 1\}$ the Hilbert symbol, by W_K the Weil group of K, by $\operatorname{rec} = \operatorname{rec}_K : K^\times \xrightarrow{\cong} W_K^{\operatorname{ab}}$ the reciprocity map of local class field theory, which sends a prime element of K to a lift of geometric Frobenius of k. If L/K is a finite separable extension of p-CDVFs, let $e_{L/K} \in \mathbb{Z}$, $f_{L/K} \in \mathbb{Z}$, $D_{L/K} \in \mathcal{O}_L/\mathcal{O}_L^{\times}$, $d_{L/K} \in \mathcal{O}_K/\mathcal{O}_K^{\times 2}$ denotes the ramification index of L/K, the residual degree of L/K, the different of L/K, the discriminant of L/K respectively. For a topological group (or more generally for a topological monoid) G and a commutative topological ring R, let Rep(G,R) denote the category whose objects are pairs (ρ,V) of a finitely generated free R-module V and a continuous group homomorphism $\rho: G \to GL_R(V)$ (we endow $GL_R(V)$ with the topology induced from the direct product topology of $\text{End}_R(V)$), and whose morphisms are R-linear maps compatible with actions of G. A sequence $$0 \to (\rho',V') \to (\rho,V) \to (\rho'',V'') \to 0$$ of morphisms in $\operatorname{Rep}(G,R)$ is called a *short exact sequence* in $\operatorname{Rep}(G,R)$ if $0 \to V' \to V \to V'' \to 0$ is the short exact sequence of R-modules. In this paper, a noetherian local ring with residue field of characteristic $\neq p$ is called a p'-coefficient ring. Any p'-coefficient ring (R, \mathfrak{m}_R) is considered as a topological ring with the \mathfrak{m}_R -preadic topology. A *strict* p'-coefficient ring is a p'-coefficient ring R with an algebraically closed residue field such that $(R^{\times})^p = R^{\times}$. #### 3. Review of basic facts **3.1. Ramification subgroups.** Let K be a p-CDVF with a residue field k, and \overline{K} (resp. \overline{k}) a separable closure of K (resp. k). Let k_0 be the algebraic closure of \mathbb{F}_p in k. If k_0 is finite, define the Weil group $W_k \subset \operatorname{Gal}(\overline{k}/k)$ of k as the inverse image of \mathbb{Z} under the canonical map $$\operatorname{Gal}(\overline{k}/k) \to \operatorname{Gal}(\overline{k}_0/k_0) \xrightarrow{\cong} \widehat{\mathbb{Z}}.$$ If k_0 is infinite, we put $W_k = \operatorname{Gal}(\overline{k}/k)$. Define the Weil group $W_K \subset \operatorname{Gal}(\overline{K}/K)$ of K as the inverse image of W_k under the canonical map $\operatorname{Gal}(\overline{K}/K) \to \operatorname{Gal}(\overline{k}/k)$. Let $G = W_K$ denote the Weil group of K. Put $G^v = G \cap \operatorname{Gal}(\overline{K}/K)^v$ and $G^{v+} = G \cap \operatorname{Gal}(\overline{K}/K)^{v+}$, where $\operatorname{Gal}(\overline{K}/K)^v$ and $\operatorname{Gal}(\overline{K}/K)^{v+}$ are the upper numbering ramification subgroups (see [9, IV, §3] for definition) of $\operatorname{Gal}(\overline{K}/K)$. The groups G^v , G^{v+} are called the upper numbering ramification subgroups of G. They have the following properties: - G^v and G^{v+} are closed normal subgroups of G. - $G^v \supset G^{v+} \supset G^w$ for every $v, w \in \mathbb{Q}_{\geq 0}$ with w > v. - G^{v+} is equal to the closure of $\bigcup_{w>v} G^w$. - $G^0 = I_K$, the inertia subgroup of W_K . $G^{0+} = P_K$, the wild inertia subgroup of W_K . In particular, G^w for w > 0 and G^{w+} for $w \ge 0$ are pro
p-groups. - For $w \in \mathbb{Q}$, w > 0, G^w/G^{w+} is an abelian group which is killed by p. - **3.2. Herbrand's function** $\psi_{L/K}$. Let L/K be a finite separable extension of a p-CDVF. Let $\psi_{L/K}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be the Herbrand fuction (see [9, IV, §3] for definition) of L/K. The function $\psi_{L/K}$ has the following properties: - $\psi_{L/K}$ is continuous, strictly increasing, piecewise linear, and convex function on $\mathbb{R}_{\geq 0}$. - For sufficiently large w, $\psi_{L/K}(w)$ is linear with slope $e_{L/K}$. - We have $\psi_{L/K}(0) = 0$. - We have $\psi_{L/K}(\mathbb{Z}_{\geq 0}) \subset \mathbb{Z}_{\geq 0}$ and $\psi_{L/K}(\mathbb{Q}_{\geq 0}) = \mathbb{Q}_{\geq 0}$. - Let $G = W_K$, $H = W_L$. Then for $w \in \mathbb{Q}_{\geq 0}$, we have $G^w \cap H = H^{\psi_{L/K}(w)}$ and $G^{w+} \cap H = H^{\psi_{L/K}(w)+}$. - **3.3.** Slope decomposition and refined slope decomposition. Let K be a p-CDVF, $G = W_K$ the Weil group of K. Let (R, \mathfrak{m}_R) be a p'-coefficient ring. Let V be an R[G]-module. We say that V is tamely ramified or pure of slope 0 if G^{0+} acts trivially on V. V is called totally wild if the G^{0+} -fixed part $V^{G^{0+}}$ is 0. For $v \in \mathbb{Q}_{>0}$, we say that V is pure of slope v if V^{G^v} is 0 and if G^{v+} acts trivially on V. Let K^{tm} be the maximal tamely ramified extension of K in a fixed separable closure \overline{K} of K. Let (ρ, V) be an object in Rep(G, R). Since G^{0+} is a pro-p group, there exists a finite Galois extension L of K^{tm} in \overline{K} such that ρ factors through the quotient $W(L/K) = W_K/\text{Gal}(\overline{K}/L)$ of W_K . Let $G(L/K)^v$ (resp. $G(L/K)^{v+}$) denotes the image of G^v (resp. G^{v+}) in W(L/K). **Lemma 3.1.** There exists a finite number of rational numbers $v_1, \dots, v_n \in \mathbb{Q}_{\geq 0}$ with $0 = v_1 < \dots < v_n$ such that $G(L/K)^{v_i+} = G(L/K)^{v_{i+1}}$ for $1 \leq i \leq n-1$ and that $G(L/K)^{v_n} = \{1\}$. *Proof.* There exists a finite Galois extension L' of K contained in L such that the composite map $G(L/K)^{0+} \subset W(L/K) \twoheadrightarrow \operatorname{Gal}(L'/K)$ is injective. Then the image of $G(L/K)^v$, $G(L/K)^{v+}$ in $\operatorname{Gal}(L'/K)$ is equal to the upper numbering ramification subgroups $\operatorname{Gal}(L'/K)^v$, $\operatorname{Gal}(L'/K)^{v+}$ of $\operatorname{Gal}(L'/K)$ respectively. Hence the lemma follows. Corollary 3.2. Let (ρ, V) be an object in $\operatorname{Rep}(G, R)$. Then for any $v \in \mathbb{Q}_{\geq 0}$, there exists a unique maximal sub R[G]-module V^v of V which is pure of slope v. $V^v = \{0\}$ except for a finite number of v and we have $$V = \bigoplus_{v \in \mathbb{Q}_{>0}} V^v.$$ For $v \in \mathbb{Q}_{\geq 0}$, the object in Rep(G, R) defined by V^v is called the *slope* v-part of (ρ, V) . $V \mapsto V^v$ define a functor from Rep(G, R) to itself which preserves short exact sequences. These functors commute with base changes by $R \to R'$. **Definition 3.3.** Let (ρ, V) be an object in $\operatorname{Rep}(G, R)$, $V = \bigoplus_{v \in \mathbb{Q}_{\geq 0}} V^v$ its slope decomposition. We define the *Swan conductor* sw(V) of V by $$\operatorname{sw}(V) = \sum_{v \in \mathbb{Q}_{>0}} v \cdot \operatorname{rank} V^v.$$ Lemma 3.4. $sw(V) \in \mathbb{Z}$. *Proof.* Since $sw(V) = sw(V \otimes_R R/\mathfrak{m}_R)$, we may assume that R is a field. Then the lemma is classical. Assume further that R contains a primitive p-th root of unity. Let (ρ, V) be an object in Rep(G, R). Let $v \in \mathbb{Q}_{>0}$ and let V^v denote the slope v part of (ρ, V) . We have a decomposition $$V^v = \bigoplus_{\chi \in \operatorname{Hom}(G^v/G^{v+}, R^{\times})} V_{\chi}$$ of V^v by the sub $R[G^v/G^{v+}]$ -modules V_χ on which G^v/G^{v+} acts by χ . The group G acts on the set $\operatorname{Hom}(G^v/G^{v+},R^\times)$ by conjugation : $(g.\chi)(h)=\chi(g^{-1}hg)$. The action of $g\in G$ on V induces an R-linear isomorphism $V_\chi\stackrel{\cong}{\to} V_{g.\chi}$. Let X^v denote the set of G-orbits in the G-set $\operatorname{Hom}(G^v/G^{v+},R^\times)$. Then for any $\Sigma\in X^v$, $$V^{\Sigma} = \bigoplus_{\chi \in \Sigma} V_{\chi}$$ is a sub R[G]-module of V and we have $$V = \bigoplus_{\Sigma \in X^v} V^{\Sigma}.$$ The object in $\operatorname{Rep}(G,R)$ defined by V^{Σ} is called the *refined slope* Σ -part of (ρ,V) . (ρ,V) is called *pure of refined slope* Σ if $V=V^{\Sigma}$. $V\mapsto V^{\Sigma}$ defines a functor from $\operatorname{Rep}(G,R)$ to itself which preserves short exact sequences. These functors commute with base changes by $R\to R'$. **Lemma 3.5.** Let (ρ, V) be a non-zero object in $\operatorname{Rep}(G, R)$ which is pure of refined slope $\Sigma \in X^v$, $\chi \in \Sigma$, and $V_{\chi} \subset \operatorname{Res}_{G^v}^G V$ be the χ -part of $\operatorname{Res}_{G^v}^G V$. Let $H_{\chi} \subset G$ be the stabilizing subgroup of χ . - (1) H_{χ} is a subgroup of G of finite index. - (2) V_{χ} is stable under the action of H_{χ} on V. - (3) V is, as an object in $\operatorname{Rep}(G,R)$, isomorphic to $\operatorname{Ind}_{H_{\chi}}^{G}V_{\chi}$. *Proof.* Obvious. **Remark 3.6.** The claim $[G: H_{\chi}] < \infty$ also follows from the explicit description of the group $\text{Hom}(G^v/G^{v+}, R^{\times})$ by Saito [5, p. 3, Thm. 1]. **3.4.** Character sheaves. Let S be a scheme of characteristic p, (R, \mathfrak{m}_R) a complete p'-coefficient ring, and G a commutative group scheme over S. An invertible character R-sheaf on G is a smooth invertible étale R-sheaf (that is, a pro-system of smooth invertible R/\mathfrak{m}_R^n -sheaves in the étale topology) \mathcal{L} on G such that $\mathcal{L} \boxtimes \mathcal{L} \cong \mu^* \mathcal{L}$, where $\mu: G \times_S G \to G$ is the group law. We have $i^*\mathcal{L} \cong \mathcal{L}$, where $i: G \to G$ is the inverse morphism. If \mathcal{L}_1 , \mathcal{L}_2 are two invertible character R-sheaf on G, then so is $\mathcal{L}_1 \otimes_R \mathcal{L}_2$. **Lemma 3.7** (Orthogonality relation). Suppose that S is quasi-compact and quasi-separated, and that the structure morphism $\pi: G \to S$ is compactifiable. Let \mathcal{L} be an invertible character R-sheaf on G such that $\mathcal{L} \otimes_R R/\mathfrak{m}_R$ is non-trivial. Then we have $R\pi_!\mathcal{L}=0$. *Proof.* We may assume that R is a field. Since $Rpr_1(\mathcal{L}\boxtimes\mathcal{L})\cong(\pi^*R\pi_!\mathcal{L})\otimes\mathcal{L}$ and $Rpr_1(\mu^*\mathcal{L})\cong\pi^*R\pi_!\mathcal{L}$, we have $(\pi^*R^i\pi_!\mathcal{L})\otimes\mathcal{L}\cong\pi^*R^i\pi_!\mathcal{L}$ for all i. Hence $R^i\pi_!\mathcal{L}=0$ for all i. **Lemma 3.8.** Suppose further that S and G are noetherian and connected, and that R is a finite ring. Let \mathcal{L} be a smooth invertible R-sheaf on G. Then \mathcal{L} is an invertible character R-sheaf if and only if there is a finite etale homomorphism $G' \to G$ of commutative S-group schemes with a constant kernel H_S and a homomorphism $\chi: H \to R^{\times}$ of groups such that \mathcal{L} is the sheaf defined by G' and χ . *Proof.* This is [11, Lem. 3.2]. ## 4. $\tilde{\varepsilon}_0$ -characters Throughout this section, let K be a p-CDVF with residue field k and (R, \mathfrak{m}_R) a complete strict p'-coefficient ring with a positive residue characteristic. In this section, we generalize the theory of local ε_0 -constants to that for objects in $\text{Rep}(W_K, R)$. We use the following notation: for any k-algebra A, let R_A denote A (resp. W(A)) when K is of equal characteristic (resp. mixed characteristic). Then \mathcal{O}_K has a natural structure of R_k -algebra. **4.1.** Additive character sheaves. For two integers $m, n \in \mathbb{Z}$ with $m \le n$, let $K^{[m,n]}$ denote $\mathfrak{m}_K^m/\mathfrak{m}_K^{n+1}$ regarded as an affine commutative k-group. More precisely, take a prime element π_K of K. If char K = p, then $K^{[m,n]}$ is canonically isomorphic to the affine k-group which associates every k-algebra A the group $\bigoplus_{i=m}^n A$. If char K = 0, let $e = [K : \operatorname{Frac} W(k)]$ be the absolute ramification index of K. Then $K^{[m,n]}$ is canonically isomorphic to the affine k-group which associates every k-algebra A the group $\bigoplus_{i=0}^{e-1} W_{1+\left\lfloor \frac{n-m-i}{2} \right\rfloor}(A)$. Let R_0 be a pro-finite local ring on which p is invertible. Let $ACh(K^{[m,n]}, R_0)$ (resp. $ACh^0(K^{[m,n]}, R_0)$) denote the set of all isomorphism classes of invertible character R_0 -sheaves (resp. non-trivial invertible character R_0 -sheaves) on $K^{[m,n]}$. For a p'-coefficient ring (R, \mathfrak{m}_R) , let $ACh(K^{[m,n]}, R)$ denote the set $\varinjlim_{R_0} ACh(K^{[m,n]}, R_0)$, where R_0 runs over all isomorphism classes of injective local ring homomorphisms $R_0 \hookrightarrow R$ from pro-finite local rings R_0 to R. For four integers m_1, m_2, n_1 , and $n_2 \in \mathbb{Z}$ with $m_1 \leq m_2 \leq n_2$ and $m_1 \leq n_1 \leq n_2$, the canonical morphism $K^{[m_2, n_2]} \to K^{[m_1, n_1]}$ induces a map $ACh(K^{[m_1, n_1]}, R) \to ACh(K^{[m_2, n_2]}, R)$. **Definition 4.1.** A non-trivial additive character sheaf of K with coefficients in R is an element $\widetilde{\psi}$ in $$\coprod_{n\in\mathbb{Z}} \varprojlim_{m\leq -n-1} \mathrm{ACh}^0(K^{[m,-n-1]},R).$$ When $\widetilde{\psi} \in \varprojlim_{m \leq -n-1} \operatorname{ACh}^0(K^{[m,-n-1]}, R)$, the integer n is called the *conductor* of $\widetilde{\psi}$ and is denoted by ord $\widetilde{\psi}$. Let $a \in K$ with $v_K(a) = v$. The multiplication-by-a map $$a_{[m,n]}: K^{[m-v,n-v]} \to K^{[m,n]}$$ induces a canonical isomorphism $$a_{[m,n]}^* : \mathrm{ACh}^0(K^{[m,n]})
\xrightarrow{\cong} \mathrm{ACh}^0(K^{[m-v,n-v]})$$ and hence an isomorphism $$\varprojlim_{m \leq -n-1} \operatorname{ACh}^0(K^{[m,-n-1]},R) \xrightarrow{\cong} \varprojlim_{m \leq -n-v-1} \operatorname{ACh}^0(K^{[m,-n-v-1]},R).$$ We denote by $\widetilde{\psi}_a$ the image of $\widetilde{\psi}$ by this isomorphism. Let L be a finite separable extension of K. The trace map $\mathrm{Tr}_{L/K}:L\to K$ induces the map $$\begin{split} \operatorname{Tr}^*_{L/K}: \operatorname{ACh}(K^{[m,-n-1]},R) \to \\ \operatorname{ACh}(L^{[-e_{L/K}m-v_L(D_{L/K}),-e_{L/K}n-v_L(D_{L/K})-1]},R). \end{split}$$ We denote by $\widetilde{\psi} \circ \operatorname{Tr}_{L/K}$ the image of $\widetilde{\psi}$ by this map. We have $\operatorname{ord}(\widetilde{\psi} \circ \operatorname{Tr}_{L/K}) = e_{L/K}\operatorname{ord}\widetilde{\psi} + v_L(D_{L/K})$. **Lemma 4.2.** Let k be a perfect field of characteristic p, and $G = \mathbb{G}_{a,k}$ be the additive group scheme over k, $\phi_0 : \mathbb{F}_p \to R_0^{\times}$ a non-trivial additive character, and \mathcal{L}_{ϕ_0} the Artin-Schreier sheaf on $\mathbb{G}_{a,\mathbb{F}_p}$ associated to ϕ_0 . Then for any additive character sheaf \mathcal{L} on G, there exists a unique element $a \in k$ such that \mathcal{L} is isomorphic to the pull-back of $\mathcal{L}_{\phi_0}|_G$ by the multiplication-by-a map $G \to G$. *Proof.* This follows from Lemma 3.8 and [6, 8.3, Prop. 3]. Corollary 4.3. Let K be a p-local field and R a complete strict p'-coefficient ring with a positive residue characteristic. Then for any non-trivial continuous additive character $\psi: K \to R^{\times}$ of conductor n. Then there exists a unique non-trivial additive character R-sheaf $\widetilde{\psi}$ of conductor n such that for any $a \in K$ with $v_K(a) < -n - 1$, we have $$\psi(a) = \operatorname{Tr}(\operatorname{Fr}_{\overline{a}}; \widetilde{\psi}|_{K^{[v_K(a), -n-1]}}),$$ where \bar{a} is the k-rational point of $K^{[v_K(a),-n-1]}$ corresponding to a. Furthermore, $\psi \mapsto \widetilde{\psi}$ gives a one-to-one correspondence between the non-trivial continuous R-valued additive characters of K of conductor n and the non-trivial additive character R-sheaves of conductor n. Proof. The only non-trivial part is the existence of the sheaf $\widetilde{\psi}$. When char K=p, take a non-trivial additive character $\phi_0: \mathbb{F}_p \to R_0^{\times}$ with values in a pro-finite local subring R_0 . Then there exists a unique continuous 1-differential ω on K over k such that $\psi(x)=\phi_0(\operatorname{Tr}_{k/\mathbb{F}_p}\operatorname{Res}(x\omega))$ for all $x\in K$ (Here Res denotes the residue at the closed point of $\operatorname{Spec}\mathcal{O}_K$). Then for all m<-n-1, the map $x\mapsto \operatorname{Res}(x\omega)$ defines a morphism $f:K^{[m,-n-1]}\to \mathbb{G}_{a,k}$ of k-groups. The sheaf $\widetilde{\psi}|_{K^{[m,-n-1]}}$ is realized as the pull-back of the Artin-Schreier sheaf on $\mathbb{G}_{a,k}$ associated to ϕ_0 . When $\operatorname{char} K = 0$, fix a non-trivial continuous additive character $\psi_0 : \mathbb{Q}_p \to R^\times$ with $\operatorname{ord} \psi_0 = 0$. For each integer $n \geq 1$, let $\mathbb{Q}_p^{[-n,-1]}$ is canonically isomorphic to the group of Witt covectors CW_{n,\mathbb{F}_p} of length n. Then the morphism $1 - F : CW_{n,\mathbb{F}_p} \to CW_{n,\mathbb{F}_p}$ and the character ϕ_0 defines a non-trivial additive character R-sheaf $\widetilde{\psi}_0$ of conductor 0. There exists a unique element $a \in K^\times$ such that $\psi(x) = \psi_0(\operatorname{Tr}_{K/\mathbb{Q}_p}(ax))$ for all x. Then the sheaf $\widetilde{\psi}$ is realized as $(\widetilde{\psi}_0 \circ \operatorname{Tr}_{K/\mathbb{Q}_p})_a$. Corollary 4.4. Let K be a p-CDVF with a residue field k. (1) Suppose that char K = 0. Let $K_0 = \operatorname{Frac} W(k)$ the maximal absolutely unramified subfield of K and let $K_{00} = \operatorname{Frac} W(\mathbb{F}_p)$. Fix a non-trivial additive character sheaf $\widetilde{\psi}_0$ on K_{00} . Then for any non-trivial additive character sheaf $\widetilde{\psi}$ on K, there exists a unique element $a \in K^{\times}$ with $$v_K(a) = \operatorname{ord} \widetilde{\psi} - v_L(D_{K/K_0}) - e_{K/K_0} \cdot \operatorname{ord} \widetilde{\psi}_0$$ such that for all $m \in \mathbb{Z}$ with $m \leq \operatorname{ord} \widetilde{\psi}_0 - 1$, the sheaf $$\widetilde{\psi}|_{K^{[me_{K/K_0}+e_{K/K_0}\cdot\operatorname{ord}\widetilde{\psi}_0-\operatorname{ord}\widetilde{\psi},-\operatorname{ord}\widetilde{\psi}-1]}}$$ is the pull-back of $\widetilde{\psi}_0$ by the morphism $$\begin{split} K^{[me_{K/K_0}+e_{K/K_0}\cdot\operatorname{ord}\widetilde{\psi}_0-\operatorname{ord}\widetilde{\psi},-\operatorname{ord}\widetilde{\psi}_-1]} \\ \xrightarrow{a} \quad K^{[-v_L(D_{K/K_0})+me_{K/K_0},-v_L(D_{K/K_0})-e_{K/K_0}\cdot\operatorname{ord}\widetilde{\psi}_0-1]} \\ \xrightarrow{\operatorname{Tr}_{K/K_0}} \quad K_0^{[m,-\operatorname{ord}\widetilde{\psi}_0-1]} \to K_{00}^{[m,-\operatorname{ord}\widetilde{\psi}_0-1]}. \end{split}$$ (2) If char K = p > 0, take a prime element π_K in K and set $K_{00} = \mathbb{F}_p((\pi_K))$. Fix a non-trivial additive character sheaf $\widetilde{\psi}_0$ on K_{00} . Then for any non-trivial additive character sheaf $\widetilde{\psi}$ on K, there exists a unique element $a \in K^{\times}$ with $v_K(a) = \operatorname{ord} \psi - \operatorname{ord} \psi_0$ such that for all $m \in \mathbb{Z}$ with $m \leq -\operatorname{ord} \widetilde{\psi}_0 - 1$, the sheaf $$\widetilde{\psi}|_{K^{[m+\operatorname{ord}\widetilde{\psi}_0-\operatorname{ord}\psi,-\operatorname{ord}\widetilde{\psi}-1]}}$$ is the pull-back of $\widetilde{\psi}_0$ by the morphism $$K^{[m+\operatorname{ord} \widetilde{\psi}_0-\operatorname{ord} \psi,-\operatorname{ord} \widetilde{\psi}-1]} \xrightarrow{a} K^{[m,-\operatorname{ord} \widetilde{\psi}_0-1]} \to K^{[m,-\operatorname{ord} \widetilde{\psi}_0-1]}_{00}.$$ **4.2.** A map from the Brauer group. There is a canonical map ∂ : $Br(K) \to H^1(k, \mathbb{Q}/\mathbb{Z})$. Let us recall its definition: we have $$Br(K) = \bigcup_{I} Br(L/K),$$ where L runs over all unramified finite Galois extension of K in a fixed separable closure of K and $Br(L/K) := Ker(Br(K) \to Br(L))$. We define ∂ to be the composition $$Br(K) \xrightarrow{\cong} \varinjlim_{L,\operatorname{Inf}} H^2(\operatorname{Gal}(L/K), L^{\times}) \to \varinjlim_{L,\operatorname{Inf}} H^2(\operatorname{Gal}(L/K), \mathbb{Z})$$ $$\xrightarrow{\cong} \varinjlim_{L,\operatorname{Inf}} H^1(\operatorname{Gal}(L/K), \mathbb{Q}/\mathbb{Z}) \xrightarrow{\cong} H^1(k, \mathbb{Q}/\mathbb{Z}).$$ By local class field theory, the following lemma holds. **Lemma 4.5.** Suppose that k is finite. Then the invariant map inv : $Br(K) \xrightarrow{\cong} \mathbb{Q}/\mathbb{Z}$ of local class field theory is equal to the composition $$Br(K) \xrightarrow{\partial} H^1(k, \mathbb{Q}/\mathbb{Z}) \xrightarrow{ev} \mathbb{Q}/\mathbb{Z}$$ where $ev: H^1(k, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\cong} \mathbb{Q}/\mathbb{Z}$ denotes the evaluation map at Fr_k . Ш Let $\chi:W_K\to R^\times$ be a character of W_K of finite order n, and let $a\in K^\times$. Take a generator $\zeta\in R^\times$ of $\mathrm{Im}\,\chi$. Let L be the finite cyclic extension of K corresponding to $\mathrm{Ker}\,\chi$, Let $\sigma\in\mathrm{Gal}(L/K)$ be the generator of $\mathrm{Gal}(L/K)$ such that $\chi(\sigma)=\zeta$. Then the cyclic algebra $(a,L/K,\sigma)$ defines an element $[(a,L/K,\sigma)]$ in ${}_nBr(K)$. We identify $H^1(k,\mathbb{Z}/n\mathbb{Z})$ with $\mathrm{Hom}(G_k,\pmb{\mu}_n(\overline{\mathbb{Q}}_\ell))$ by the isomorphism $\mathbb{Z}/n\mathbb{Z}\to\pmb{\mu}_n(R)$, $1\mapsto \zeta$, and regard $\partial_n([(a,L/K,\sigma)])$ as a character of G_k of finite order. This character does not depend on the choice of ζ , and is denoted by $\chi_{[a]}:G_k\to R^\times$. It is well-known that $(\chi,a)\mapsto \chi_{[a]}$ is biadditive with respect to χ and a. If R' is another complete strict p'-coefficient ring and if $h:R\to R'$ is a local homomorphism, then we have $\chi_{[a]}\otimes_R R'\cong (h\circ\chi)_{[a]}$. Corollary 4.6. Suppose that k is finite. Let χ be a character of G_K of finite order, and let $a \in K^{\times}$. Then we have $$\chi_{[a]}(\operatorname{Fr}) = \chi(\operatorname{rec}(a)).$$ The following lemma is easily proved: **Lemma 4.7.** Let $\chi: W_K \to R^{\times}$ be an unramified character of W_K of finite order. Then, for $a \in K^{\times}$, we have $\chi_{[a]} = \chi^{\otimes v_K(a)}$. Let $\chi: W_K \to R^{\times}$ be an arbitrary character of W_K . Then there exists an unramified character χ_1 and a character χ_2 such that $\chi_2 \mod \mathfrak{m}_R^n$ is of finite order for all $n \in \mathbb{Z}_{>0}$ and that $\chi = \chi_1 \otimes_R \chi_2$. For $a \in K^{\times}$ define $\chi_{[a]}: W_k \to R^{\times}$ by $$\chi_{[a]} := \chi_1^{\otimes v_K(a)} \otimes_R (\varprojlim_n (\chi_2 \mod \mathfrak{m}_R^n)_{[a]}).$$ This does not depend on the choice of χ_1 and χ_2 . By definition, we have $\chi_{[aa']} \cong \chi_{[a']} \otimes_R \chi_{[a']}$ and $(\chi \otimes_R \chi')[a] \cong \chi_{[a]} \otimes_R \chi'_{[a]}$. **Lemma 4.8.** If $a \in 1 + \mathfrak{m}_K$, then the character $\chi_{[a]}$ is finite of a p-power order. Proof. We may assume that $\chi \mod \mathfrak{m}_R^n$ is of finite order for all $n \in \mathbb{Z}_{>0}$. Let L_n be the finite cyclic extension of K corresponding to $\operatorname{Ker}(\chi \mod \mathfrak{m}_R^n)$. There exists a p-power N such that $a^N \in 1 + \mathfrak{m}_K^{\operatorname{sw}(\chi)}$. Since $1 + \mathfrak{m}_K^{\operatorname{sw}(\chi)}$ is contained in $\operatorname{N}_{L_n/K}(L_n^{\times})$, the character $\chi_{[a^N]}$ is trivial. This completes the proof. **4.3. Serre-Hazewinkel's geometric class field theory.** For any
finite separable extension L of K, let U_L , $U_{L,n}$, and $U_L^{(n)}$ denote the affine commutative k-group schemes which represent the functors which associate to each k-algebra A the multiplicative group $(R_A \widehat{\otimes}_{R_k} \mathcal{O}_L)^{\times}$, $(R_A \otimes_{R_k} \mathcal{O}_L/\mathfrak{m}_L^n)^{\times}$, and $\operatorname{Ker}[(R_A \widehat{\otimes}_{R_k} \mathcal{O}_L)^{\times} \to (R_A \otimes_{R_k} \mathcal{O}_L/\mathfrak{m}_L^n)^{\times}]$, respectively. Let L be a totally ramified finite abelian extension of K. Then the homomorphism $U_L \to U_K$ of affine k-groups induced by the norm is surjective, and if we denote by B the neutral component of is its kernel, then by [3, p. 659, 4.2] the kernel of the induced homomorphism $$U_L/B \to U_K$$ is canonically isomorphic to the constant k-group Gal(L/K). The isomorphism is realized as follows: take a prime element π of L, then for $\sigma \in \operatorname{Gal}(L/K)$, $\sigma(\pi)/\pi$ defines an element of $U_L(k)$ of norm 1. Since the image of $\sigma - 1 : U_L \to U_L$ is connected, the class of $\sigma(\pi)/\pi$ in U_L/B does not depend on the choice of π , which we denote by $\operatorname{class}(\sigma)$. For $\sigma_1, \sigma_2 \in \operatorname{Gal}(L/K)$, it is easily checked that $\operatorname{class}(\sigma_1) \cdot \operatorname{class}(\sigma_2) = \operatorname{class}(\sigma_1\sigma_2)$. Hence $\sigma \mapsto \operatorname{class}(\sigma)$ defines a group homomorphism $\operatorname{Gal}(L/K) \to U_L/B$. Suppose further that L/K is cyclic. Let σ be a generator of Gal(L/K). Then, by Hilbert 90, B is equal to the image of $$1 - \sigma: U_L \to U_L.$$ **4.4.** Local $\widetilde{\varepsilon}_0$ -character for rank one objects. Let $\widetilde{\psi}$ be an additive character sheaf of K. Let $(R_0, \mathfrak{m}_{R_0})$ be a pro-finite local subring of R such that $R_0 \hookrightarrow R$ is a local homomorphism and that $\widetilde{\psi}$ is defined over R_0 . In this subsection we attach, for every rank one object (χ, V) in Rep (W_K, R_0) , a rank one object $\widetilde{\varepsilon}_{0,R}(V, \widetilde{\psi})$ in Rep (W_k, R) , which we call the *local* ε_0 -character of V. For each integer $m \in \mathbb{Z}$, let $K^{[m,\infty]}$ denote the affine k-scheme $\varprojlim_n K^{[m,n]}$. This represents the functor associating for any k-algebra A the set $R_A \widehat{\otimes}_{R_k} \mathfrak{m}_K^m$. Take a prime element π_K of K and let $\pi_K^{-m} : K^{[m,\infty]} \to K^{[0,\infty]}$ be the morphism defined by the multiplication by π_K^{-m} . The inverse image of $U_K \subset K^{[0,\infty]}$ by π_K^{-m} is an open subscheme of $K^{[m,\infty]}$ which we denote by $K^{v=m}$. This does not depend on the choice of π_K . For $m,n\in\mathbb{Z}$, the multiplication map defines a morphism $K^{v=n}\times K^{v=m}\to K^{v=m+n}$ of k-schemes. This defines a structure of commutative k-group scheme on the disjoint union $\coprod_m K^{v=m}$. There is a canonical exact sequence $$1 \to U_K \to \coprod_m K^{v=m} \to \mathbb{Z} \to 0,$$ where \mathbb{Z} is a constant k-group scheme. Now we shall define, for every rank one object χ in $\text{Rep}(W_K, R_0)$, a character sheaf \mathcal{L}_{χ} on $\coprod_m K^{v=m}$. (1) First assume that χ is unramified, let \mathcal{L}'_{χ} be the invertible R_0 -sheaf on Spec (k) corresponding to χ . Define an invertible R_0 -sheaf \mathcal{L}_{χ} on $\coprod_m K^{v=m}$ by $$\mathcal{L}_{\chi}|_{K^{v=m}} = \pi^{m,*} (\mathcal{L}'_{\chi})^{\otimes m},$$ where $\pi^m: K^{v=m} \to \operatorname{Spec}(k)$ is the structure morphism. It is easily checked that \mathcal{L}_{χ} is a character sheaf. - (2) Next assume that χ is a character of the Galois group of a finite separable totally ramified abelian extension L of K. Consider the norm map $\coprod_m L^{v=m} \to \coprod_m K^{v=m}$. It is surjective and the group of the connected components of its kernel is canonically isomorphic to $\operatorname{Gal}(L/K)$. Hence we have a canonical group extension of $\coprod_m K^{v=m}$ by $\operatorname{Gal}(L/K)$. Define \mathcal{L}_{χ} to be the character sheaf on $\coprod_m K^{v=m}$ defined by this extension and χ . - (3) Assume that χ is of finite order. Then χ is a tensor product $\chi = \chi_1 \otimes_{R_0} \chi_2$, where χ_1 is unramified and χ_2 is of the form in (2). Define \mathcal{L}_{χ} to be $\mathcal{L}_{\chi_1} \otimes_{R_0} \mathcal{L}_{\chi_2}$. Let L/K be a finite abelian extension such that χ factors through $\operatorname{Gal}(L/K)$. Let L_0 be the maximal unramified subextension of L/K. From the norm map $L^{v=1} \to L_0^{v=1}$ and the canonical morphism $L_0^{v=1} \cong K^{v=1} \otimes_k k_L \to K^{v=1}$, we obtain a canonical etale $\operatorname{Gal}(L/K)$ -torsor T on $K^{v=1}$. The following lemma is easily proved. **Lemma 4.9.** $\mathcal{L}_{\chi}|_{K^{v=1}}$ is isomorphic to the smooth R_0 -sheaf defined by T and χ . Corollary 4.10. The sheaf \mathcal{L}_{χ} does not depend on the choice of χ_1 and χ_2 . (4) General case. For each $n \in \mathbb{Z}_{>0}$, $\chi_n := \chi \mod \mathfrak{m}_{R_0}^n$ is a character of finite order. Define \mathcal{L}_{χ} to be $(\mathcal{L}_{\chi_n})_n$. **Corollary 4.11.** Let χ_1 , χ_2 be two rank one objects in $\operatorname{Rep}(W_K, R_0)$. Then we have an isomorphism $\mathcal{L}_{\chi_1 \otimes_{R_0} \chi_2} \cong \mathcal{L}_{\chi_1} \otimes_{R_0} \mathcal{L}_{\chi_2}$. **Lemma 4.12.** Let $s = \operatorname{sw}(\chi)$ be the Swan conductor of χ . Then the restriction of \mathcal{L}_{χ} to U_K is the pull-back of a character sheaf $\overline{\mathcal{L}}_{\chi}$ on $U_{K,s+1}$. Furthermore, if $s \geq 1$, the restriction of $\overline{\mathcal{L}}_{\chi} \otimes R_0/\mathfrak{m}_{R_0}$ to $U_K^{(s)}/U_K^{(s+1)}$ is non-trivial. *Proof.* We may assume that χ is of the form of (2). Let L be the finite extension of K corresponding to $\operatorname{Ker} \chi$, π_L a prime element in L. For the first (resp. the second) assertion, it suffices to prove that there does not exist (resp. there exists) $\sigma \in \operatorname{Gal}(L/K)$ with $\sigma \neq 1$ such that $\sigma(\pi_L)/\pi_L$ lies in the neutral component of the kernel of the map $U_L \xrightarrow{\operatorname{N}_{L/K}} U_K \to U_{K,s+1}$, which is easy to prove. **Lemma 4.13.** For $a \in K^{\times}$, let $\overline{a} : \operatorname{Spec}(k) \to U_K$ be the k-rational point of U_K defined by a. Then $\overline{a}^* \mathcal{L}_{\chi}$ is isomorphic to $\chi_{[a]}$. Proof. We may assume that χ is of the form of case (1) or (2). In case (1), The assertion follows from Lemma 4.7. In case (2), let L be the finite extension of K corresponding to $\ker \chi$. Take a generator $\sigma \in \operatorname{Gal}(L/K)$ and let us consider the cyclic algebra $(a, L/K, \sigma)$. This is isomorphic to a matrix algebra over a central division algebra $D = D_{(a,L/K,\sigma)}$ over K. The valuation of K is canonically extended to a valuation of D. Let \mathcal{O}_D denote the valuation ring of D, k_D the residue field of D. There is a maximal commutative subfield of D which is isomorphic (as a k-algebra) to a subextension of L/K. Since L/K is totally ramified, k_D is a commutative field. Let π_D be a prime element of D. The conjugation by π_D ; $x \mapsto \pi_D^{-1} x \pi_D$ defines an automorphism τ of k_D over k. It is checked that the fixed field of τ is equal to k. Hence k_D/k is a cyclic extension whose Galois group is generated by τ . Let K_D is the unramified extension of K corresponding to k_D/k . Then $D \otimes_K K_D$ is split. Hence there exists an element $b \in (\mathcal{O}_{LK_D})^\times$ such that $a = N_{LK_D/K_D}(b)$. Consider the following commutative diagram: $$1 \longrightarrow (K_D)^{\times} \longrightarrow GL_n(K_D) \longrightarrow PGL_n(K_D) \longrightarrow 1$$ $$\downarrow v_{K_D} \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0.$$ By [9, X, § 5], $(a, L/K, \sigma)$ gives a canonical element in $H^1(Gal(K_D/K), PGL_n(K_D))$ whose image by the canonical map $$H^1(\operatorname{Gal}(K_D/K), PGL_n(K_D)) \to H^1(\operatorname{Gal}(K_D/K), \mathbb{Q}/\mathbb{Z}) \xrightarrow{\operatorname{Inf}} H^1(k, \mathbb{Q}/\mathbb{Z})$$ is equal to $\partial([(a, L/K, \sigma)])$. By definition, $(a, L/K, \sigma) = \bigoplus_{i=0}^{n-1} L \cdot \alpha^i$ with $\alpha^n = a$, $\alpha x = \sigma(x)\alpha$ for $x \in K$. Let $\iota : LK_D \hookrightarrow \operatorname{End}_{K_D}(LK_D)$ be the canonical homomorphism. Let $\varphi : (a, L/K, \sigma) \otimes_K K_D \cong \operatorname{End}_{K_D}(LK_D)$ be the K_D -algebra isomorphism defined by $\varphi(x) = \iota(x)$ for $x \in LK_D$ and by $\varphi(\alpha) = \iota(b) \cdot \sigma$. It is easily checked that the composition $$\tau \circ \varphi \circ \tau^{-1} \circ \phi^{-1} : \operatorname{End}_{K_D}(LK_D) \xrightarrow{\varphi^{-1}} (a, L/K, \sigma) \otimes_K K_D$$ $$\xrightarrow{\tau^{-1}} (a, L/K, \sigma) \otimes_K K_D$$ $$\xrightarrow{\varphi} \operatorname{End}_{K_D}(LK_D) \cong \operatorname{End}_K(L) \otimes_K K_D$$ $$\xrightarrow{\tau} \operatorname{End}_K(L) \otimes_K K_D \cong \operatorname{End}_{K_D}(LK_D)$$ is a K_D -algebra automorphism which is identity on $\iota(LK_D)$ and which sends σ to $\frac{\tau(b)}{b}\sigma$. By Skolem-Noether theorem, there exists an element $c \in LK_D^{\times}$ such that $\frac{\tau(b)}{b} = \frac{\sigma(c)}{c}$ and that $\tau \circ \varphi \circ \tau^{-1} \circ \phi^{-1}$ is the conjugation by $\iota(c)$. Then $\chi_{[a]}$ is the inflation of the character of $\operatorname{Gal}(k_D/k)$ which sends τ to
$\zeta^{v_{LK_D}(c)}$. Hence the assertion follows. Let $s = \operatorname{sw}(\chi)$ be the Swan conductor of χ and set $m = -s - \operatorname{ord} \widetilde{\psi} - 1$. Then the character $\widetilde{\psi}$ defines an invertible character R_0 -sheaf $\widetilde{\psi}^{[m,-\operatorname{ord}\widetilde{\psi}-1]}$ on $K^{[m,-\operatorname{ord}\psi-1]}$. The sheaf \mathcal{L}_{χ} is a pull-back of a character sheaf $\overline{\mathcal{L}}_{\chi}$ on $\coprod_{m'} K^{v=m'}/U_K^{(s+1)}$. Let $$i: K^{v=m}/U_K^{(s+1)} \hookrightarrow K^{[m, -\operatorname{ord} \widetilde{\psi} - 1]}$$ be the canonical inclusion and let $f: K^{v=m}/U_K^{(s+1)} \to \operatorname{Spec}(k)$ be the structure morphism. Define the $\widetilde{\varepsilon}_0$ -character $\widetilde{\varepsilon}_{0,R}(\chi,\widetilde{\psi})$ to be the rank one object in $\operatorname{Rep}(W_k,R)$ corresponding to the invertible R_0 -sheaf $$\widetilde{\varepsilon}_{0,R}(\chi,\widetilde{\psi}) = \det_{R_0} (Rf_!((\overline{\mathcal{L}}_{\chi}|_{K^{v=m}/U_K^{(s+1)}})^{\otimes -1} \otimes_{R_0} i^*\widetilde{\psi}^{[m,-\operatorname{ord}\widetilde{\psi}-1]})[s+1](\operatorname{ord}\widetilde{\psi})).$$ Here [] denotes a shift in the derived category and () is a Tate twist. ## Proposition 4.14. Let $$\mathcal{F} := (\overline{\mathcal{L}}_{\chi}|_{K^{v=m}/U_K^{(s+1)}})^{\otimes -1} \otimes_{R_0} i^* \widetilde{\psi}^{[m, -\operatorname{ord} \widetilde{\psi} - 1]}).$$ - (1) Suppose that s = 0. Then $R^i f_! \mathcal{F} = 0$ for $i \neq 1$ and $R^i f_! \mathcal{F}$ is an invertible R-sheaf on $\operatorname{Spec}(k)$. - (2) Suppose that s = 2b 1 is odd and ≥ 1 . Let $f' : K^{v=m}/U_K^{(s+1)} \to K^{v=m}/U_K^{(b)}$ be the canonical morphism. Then $R^i f'_! \mathcal{F} = 0$ for $i \neq 2b$ and there exists a k-rational point P in $K^{v=m}/U_K^{(b)}$ such that $R^{2b} f_! \mathcal{F}$ is supported on P whose fiber is free of rank one. - (3) Suppose that s=2b is even and ≥ 2 . Let $f': K^{v=m}/U_K^{(s+1)} \to K^{v=m}/U_K^{(b+1)}$ be the canonical morphism. Then $R^i f'_! \mathcal{F} = 0$ for $i \neq 2b-2$ and there exists a k-rational point P in $K^{v=m}/U_{K,b}$ such that $R^{2b-2} f_! \mathcal{F}$ is supported on the fiber $A \cong \mathbb{A}^1_k$ at P by the canonical morphism $$K^{v=m}/U_K^{(b+1)} \to K^{v=m}/U_K^{(b)}$$ and that $R^{2b-2}f_!\mathcal{F}|_A$ is a smooth invertible R-sheaf on A, whose swan conductor at infinity is equal to 2. *Proof.* The assertions (1) and (2) are easy and their proofs are left to the reader. We will prove (3). We may assume that k is algebraically closed. For any closed point Q in $K^{v=m}/U_K^{(s+1)}$, the pull-back of \mathcal{F} by the multiplication-by-Q map $$U_K^{(b+1)}/U_K^{(s+1)} \hookrightarrow K^{v=m}/U_K^{(s+1)}$$ is an invertible character R_0 -sheaf, which we denote by \mathcal{L}_Q . There exists a unique k-rational point P in $K^{v=m}/U_K^{(b)}$ such that \mathcal{L}_Q is trivial if and only if Q lies in the fiber $A \cong \mathbb{A}^1_k$ at P by the canonical morphism $K^{v=m}/U_K^{(b+1)} \to K^{v=m}/U_K^{(b)}$. By the orthogonality relation of character sheaves, $R^i f_!^i \mathcal{F} = 0$ for $i \neq 2b-2$, $R^{2b-2} f_! \mathcal{F}$ is supported on A and $\mathcal{G} = R^{2b-2} f_! \mathcal{F}|_A$ is a smooth invertible R-sheaf on A. Take a closed point P_0 in $A \subset K^{v=m}/U_K^{(b+1)}$ and identify A with $U_K^{(b)}/U_K^{(b+1)} \cong \mathbb{G}_{a,k}$ by P_0 . The sheaf \mathcal{G} is has the following property: there exists a non-trivial invertible character sheaf \mathcal{L}_1 on $\mathbb{G}_{a,k}$ such that $\mathcal{G} \boxtimes \mathcal{G} \cong \alpha^* \mathcal{G} \otimes \mu^* \mathcal{L}_1$, where $\alpha, \mu : \mathbb{G}_{a,k} \times \mathbb{G}_{a,k} \to \mathbb{G}_{a,k}$ denote the addition map and the multiplication map respectively. If $p \neq 2$, then let $f: \mathbb{G}_{a,k} \to \mathbb{G}_{a,k}$ denote the map defined by $x \mapsto \frac{x^2}{2}$. Then $\mathcal{G} \otimes f^*\mathcal{L}_1$ is an invertible character sheaf on $\mathbb{G}_{a,k}$. Hence the swan conductor of \mathcal{G} at infinity is equal to 2. It remains to consider the case p=2. Let $W_{2,k}$ be the k-group of Witt vectors of length two. Let \mathcal{G}' be the invertible sheaf on $W_{2,k}$ defined by $\mathcal{G}'=a_0^*\mathcal{G}\otimes a_1^*\mathcal{L}$, where $a_i:W_{2,k}\to\mathbb{G}_{a,k}$ are k-morphisms defined by $(x_0,x_1)\mapsto x_i$. Then the sheaf \mathcal{G}' is an invertible character sheaf on $W_{2,k}$. There exists an element $a \in W_2(k)^{\times}$ such that the pull-back $a^*\mathcal{G}'$ of \mathcal{G}' by the multiplication-by-a map is trivial on the finite etale covering $1-F:W_{2,k}\to W_{2,k}$ of $W_{2,k}$. Since \mathcal{G} is isomorphic to the pull-back of \mathcal{G}' by the Teichmüller map $\mathbb{G}_{a,k}\to W_{2,k}$, the assertion of the lemma follows from direct computation. **Lemma 4.15.** For $a \in K^{\times}$, we have $$\widetilde{\varepsilon}_{0,R}(\chi,\widetilde{\psi}_a) = \chi_{[a]} \otimes_R \widetilde{\varepsilon}_{0,R}(\chi,\widetilde{\psi}_a) \otimes_R R(v_K(a)).$$ *Proof.* It follows from Lemma 4.13. **4.5.** $\widetilde{\lambda}_R$ -characters. Let L be a finite separable extension, and $\widetilde{\psi}$ an additive character sheaf on K. Let $V = \operatorname{Ind}_{W_L}^{W_K} 1 \in \operatorname{Rep}(W_K, R)$, and $V_{\mathbb{C}} = \operatorname{Ind}_{W_L}^{W_K} 1 \in \operatorname{Rep}(W_K, \mathbb{C})$. Since $V_{\mathbb{C}}^0 + \det V_{\mathbb{C}} - ([L:K]+1)1_{\mathbb{C}}$ is an real virtual representation of W_K of virtual rank 0, we can define a canonical element $$\operatorname{sw}_2(V_{\mathbb{C}}^0) \in {}_2Br(K)$$ as in [2, 1.4.1]. Let $\mathrm{sw}_{2,R}(V^0_{\mathbb{C}})$ be the rank one object in $\mathrm{Rep}(W_k,R)$ induced by $\partial_2(\mathrm{sw}_2(V^0_{\mathbb{C}})) \in H^1(k,\mathbb{Z}/2\mathbb{Z})$ and the map $\mathbb{Z}/2\mathbb{Z} \to R^\times$, $n \mapsto (-1)^n$. Next we define $\widetilde{\varepsilon}_R(\det V, \widetilde{\psi})$. When $\det V$ is unramified, we denote by the same symbol $\det V$ the rank one object in $\operatorname{Rep}(W_k, R)$ corresponding to $\det V$ and set $\widetilde{\varepsilon}_R(\det V, \widetilde{\psi}) := (\det V)^{\otimes \operatorname{rd} \widetilde{\psi}} \otimes_R R(-\operatorname{ord} \widetilde{\psi})$. When $\det V$ is not unramified, we set $\widetilde{\varepsilon}_R(\det V, \widetilde{\psi}) := \widetilde{\varepsilon}_{0,R}(\det V, \widetilde{\psi})$. **Definition 4.16.** Define the rank one object $\widetilde{\lambda}_R(L/K, \widetilde{\psi})$ in $\operatorname{Rep}(W_k, R)$ by $$\begin{split} \widetilde{\lambda}_R(L/K,\widetilde{\psi}) := & \quad \operatorname{sw}_{2,R}(V_{\mathbb{C}}^0) \otimes_R \widetilde{\varepsilon}_R(\det V,\widetilde{\psi})^{\otimes -1} \otimes_R \det(\operatorname{Ind}_{W_{k_L}}^{W_k} 1) \\ & \quad \otimes_R R\left(\frac{1}{2}(v_{L/K}(d_{L/K}) - a(\det V_{\mathbb{C}})) - \operatorname{ord} \widetilde{\psi}\right), \end{split}$$ where $a(\det V_{\mathbb{C}})$ is the Artin conductor of $\det V_{\mathbb{C}}$. The following lemma is easily checked: **Lemma 4.17.** Suppose that k is finite. Let $\psi : K \to R^{\times}$ be the additive character corresponding to $\widetilde{\psi}$. Then we have $$\widetilde{\lambda}_R(L/K,\widetilde{\psi})(\operatorname{Fr}_k) = (-1)^{v_K(d_{L/K}) + f_{L/K} + 1} \lambda_R(L/K,\psi).$$ **4.6.** Local $\tilde{\varepsilon}_0$ -characters of representations of G_K whose images are finite. Let R be an algebraically closed field of positive characteristic $\neq p$. In this subsection we shall define, for an object (ρ, V) in $\text{Rep}(W_K, R)$ such that $\text{Im } \rho$ is finite, a rank one object $\tilde{\varepsilon}_{0,R}(V, \tilde{\psi})$ in $\text{Rep}(W_k, R)$, which is called the $local \tilde{\varepsilon}_0$ -character of V. Let L be the finite Galois extension of K corresponding to the kernel of ρ and let $G = \operatorname{Gal}(L/K)$. By Brauer's theorem for modular representations (cf. [8]), there exist subgroups H_1, \dots, H_m of G, characters χ_1, \dots, χ_m of H_1, \dots, H_m and integers $n_1, \dots, n_m \in \mathbb{Z}$ such that $\rho = \sum_i n_i \operatorname{Ind}_{H_i}^G \chi_i$ as a virtual representation of G over R. Let K_i be the subextension of L/K corresponding to H_i . Define $\widetilde{\varepsilon}_{0,R}(V,\psi)$ by $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) = \bigotimes_{i} (\widetilde{\varepsilon}_{0,R}(\chi_{i},\widetilde{\psi} \circ \operatorname{Tr}_{K_{i}/K}) \otimes \widetilde{\lambda}_{R}(K_{i}/K,\widetilde{\psi}))^{\otimes n_{i}}.$$ **Lemma 4.18.** The sheaf $\tilde{\varepsilon}_{0,R}(V,\tilde{\psi})$ does not depend on the choice of H_i , χ_i and n_i . A proof of this lemma is given in the next two subsections. The following two lemmas are easily proved. **Lemma 4.19.** Let χ be an unramified rank one object in $Rep(W_K, R)$ of finite order. Then $$\widetilde{\varepsilon}_{0,R}(V \otimes \chi,\widetilde{\psi}) \cong \widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) \otimes_R \chi^{\otimes \mathrm{sw}(V) + \mathrm{rank}\, V \cdot (\mathrm{ord}\, \widetilde{\psi} + 1)}.$$ Lemma 4.20. Let $$0 \to V' \to V \to V'' \to 0$$ be a short exact sequence of objects in $Rep(W_K, R)$ with finite images. Then we have $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) \cong \widetilde{\varepsilon}_{0,R}(V',\widetilde{\psi}) \otimes \widetilde{\varepsilon}_{0,R}(V'',\widetilde{\psi}).$$ **4.7.** A-structures. For any ring A of characteristic p, let R_A denote W(A) (resp. A) if K is of mixed characteristic (resp. of equal characteristic). When A is a subring of k, we regard R_A as a subalgebra of \mathcal{O}_K in canonical way. If char K=0, a prime element π_K of K is called A-admissible if the minimal polynomial of π_K over Frac W(k) has coefficients in R_A and has the constant
term in pR_A^{\times} . If char K = p, any prime element π_K of K is called A-admissible. **Lemma 4.21.** For any prime element π'_K of K and for any positive integer $N \in \mathbb{Z}_{>0}$, there exists a finitely generated \mathbb{F}_p -subalgebra $A \subset k$ and an A-admissible prime element π_K of K congruent to π'_K modulo \mathfrak{m}_K^N . Before proving this lemma, we prove the following lemma: **Lemma 4.22.** Let K be a p-CDVF, and $f(T) \in \mathcal{O}_K[T]$ a polynomial. Suppose that $x_0 \in \mathcal{O}_K$ satisfies $f'(x_0) \neq 0$ and $f(x_0) \in \mathfrak{m}_K^{2v_K(f'(x_0))+1}$. Then there exists a unique element x in \mathcal{O}_K such that $x \equiv x_0 \mod \mathfrak{m}_K^{v_K(f'(x))+1}$ and that f(x) = 0. Moreover we have $v_K(f'(x)) = v_K(f'(x_0))$. *Proof.* We prove the lemma using induction. Put $v = v_K(f'(x_0))$. It suffices to prove the following statement: If n > 2v and if an element $y_0 \in \mathcal{O}_K$ satisfies $y_0 \equiv x_0 \mod \mathfrak{m}_K^{v+1}$. and $f(y_0) \in \mathfrak{m}_K^n$, then there exists an element $y \in \mathcal{O}_K$ satisfying $y \equiv y_0 \mod \mathfrak{m}_K^{n-v}$ and $f(y) \in \mathfrak{m}_K^{n+1}$. Furthermore, the class of such $y \mod \mathfrak{m}_K^{n-v+1}$ is unique. Since $y_0 \equiv x_0 \mod \mathfrak{m}_K^{v+1}$, we have $$f'(y_0) \equiv f'(x_0) \not\equiv 0 \mod \mathfrak{m}_K^{v+1}.$$ Hence $\frac{f(y_0)}{f'(y_0)}$ is an element in \mathfrak{m}_K^{n-v} . Then the polynomial $f(y_0 + \frac{f(y_0)}{f'(y_0)}T)$ is congruent to f(x) + f(x)T modulo \mathfrak{m}_K^{n+1} . Hence the assertion follows. \square Proof of Lemma 4.21. We may assume that char K=0. Take an arbitrary prime element π_K' of K. Let $f(T)=T^e+\sum_{i=0}^{e-1}a_iT^i$ be the minimal polynomial of π_K over $K_0=\operatorname{Frac} W(k)$. Set $M=\max\{N,v_K(D_{K/K_0})+1\}$. For each i, write $a_i\in W(k)$ as the form of a Witt vector $a_i=(0,a_{i,1},a_{i,2},\ldots)$. Define $a_i'\in W(k)$ by $a_i'=(0,a_{i,1},\ldots,a_{i,M+v_K(D_{K/K_0})},0,\ldots)$ and let $g(T)=T^e+\sum_{i=0}^{e-1}a_i'T^i$. By Lemma 4.22, there exists a root π_K of g(T) such that $\pi_K\equiv\pi_K'\mod\mathfrak{m}_K^M$. Let A be the \mathbb{F}_p -subalgebra of k generated by $${a_{i,j}; 0 \le i \le e-1, 1 \le j \le M + v_K(D_{K/K_0})} \cup {a_{0,1}^{-1}}.$$ Then π_K is A-admissible. For an A-admissible prime element π_K of K, let \widetilde{R}_{A,π_K} denote the subalgebra $R_A[[\pi_K]]$ of \mathcal{O}_K . There exists a canonical morphism $\widetilde{R}_{A,\pi_K} \to A$. The following lemma is easily checked: - **Lemma 4.23.** (1) Let any $n \in \mathbb{Z}_{>0}$, $x \in \widetilde{R}_{A,\pi_K} \cap \mathfrak{m}_K^n$, and $y \in k$ the class of $\frac{x}{\pi_K^n}$. Then there exists a positive integer m satisfying $y^{p^m} \in A$. - (2) An element in \widetilde{R}_{A,π_K} is invertible if and only if its canonical image in A is invertible. - (3) If A is perfect, then $\widetilde{R}_{A,\pi_K} \cap \mathfrak{m}_K^n = \pi_K^n \cdot \widetilde{R}_{A,\pi_K}$. In a manner similar to that in the proof of Lemma 4.22, we have: **Lemma 4.24.** Let $f(T) \in \widetilde{R}_{A,\pi_K}[T]$ be a polynomial. Let v be a positive integer. Suppose that $x_0 \in \widetilde{R}_{A,\pi_K}$ satisfies $f'(x_0) \in \pi_K^v(\widetilde{R}_{A,\pi_K})^{\times}$ and $f(x_0) \in \pi_K^{2v+1}\widetilde{R}_{A,\pi_K}$. Then there exists a unique element x in \widetilde{R}_{A,π_K} such that $x \equiv x_0 \mod \pi_K^{v+1}\widetilde{R}_{A,\pi_K}$ and that f(x) = 0. Furthermore we have $f'(x) \in \pi_K^v(\widetilde{R}_{A,\pi_K})^{\times}$. Let $m, n \in \mathbb{Z}$ be two integers with $m \leq n$. When char K = p, let $\widetilde{R}_{A,\pi_K}^{[m,n]}$ denote the affine A-group scheme which associates to any A-algebra A' the group $$\{\sum_{i=m}^{n} a_i \pi_K^i \; ; \; a_i \in A'\}.$$ There exists a canonical isomorphism of k-groups $\widetilde{R}_{A,\pi_K}^{[m,n]} \otimes_A k \cong K^{[m,n]}$. When char K=0, let $K_0=\operatorname{Frac} W(k)$ and $e=[K:K_0]$. Let $\widetilde{R}_{A,\pi_K}^{[m,n]}$ denote the affine A-group scheme which associates to any A-algebra A' the group $$\bigoplus_{i=0}^{e-1} W_{1+\left\lfloor \frac{n-m-i}{e} \right\rfloor}(A').$$ Then the multiplication by π_K^{-m} induces a canonical isomorphism of k-groups $\widetilde{R}_{A,\pi_K}^{[m,n]}\otimes_A k\cong K^{[m,n]}$. **Definition 4.25.** Let L be a finite separable totally ramified extension of K of degree d. Let A be a subring of k, π_K an A-admissible prime element. A prime element π_L of L is called (A, π_K) -admissible over K if the minimal monic polynomial $f(T) \in \mathcal{O}_K[T]$ of π_L satisfies the following two conditions: - $f(T) \in T^d + \pi_K \widetilde{R}_{A,\pi_K}[T]$ and $f(0) \in \pi_K(\widetilde{R}_{A,\pi_K})^{\times}$. - Set $f(\pi_L + T) = T^d + \sum_{i=1}^{d-1} a_i T^i$. For each i, let $b_i = N_{L/K}(a_i)$ and $v_i = v_K(b_i)$. Then for any i such that $(i, v_K(a_i))$ is a vertex of the Newton polygon of $f(\pi_L + T)$, $b_i \in \pi_K^{v_i}(\widetilde{R}_{A,\pi_K})^{\times}$. **Definition 4.26.** Let L/K be a finite Galois extension. Let L_0 be the maximal unramified subextension of L/K. A pre A-structure of L/K consists of the following data (π_K, B, π_L) : - π_K is an A-admissible prime element in K. - B is a finite etale A-subalgebra of k_L such that $B \otimes_A k \cong k_L$. - π_L is a prime element of L which is (B, π_K) -admissible over L_0 such that all $\operatorname{Gal}(L/K)$ -conjugates of π_L belong to $\pi_L(\widetilde{R}_{B,\pi_L})^{\times}$. **Definition 4.27.** An \mathbb{F}_p -algebra A is good perfect if A is isomorphic to the perfection of a smooth \mathbb{F}_p -algebra. **Lemma 4.28.** For any finite Galois extension L/K as above, there exists a good perfect \mathbb{F}_p -subalgebra A of k and a pre A-structure (π_K, B, π_L) of L/K. Proof. By Lemma 4.21, there exists a subring A_1 of k which is finitely generated over \mathbb{F}_p and an A_1 -admissible prime element π_K of K. Since k_L is a finite separable extension of k, there exists a monic polynomial $g(T) \in k[T]$ such that $k_L \cong k[T]/(g(T))$ as a k-algebra. Let A_2 be the subring of k obtained by adjoining all coefficients of g(T) and by inverting the discriminant of g(T). Then there exists a finite etale A_2 -subalgebra B_2 of k_L such that $B_2 \otimes_{A_2} k \cong k_L$. By Lemma 4.22, there exist a finitely generated B_2 -subalgebra B_3 of k_L and a prime element π_L of L such that the minimal polynomial $f(T) \in L[T]$ of π_L over L_0 has coefficients in $\widetilde{R}_{B_3,\pi_K}$. There exists a finitely generated B_3 -subalgebra B_4 of k_L such that π_L is (B_4,π_K) -admissible. By Lemma 4.23 (2) and Lemma 4.24, there exists a finitely generated B_4 -subalgebra B_5 of k such that $(\pi_L, B_5^{\text{perf}}, \pi_K)$ satisfies the third condition of Definition 4.26. Take a finite set of generators $y_1, \ldots, y_n \in B_5$ of the B_2 -algebra B_5 . Let A_5 be the A_2 -subalgebra of k obtained by adjoining all coefficients of the minimal polynomials of all y_i over k. There exists a non-empty affine open subscheme Spec (A_6) of Spec (A_5) which is smooth over \mathbb{F}_p . Let B_6 be the subring of k_L generated by A and B_2 . Since B_6 is etale over \mathbb{F}_p , B is regular. In particular B_6 is normal. Hence B_6 contains all y_i and π_L is $(B_6^{\text{perf}}, \pi_K)$ -admissible. We put $A = A_6^{\text{perf}}$ and $B = B_6^{\text{perf}}$. Then (π_K, B, π_L) is a pre A-structure of L/K. **Lemma 4.29.** Let (π_K, B, π_L) be a pre A-structure of L/K. Then for any ring homomorphism from A to a perfect field k' of characteristic p, $K_{k'} := (\widetilde{R}_{A,\pi_K} \widehat{\otimes}_{R_A} R_{k'})[\frac{1}{\pi_K}]$ is a p-CDVF with residue field k'. Decompose $B \otimes_A k'$ into a direct product $\prod_i k'_i$ of a finite number of finite separable extensions of k'. Then $L_{k'} = (\widetilde{R}_{B,\pi_K}[\pi_L] \widehat{\otimes}_{R_A} R_{k'})[\frac{1}{\pi_K}]$ is a direct product $\prod_i L_{k'_i}$, where $L_{k'_i}$ is a finite separable extension of $K_{k'}$ with residue field k_i . The scheme $\operatorname{Spec}(L_{k'})$ is an etale $\operatorname{Gal}(L/K)$ -torsor on $\operatorname{Spec}(K_{k'})$. Furthermore, for each i and for each $n \geq 0$, the lower numbering ramification subgroup $\operatorname{Gal}(L_{k'}/K_{k'})_n$ is canonically identified with $\operatorname{Gal}(L/K)_n$. *Proof.* All assertions are clear except the last one. Let L_0 be the maximal unramified subextension of L/K and $f(T) \in L_0[T]$ the minimal polynomial of π_L over L_0 . Then last assertion holds because the Herbrand function of L/L_0 is completely determined by the Newton polygon of $f(T + \pi_L) \in L[T]$. Let L/K be a finite totally ramified abelian extension of p-CDVFs. Let $n \in \mathbb{Z}_{\geq 0}$ be a non-negative integer such that the Herbrand function $\psi_{L/K}(v)$ is linear for v > n. Let $\mathcal{N}_{L/K}: U_{L,\psi_{L/K}(n)+1} \to U_{K,n+1}$ be the morphism of affine k-group schemes induced by norms, B_n the neutral component of the kernel of $\mathcal{N}_{L/K}$, and $V_{L/K,n}$ the quotient group $U_{L,\psi_{L/K}(n)+1}/B_n$. Then the kernel of the canonical morphism $\beta_{L/K,n}: V_{L/K,n} \to U_{K,n+1}$ is canonically isomorphic to the constant group scheme $\mathrm{Gal}(L/K)$. In particular the morphism $\beta_{L/K,n}$ is finite etale. Let (π_K, A, π_L) be a pre A-structure of L/K. Let $U_{K,A}$ (resp. $U_{L,A}$) be the A-group scheme $(\widetilde{R}_{A,\pi_K})^{\times}$ (resp. $(\widetilde{R}_{A,\pi_L})^{\times}$). We define $U_{K,n+1,A}$ and $U_{L,\psi_{L/K}(n)+1,A}$ for $n \in \mathbb{Z}_{\geq 0}$ in a similar way. There exists norm maps $U_{L,A} \to
U_{K,A}$ and $U_{L,\psi_{L/K}(n)+1,A} \to U_{K,n+1,A}$ which are homomorphisms of affine A-group schemes. **Definition 4.30.** Let notation be as above. A pre A-structure (π_K, A, π_L) of is called *good* if there exists an affine A-group scheme $V_{L/K,n,A}$ and homomorphisms $$\gamma_{L/K,n,A}: U_{L,\psi_{L/K}(n)+1,A} \to V_{L/K,n,A}, \ \beta_{L/K,n,A}: V_{L/K,n,A} \to U_{K,n+1,A}$$ of A-group schemes which satisfy the following four conditions: - The composition $\beta_{L/K,n,A} \circ \gamma_{L/K,n,A}$ is equal to the norm map. - The morphism $\beta_{L/K,n,A}$ is finite etale. • The homomorphisms $$U_{L,\psi_{L/K}(n)+1,A} \otimes_A k \xrightarrow{\gamma_{L/K,n,A}} V_{L/K,n,A} \otimes_A k \xrightarrow{\beta_{L/K,n,A}} U_{K,n+1,A} \otimes_A k$$ are canonically identified with the homomorphisms $$U_{L,\psi_{L/K}(n)+1} \to V_{L/K,n} \xrightarrow{\beta_{L/K,n}} U_{K,n+1}.$$ • For any ring homomorphism $A \to B$, the homomorphism $$\Gamma(V_{L/K,n,A}, \mathcal{O}_{V_{L/K,n,A}}) \otimes_A B \to \Gamma(U_{L,\psi_{L/K}(n),A}), \mathcal{O}_{U_{L,\psi_{L/K}(n),A}}) \otimes_A B$$ induced by $\gamma_{L/K,n,A}$ is injective. **Lemma 4.31.** There exists a good perfect subring A of k and a good pre A-structure (π_K, A, π_L) of L/K. *Proof.* By Lemma 4.28, there exists a good perfect subring A_1 of k and a pre A_1 -structure (π_K, A_1, π_L) of L/K. Let us denote the coordinate rings of $U_{K,n+1,A_1}$, $U_{L,\psi_{L/K}(n)+1,A_1}$ and $V_{L/K,n}$ by C_{K,A_1} , C_{L,A_1} and C_V , respectively. There exist canonical injective ring homomorphisms $$C_{K,A_1} \otimes_{A_1} k \to C_V \to C_{L,A_1} \otimes_{A_1} k$$. We regard C_V as a subring of $C_{L,A_1}\otimes_{A_1}k$ by the latter homomorphism. The rings C_{K,A_1} and C_{L,A_1} are each isomorphic to polynomial rings over A_1 with finitely many variables. So we write $C_{K,A_1} = A_1[x_1,x_2,\cdots,x_m]$, and $C_{L,A_1} = A_1[y_1,y_2,\cdots,y_{m'}]$. The ring C_V is finite free as a $C_{K,A_1}\otimes_{A_1}k$ -module. Take a $C_{K,A_1}\otimes_{A_1}k$ -basis $b_1,\ldots,b_{n'}$ of C_V . There exist n' monomials $s_1,\ldots,s_{n'}$ of $y_1,\ldots,y_{m'}$ such that the matrix (c_{ij}) of coefficients of s_i in $b_j\in A_1[y_1,y_2,\cdots,y_{m'}]$ is invertible. Let I be the kernel of the homomorphism $\varphi:C_{K,A_1}\otimes_{A_1}k[z_1,\cdots,z_{n'}]\to C_V$ which sends z_i to b_i . Take a generator $f_1,\ldots,f_{n'}$ of I. Then the image of the determinant of the matrix $(\frac{\partial f_i}{\partial z_j})$ by φ belongs to B^\times . There exists a finitely generated A_1 -algebra A which satisfies the following seven properties: - For all $i, b_i \in C_{L,A_1} \otimes_{A_1} A$. - The determinant of the matrix (c_{ij}) belongs to A^{\times} . - For all $i_1, i_2, b_{i_1} b_{i_2} \in \sum_j C_{K,A_1} \otimes_{A_1} A \cdot b_j$. - For all $i, f_i \in C_{K,A_1} \otimes_{A_1} A[z_1, \cdots, z_{n'}].$ - The image of the determinant of the matrix $(\frac{\partial f_i}{\partial z_j})$ by φ belongs to $(\bigoplus_i C_{K,A_1} \otimes_{A_1} A \cdot b_i)^{\times}$. - Let $$\Delta: C_V \to C_V \otimes_k C_V \cong \bigoplus_{i_1, i_2} (C_{K, A_1} \otimes_{A_1} C_{K, A_1}) \otimes_{A_1} k \cdot b_{i_1} \otimes b_{i_2}$$ be the morphism induced by the group law of $V_{L/K,n}$. Then $\Delta(b_j) \in (C_{K,A_1} \otimes_{A_1} C_{K,A_1}) \otimes_{A_1} A \cdot b_{i_1} \otimes b_{i_2}$. • Let $S: C_V \to C_V$ be the morphism induced by the inverse morphism of $V_{L/K,n}$. Then $S(b_i) \in \bigoplus_j C_{K,A_1} \otimes_{A_1} A \cdot b_j$. Put $$C_{V,A} = \bigoplus_{i} C_{K,A_1} \otimes_{A_1} A \cdot b_i.$$ This is a finite etale $C_{K,A_1} \otimes_{A_1} A$ -algebra. There exists a canonical structure of A-group scheme on $V_{L/K,n,A} = \operatorname{Spec}(C_{V,A})$. It is easily checked that this A and $V_{L/K,n,A}$ satisfy the desired properties. **Definition 4.32.** Let L/K be a finite separable extension, An A-structure of L/K is a pair $(B, (\pi_M)_M)$ which satisfies the following conditions: - B is a finite etale A-subalgebra of k_L such that $B \otimes_A k \cong k_L$. - $(\pi_M)_M$ is a system of a prime element π_M of M, where π_M runs over all subextensions of L/K. - For any two subextensions M_1 , M_2 of L/K with $M_2 \supset M_1$, let $B_{k_{M_i}}$ (i=1,2) be the finite etale A-subalgebra of B corresponding to the residue field k_{M_i} of M_i . Then $(\pi_{M_1}, B_{k_{M_2}}, \pi_{M_2})$ is a pre $B_{k_{M_1}}$ -structure of M_2/M_1 . - For any two subextensions M_1 , M_2 of L/K with $M_2 \supset M_1$ such that M_2/M_1 is a totally ramified abelian extension, the pre $B_{k_{M_1}}$ -structure $(\pi_{M_1}, B_{k_{M_1}}, \pi_{M_2})$ of M_2/M_1 is a good pre $B_{k_{M_1}}$ -structure of M_2/M_1 . By Lemma 4.28 and Lemma 4.31, we have: **Lemma 4.33.** For any finite separable extension L/K as above, there exists a good perfect \mathbb{F}_p -subalgebra A of k and an A-structure $(B, (\pi_M)_M)$ of L/K. **Definition 4.34.** Let L/K be a finite separable extension of p-CDVFs, R_0 a pro-finite p'-coefficient ring, and $\widetilde{\psi}$ a non-trivial additive character R_0 -sheaf on K. Let $N > \operatorname{ord} \widetilde{\psi}$ be an integer. A pre A-structure (π_K, B, π_L) of L/K is called $(N, \widetilde{\psi})$ -admissible if the following two conditions are satisfied: - The sheaf $\widetilde{\psi}|_{K^{[-N,-\mathrm{ord}\,\widetilde{\psi}-1]}}$ is the pull back of an invertible character sheaf on the A-group scheme $\widetilde{R}_{A,\pi_K}^{[-N,-\mathrm{ord}\,\widetilde{\psi}-1]}$. - There exists a unit $b \in A^{\times}$ such that when $K^{[-\operatorname{ord}\widetilde{\psi}-1,-\operatorname{ord}\widetilde{\psi}-1]}$ is identified with $\mathbb{G}_{a,k}$ by using π_K , the sheaf $\widetilde{\psi}|_{K^{[-\operatorname{ord}\widetilde{\psi}-1,-\operatorname{ord}\widetilde{\psi}-1]}}$ is the pull-back of a non-trivial Artin-Schreier sheaf on $\mathbb{G}_{a,\mathbb{F}_p}$ by the multiplication-by-b map $\mathbb{G}_{a,k} \to \mathbb{G}_{a,k} \to \mathbb{G}_{a,\mathbb{F}_p}$. **Definition 4.35.** Let L/K, R_0 and $\widetilde{\psi}$ be as above. Let N be a sufficiently large integer. An A-structure $(B, (\pi_M)_M)$ of L/K is called $(N, \widetilde{\psi})$ -admissible if for any two intermediate extensions M_1 , M_2 of L/K with $M_2 \supset M_1$, the pre $B_{k_{M_1}}$ -structure $(\pi_{M_1}, B_{M_2}, \pi_{M_2})$ of M_2/M_1 is $(N, \widetilde{\psi} \circ \text{Tr})$ -admissible. **Proposition 4.36.** Let L be a finite separable extension of K, R_0 a finite p'-coefficient ring, $\widetilde{\psi}$ a non-trivial additive character R_0 -sheaf on K, and $N \in \mathbb{Z}$ an integer larger than $\operatorname{ord} \widetilde{\psi}$. Then there exists a good perfect \mathbb{F}_p -subalgebra $A \subset k$ and a $(N, \widetilde{\psi})$ -admissible pre A-structure of L/K. *Proof.* By Lemma 4.28, there exists a good perfect \mathbb{F}_p -subalgebra A_1 of k and a pre A_1 -structure (π_K, B_1, π_L) of L/K. It is easily checked that there exists a good perfect \mathbb{F}_p -subalgebra A_2 of k which satisfies the two conditions in the definition of $(N, \widetilde{\psi})$ -admissibility. We may take as A an arbitrary \mathbb{F}_p -subalgebra of k which is the perfection of a smooth \mathbb{F}_p -algebra and which contains both A_1 and A_2 . **Corollary 4.37.** Let L, R_0 , and $\widetilde{\psi}$ be as the above proposition. Let $N \in \mathbb{Z}$ be a sufficiently large integer. Then there exists a good perfect \mathbb{F}_p -subalgebra $A \subset k$ and a $(N, \widetilde{\psi})$ -admissible A-structure of L/K. **Proposition 4.38.** Let L be a finite Galois extension of K, R_0 a finite subring of R, $\widetilde{\psi}$ a non-trivial additive character R_0 -sheaf on K, and χ a rank one object in $\operatorname{Rep}(W_K, R_0)$ which comes from an object in $\operatorname{Rep}(\operatorname{Gal}(L/K), R_0)$. Let N be an integer larger than $\operatorname{ord} \widetilde{\psi} + \operatorname{sw}(\chi) + 1$. Let A be a smooth \mathbb{F}_p -algebra, and let $(B, (\pi_M)_M)$ be a $(N, \widetilde{\psi})$ -admissible A-structure of L/K. Let $\widetilde{\psi}_A$ be an invertible character sheaf on the A-group scheme $\widetilde{R}_{A,\pi_K}^{[-N,-\operatorname{ord}\psi-1]}$ whose pull-back on $K^{[-N,-\operatorname{ord}\psi-1]}$ is isomorphic to $\widetilde{\psi}|_{K^{[-N,-\operatorname{ord}\widetilde{\psi}-1]}}$. Then there exists a smooth invertible R_0 -sheaf $\tilde{\varepsilon}_{0,R_0,A}(\chi,\tilde{\psi})$ on Spec (A) which satisfies the following property: For any ring homomorphism from A to a perfect field k' of characteristic p, let $K_{k'}$ be as in Lemma 4.29. Let $\chi_{k'}$ be the rank one object in $\operatorname{Rep}(W_{K_{k'}}, R_0)$ induced from the canonical homomorphism $W_{K_{k'}} \to \operatorname{Gal}(L/K)$ and χ . Let $\widetilde{\psi}_{k'}$ be the pull-back of $\widetilde{\psi}_A$ by the canonical morphism $$K_{k'}^{[-N,-\operatorname{ord}\widetilde{\psi}-1]} \cong \widetilde{R}_{A,\pi_K}^{[-N,-\operatorname{ord}\widetilde{\psi}-1]} \otimes_A k' \to \widetilde{R}_{A,\pi_K}^{[-N,-\operatorname{ord}\widetilde{\psi}-1]}.$$ Then the pull-back of $\widetilde{\varepsilon}_{0,R_0,A}(\chi,\widetilde{\psi})$ on Spec (k') is the smooth invertible R_0 -sheaf on Spec (k') corresponding to $\widetilde{\varepsilon}_{0,R}(\chi_{k'},\widetilde{\psi}_{k'})$. *Proof.* Decompose χ into the tensor product $\chi = \chi_1 \otimes \chi_2$ of two rank one objects χ_1 , χ_2 in $\text{Rep}(W_K, R_0)$, both of which come from objects in $\text{Rep}(\text{Gal}(L/K), R_0)$, such that χ_1 is an unramified and that the extension K'/K corresponding to $\text{Ker }\chi_2$ is a totally ramified cyclic abelian extension. The etale A-algebra B and χ_1 induces a smooth invertible sheaf $\chi_{1,A}$ on Spec(A).
Let $s = \operatorname{sw}(\chi_2)$. For $m \in \mathbb{Z}$, let $K^{v=m}_{s,A}$ (resp. $(K'_{s,A})^{v=m}$) denote the A-scheme $U_{K,s+1,A}$ (resp. $U_{K',\psi_{K'/K}(s)+1,A}$). The scheme $\coprod_{m \in \mathbb{Z}} K^{v=m}_{s,A} = U_{K,s+1,A} \times \mathbb{Z}$ (resp. $\coprod_{m \in \mathbb{Z}} (K'_{s,A})^{v=m} = U_{K',\psi_{K'/K}(s)+1,A} \times \mathbb{Z}$) has a canonical structure of an A-group scheme. The multiplication by π^m_K (resp. $\pi^m_{K'}$) induces a canonical isomorphism $K^{v=m}_{s,A} \otimes_A k \cong K^{v=m}/U^{(s+1)}_K$ (resp. $(K'_{s,A})^{v=m} \otimes_A k \cong (K')^{v=m}/U^{(\psi_{K'/K}(s)+1)}_{K'}$). The norm map $N_{K'/K}: K' \to K$ induces a homomorphism $N_{K'/K,A}: \coprod_{m \in \mathbb{Z}} (K'_{s,A})^{v=m} \to \coprod_{m \in \mathbb{Z}} K^{v=m}_{s,A}$ of A-group schemes. By the definition of good pre A-structure, there exists an affine A-group scheme $\coprod_m V^{v=m}_{K'/K,s,A}$ and homomorphisms $$\gamma_{K'/K,s,A}: \coprod_{m\in\mathbb{Z}} (K'_{s,A})^{v=m} \to \coprod_{m} V^{v=m}_{K'/K,s,A}$$ and $$\beta_{K'/K,s,A}: \coprod_{m} V_{K'/K,s,A}^{v=m} \to \coprod_{m\in\mathbb{Z}} K_{s,A}^{v=m}$$ of A-group schemes such that $\beta_{K'/K,s,A} \circ \gamma_{K'/K,s,A} = N_{K'/K,A}$, that $\beta_{K'/K,s,A}$ is finite etale and the kernel of $\beta_{K'/K,s,A}$ is isomorphic to the constant group scheme Gal(K'/K), and that for any A-algebra B, the homomorphism $$\Gamma(V^{v=m}_{K'/K,s,A},\mathcal{O}_{V^{v=m}_{K'/K,s,A}})\otimes_A B \to \Gamma((K'_{s,A})^{v=m},\mathcal{O}_{(K'_{s,A})^{v=m}})\otimes_A B$$ is injective. Let $\mathcal{L}_{\chi_2,A}$ be the invertible character sheaf on $\coprod_{m\in\mathbb{Z}} K^{v=m}_{s,A}$ defined by $\beta_{K'/K,s,A}$ and χ_2 . Let $m_0 = -s$ -ord $\widetilde{\psi}-1$ and let $\mathcal{L}_{\chi,A}$ be the invertible sheaf $\mathcal{L}_{\chi_2,A}|_{K_{s,A}^{v=m_0}} \otimes \pi^*\chi_{1,A}^{\otimes m_0}$ on $K_{s,A}^{v=m_0}$, where $\pi:K_{s,A}^{v=m_0}\to \operatorname{Spec}(A)$ is the structure morphism. Let $\widetilde{\varepsilon}_{0,R_0,A}(\chi,\widetilde{\psi})$ be the invertible sheaf $$\widetilde{\varepsilon}_{0,R_0,A}(\chi,\widetilde{\psi}) = \det_{R_0}(Rf_!((\overline{\mathcal{L}}_{\chi_A}^{\otimes -1} \otimes_{R_0} i^*\widetilde{\psi}_A^{[m,-\operatorname{ord}\widetilde{\psi}-1]})[s+1](\operatorname{ord}\widetilde{\psi})).$$ It is easy to prove that this $\tilde{\epsilon}_{0,R_0,A}(\chi,\tilde{\psi})$ has desired properties. **Corollary 4.39.** Let L, R_0 , and $\widetilde{\psi}$ be as the above proposition. Let N be a sufficiently large integer. Let A be a good perfect \mathbb{F}_p -algebra, and let $(B,(\pi_M)_M)$ be a $(N,\widetilde{\psi})$ -admissible A-structure of L/K. Let $\widetilde{\psi}_A$ be an invertible character sheaf on the A-group scheme $\widetilde{R}_{A,\pi_K}^{[-N,-\operatorname{ord}\psi-1]}$ whose pullback on $K^{[-N,-\operatorname{ord}\psi-1]}$ is isomorphic to $\widetilde{\psi}|_{K^{[-N,-\operatorname{ord}\widetilde{\psi}-1]}}$. Then there exists a smooth invertible R_0 -sheaf $\widetilde{\lambda}_{R_0,A}(L/K,\widetilde{\psi})$ on Spec (A) which satisfies the following property: For any ring homomorphism from A to a perfect field k' of characteristic p, let $K_{k'}$ be as in Lemma 4.29. Let $\widetilde{\psi}_{k'}$ be the pull-back of $\widetilde{\psi}_A$ by the canonical morphism $$K_{k'}^{[-N,-\operatorname{ord}\widetilde{\psi}-1]} \cong \widetilde{R}_{A,\pi_K}^{[-N,-\operatorname{ord}\widetilde{\psi}-1]} \otimes_A k' \to \widetilde{R}_{A,\pi_K}^{[-N,-\operatorname{ord}\widetilde{\psi}-1]}.$$ Then the pull-back of $\widetilde{\lambda}_{R_0,A}(L/K,\widetilde{\psi})$ on Spec (k') is the smooth invertible R_0 -sheaf on Spec (k') corresponding to $\widetilde{\lambda}_R(L_{k'}/K_{k'},\widetilde{\psi}_{k'})$. ## **4.8. Proof of Lemma 4.18.** Suppose that $$\rho = \sum_{i} n_{i} \operatorname{Ind}_{H_{i}}^{G} \chi_{i} = \sum_{i} n'_{j} \operatorname{Ind}_{H'_{j}}^{G} \chi'_{j}.$$ Take a sufficiently large integer $N\in\mathbb{Z}$. Take a good perfect \mathbb{F}_p -subalgebra A of k and a $(\widetilde{\psi},N)$ -admissible A-structure $(B,(\pi_M)_M)$ of L/K. Take an invertible character sheaf $\widetilde{\psi}_A$ on the A-group scheme $\widetilde{R}_{A,\pi_K}^{[-N,-\operatorname{ord}\psi-1]}$ whose pull-back on $K^{[-N,-\operatorname{ord}\psi-1]}$ is isomorphic to $\widetilde{\psi}|_{K^{[-N,-\operatorname{ord}\widetilde{\psi}-1]}}$. We define, in a canonical way, smooth invertible R-sheaves $\widetilde{\varepsilon}_{0,R,A}(\chi_i,\widetilde{\psi}\circ\operatorname{Tr}_{K_i/K}),$ $\widetilde{\varepsilon}_{0,R,A}(\chi_j',\widetilde{\psi}\circ\operatorname{Tr}_{K_j'/K}),$ $\widetilde{\lambda}_{R,A}(K_i'/K,\widetilde{\psi}),$ and $\widetilde{\lambda}_{R,A}(K_j'/K,\widetilde{\psi})$ on Spec (A) whose pull-backs on Spec (k) correspond to $\widetilde{\varepsilon}_{0,R}(\chi_i,\widetilde{\psi}\circ\operatorname{Tr}_{K_i/K}),$ $\widetilde{\varepsilon}_{0,R}(\chi_j',\widetilde{\psi}\circ\operatorname{Tr}_{K_j'/K}),$ $\widetilde{\lambda}_{R}(K_i'/K,\widetilde{\psi}),$ and $\widetilde{\lambda}_{R}(K_j'/K,\widetilde{\psi})$ respectively. Let $\widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi})$ and $\widetilde{\varepsilon}'_{0,R,A}(V,\widetilde{\psi})$ be two invertible sheaves on Spec (A) defined by $$\widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi}) := \bigotimes_{i} (\widetilde{\varepsilon}_{0,R,A}(\chi_{i},\widetilde{\psi} \circ \operatorname{Tr}_{K_{i}/K}) \otimes \widetilde{\lambda}_{R}(K_{i}/K,\widetilde{\psi}))^{\otimes n_{i}}.$$ and $$\widetilde{\varepsilon}'_{0,R,A}(V,\widetilde{\psi}) := \bigotimes_{j} (\widetilde{\varepsilon}_{0,R,A}(\chi'_{j},\widetilde{\psi} \circ \operatorname{Tr}_{K'_{j}/K}) \otimes \widetilde{\lambda}_{R}(K'_{j}/K,\widetilde{\psi}))^{\otimes n'_{j}}.$$ Let $x \in \operatorname{Spec}(A)$ be a closed point. We denote by $\kappa(x)$ (resp. i_x) the residue field at x (resp. the canonical inclusion) $i_x : x \hookrightarrow \operatorname{Spec}(A)$. Let K_x denote the field $K_{\kappa(x)}$ introduced in Lemma 4.29 for the ring homomorphism $A \to \kappa(x)$. The canonical homomorphism $W_{K_x} \to \operatorname{Gal}(L/K)$ and V defines an object in $\operatorname{Rep}(W_{K_x}, R)$ which we denote by V_x . Then we have an isomorphism $i_x^* \widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi}) \cong i_x^* \widetilde{\varepsilon}'_{0,R,A}(V,\widetilde{\psi})$, since the main result of [10] implies that both sides, as characters of $W_{\kappa(x)}$, send the geometric Frobenius at x to $(-1)^{\operatorname{rank} V + \operatorname{sw}(V)} \varepsilon_{0,R}(V_x,\psi_x)$, where ψ_x denotes the additive character of K_x corresponding to the specialization of $\widetilde{\psi}_A$ at x. Let $A_0 \subset A$ be a smooth \mathbb{F}_p -subalgebra of A whose perfection equals A. By the standard argument using Chebotarev's theorem which states that the geometric Frobenii at the closed points are dense in $\pi_1(\operatorname{Spec}(A_0))$ ([7, Theorem 7]), we conclude that $\widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi}) \cong \widetilde{\varepsilon}'_{0,R,A}(V,\widetilde{\psi})$. This completes the proof. **4.9.** Local $\tilde{\varepsilon}_0$ -characters of representations of G_K (field coefficients). Let R be an algebraically closed field of positive characteristic $\neq p$. In this subsection we shall define, for an object (ρ, V) in $\text{Rep}(W_K, R)$, a rank one object $\tilde{\varepsilon}_{0,R}(V, \tilde{\psi})$ in $\text{Rep}(W_k, R)$, which is called the local $\tilde{\varepsilon}_0$ -character of V. First assume that V is irreducible. Then V is of the form $V = V' \otimes_R \chi$, where V' is an object in $\operatorname{Rep}(W_K,R)$ such that the image of W_K in $GL_R(V')$ is finite, and χ is an unramified rank one object in $\operatorname{Rep}(W_K,R)$. Define $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ to be $\widetilde{\varepsilon}_{0,R}(V',\widetilde{\psi}) \otimes_R \chi^{\otimes \operatorname{sw}(V)+\operatorname{rank} V \cdot (\operatorname{ord} \widetilde{\psi}+1)}$. By Lemma 4.19, $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ is independent of the choice of V' and χ . For a general V, let V_1, \ldots, V_n denote the Jordan-Hölder constituents of V counted with multiplicity. Define $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ to be $\bigotimes_i \widetilde{\varepsilon}_{0,R}(V_i,\widetilde{\psi})$. **4.10.** Local $\tilde{\varepsilon}_0$ -characters for torsion coefficients (totally wild case). Let (R, \mathfrak{m}_R) be a complete strict p'-coefficient ring with a positive residue characteristic and $\tilde{\psi}$ a non-trivial additive character R-sheaf on K. Assume that $p \neq 2$. For $x \in K^{\times}$ with $v_K(x) + \operatorname{ord} \widetilde{\psi} = 2b + 1$ is odd, define a quadratic Gauss sum sheaf $\widetilde{\tau}_{K,\widetilde{\psi}}(x)$ by $$\widetilde{\tau}_{K,\widetilde{\psi}}(x) = \widetilde{\varepsilon}_{0,R}(\chi_{-\frac{x}{2}},\widetilde{\psi}) \otimes_R R(\operatorname{ord}\widetilde{\psi}),$$ where $\chi_{-\frac{x}{2}}: W_K \to R^{\times}$ is the composition of the quadratic character $W_K \to \{\pm 1\}$ corresponding to the quadratic extension $K(\sqrt{-\frac{x}{2}})$ of K and the canonical map $\{\pm 1\} \to R^{\times}$. The sheaf $\tilde{\tau}_{K,\widetilde{\psi}}(x)$ does not depend on the choice of y and depends only on the class of $x \in \{x \in K^{\times} \mid v_K(x) + \text{ord } \widetilde{\psi} \equiv 1 \mod 2\}$ in $(K^{\times}/1 + \mathfrak{m}_K) \otimes \mathbb{Z}/2\mathbb{Z}$. Thus we can define $\tilde{\tau}_{K,\widetilde{\psi}}(x)$ for $x \in \{x \in K^{\times}/1 + \mathfrak{m}_K\} \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{p}] \mid v_K(x) + \text{ord } \widetilde{\psi} \in 1 + 2\mathbb{Z}[\frac{1}{p}]\}$. **Remark 4.40.** Suppose that k is finite. Let $\psi: K \to R^{\times}$ be the additive character of K corresponding to $\widetilde{\psi}$. Then we have
$$\widetilde{\tau}_{K,\widetilde{\psi}}(x)(\operatorname{Fr}_k) = -\tau_{K,\psi}(x),$$ where $\tau_{K,\psi}(x)$ is the quadratic Gauss sum defined in [10, § 7.3]. **Definition 4.41.** Let $v \in \mathbb{Q}_{>0}$, $G = W_K$, and let $\chi \in \text{Hom}(G^v/G^{v+}, R^{\times})$. Let K_{χ} be the extension of K corresponding to the stabilizing subgroup of χ , and k_{χ} the residue field of K_{χ} . Let $r \in \mathbb{Z}$ be an integer such that $rv \in \mathbb{Z}$. Define the Gauss sum part sheaf $g_R(\chi, \widetilde{\psi})^{\otimes r}$ of $\overline{\widetilde{\varepsilon}}_{0,R}$ -constant to be the object in $\text{Rep}(W_k, R)$ defined by $$\begin{split} g_R(\chi,\widetilde{\psi})^{\otimes r} &= (\widetilde{\lambda}_R(K_\chi/K,\widetilde{\psi}))^{\otimes r} \otimes_R R(-[k_\chi:k] \mathrm{ord}\, (\widetilde{\psi} \circ \mathrm{Tr}_{K_\chi/K})) \\ &\otimes_R \left\{ \begin{array}{l} R(-[k_\chi:k]r \cdot \frac{1+w}{2}) \\ \text{if } p = 2 \text{ or } p \neq 2 \text{ and } \mathrm{ord}\,_2(v) \leq 0, \\ R(-[k_\chi:k]r \cdot \frac{w}{2}) \otimes_R \widetilde{\tau}_{K_\chi,\widetilde{\psi} \circ \mathrm{Tr}_{K_\chi/K}}(\sigma_{\widetilde{\psi}}(\chi))^{\otimes r} \\ \text{if } p \neq 2 \text{ and } \mathrm{ord}\,_2(v) > 0, \end{array} \right. \end{split}$$ where $w = e_{K_{\gamma}/K}v$. Let (ρ, V) be an object in $\text{Rep}(W_K, R)$ which is pure of slope v and of refined slope Σ . As in [10, § 7], for $w \in \mathbb{Q}$, let N_K^w denote the set $$N_K^w := \{ x \in \overline{K} | v_K(x) \ge w \} / \{ x \in \overline{K} | v_K(x) > w \},$$ endowed with the canonical W_K -action. By [5, p. 3, Thm. 1] there is a canonical isomorphism from $\operatorname{Hom}(G^v/G^{v+},R)$ to the set of all isomorphism classes of character sheaves on N_K^v considered as a \overline{k} -group scheme. This isomorphism and the additive character sheaf $\widetilde{\psi}$ induce a canonical isomorphism $\sigma_{\widetilde{\psi}}: \operatorname{Hom}(G^v/G^{v+}, \mathbb{Z}/p\mathbb{Z}) \to N_K^{-v-\operatorname{ord}\widetilde{\psi}-1}$ in a similar way as in [10, § 7]. Take a $\chi \in \Sigma$, and let V' be the χ -part of V. Then V' is an object in $\text{Rep}(W_{K_{\chi}}, R)$. Let K_{χ} be the extension of K corresponding to the stabilizing subgroup of χ , and k_{χ} the residue field of K_{χ} . We consider the element $\sigma_{\widetilde{\psi}}(\chi) \in N_K^{-v-\text{ord }\widetilde{\psi}-1}$ as an element in $(K_{\chi}^{\times}/1 + \mathfrak{m}_{K\chi}) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{p}]$. **Definition 4.42.** Let R be a p'-coefficient ring, and V an object in $\operatorname{Rep}(G,R)$ which is pure of refined slope Σ . We define the refined $\widetilde{\psi}$ -Swan conductor $\operatorname{rsw}_{\widetilde{\psi}}(V) \in K^{\times}/1 + \mathfrak{m}_K$ by $$\mathrm{rsw}_{\widetilde{\psi}}(V) = \mathrm{N}_{K\chi/K}(\sigma_{\widetilde{\psi}}(\chi))^{-\frac{\mathrm{rank}\,V}{e_{K\chi/K}}}.$$ For an arbitrary object W in Rep(G, R), define $\operatorname{rsw}_{\widetilde{\psi}}(W) \in K^{\times}/1 + \mathfrak{m}_K$ by $$rsw_{\widetilde{\psi}}(W) = \prod_{\Sigma'} rsw_{\widetilde{\psi}}(W^{\Sigma'}),$$ where $$W = W^0 \oplus \bigoplus_{\Sigma'} W^{\Sigma'}$$ is the refined slope decomposition of W. **Lemma 4.43.** The p-power map $\operatorname{Hom}_{\operatorname{cont}}(W_k, R^{\times}) \to \operatorname{Hom}_{\operatorname{cont}}(W_k, R^{\times})$ is surjective. Proof. It suffices to prove that the p-power map $H^1(k,R^\times) \to H^1(k,R^\times)$ is surjective. Since $H^2(k,\mathbb{Z}/p\mathbb{Z}) = \{0\}$ by Artin-Schreier theory, the map $H^1(k,(R/\mathfrak{m}_R)^\times) \to H^1(k,(R/\mathfrak{m}_R)^\times)$ induced by the p-power map $(R/\mathfrak{m}_R)^\times \to (R/\mathfrak{m}_R)^\times$ is surjective. Since the p-power map $1+\mathfrak{m}_R \to 1+\mathfrak{m}_R$ is a homeomorphism, it suffices to prove that the natural map $H^1(k,R^\times) \to H^1(k,(R/\mathfrak{m}_R)^\times)$ is surjective. Let ℓ be the residue characteristic of R. Then the composition $$H^1(k, (R/\mathfrak{m}_R)^{\times}) \cong H^1(k, \overline{\mathbb{F}}_{\ell}^{\times}) \to H^1(k, W(\overline{\mathbb{F}}_{\ell})^{\times}) \to H^1(k, R^{\times})$$ gives the right inverse of the last map. This complete the proof. \Box Let $\overline{\operatorname{Hom}}(W_k, R^{\times})$ be the quotient of $\operatorname{Hom}_{\operatorname{cont}}(W_k, R^{\times})$ by the subgroup of the characters of p-power orders. For an object V in $\operatorname{Rep}(G, R)$ which is pure of refined slope Σ , define the $\overline{\widetilde{\varepsilon}}_0$ -character of V to be an element in $\overline{\operatorname{Hom}}(W_k, R^{\times})$ defined by $$\overline{\widetilde{\varepsilon}}_{0,R}(V,\widetilde{\psi}) := ((\det V')_{[\sigma_{\widetilde{\psi}}(\chi)]} \circ \mathrm{Ver}_{W_{k_{\chi}}}^{W_{k_{\chi}}})^{\otimes -1} \otimes g_{R}(\chi,\widetilde{\psi})^{\otimes \mathrm{rank}\,V'}.$$ Here $\operatorname{Ver}_{W_{k_{\gamma}}}^{W_{k}}$ is the transfer map. **Lemma 4.44.** Suppose that R is a field. Then $\overline{\widetilde{\varepsilon}}_{0,R}(V,\widetilde{\psi})$ is equal to the class of $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ in $\overline{\operatorname{Hom}}(W_k,R^{\times})$. *Proof.* We may assume that (ρ, V) is irreducible. Twisting V by an unramified character, we may assume that the image of ρ is finite. Take a representative $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) \in \operatorname{Hom}_{\operatorname{cont}}(W_k,R^{\times})$ of $\overline{\widetilde{\varepsilon}}_{0,R}(V,\widetilde{\psi})$. Take a finite Galois extension L of K such that ρ factors through the finite quotient $G = \operatorname{Gal}(L/K)$ of W_K . By Brauer's theorem of modular representations, we may assume that V is of the form $V = \operatorname{Ind}_H^G \chi$ for a subgroup $H \subset G$ and a character χ of H. Let K' be the subextension of L/K corresponding to H. There exist a sufficiently large integer $N \in$ \mathbb{Z} and a good perfect \mathbb{F}_p -subalgebra A of k and a (N, ψ) -admissible Astructure $(B,(\pi_M)_M)$ of L/K such that we can define smooth invertible R-sheaves $\widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi})$ and $\widetilde{\widetilde{\varepsilon}}_{0,R,A}(V,\widetilde{\psi})$ on $\operatorname{Spec}(A)$ whose pull-backs on Spec (k) correspond to $\widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi})$ and $\widetilde{\widetilde{\varepsilon}}_{0,R,A}(V,\widetilde{\psi})$, respectively. Then for any closed point $x \in \operatorname{Spec}(A)$, there exists an integer n_x such that $i_x^* \widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi})^{\otimes p^{n_x}} \cong i_x^* \widetilde{\varepsilon}_{0,R,A}'(V,\widetilde{\psi})^{\otimes p^{n_x}}$, where $i_x: x \hookrightarrow \operatorname{Spec}(A)$ is the canonical inclusion. By the construction of $\widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi})$ and $\widetilde{\widetilde{\varepsilon}}_{0,R,A}(V,\widetilde{\psi})$, there exists a positive integer $n \in \mathbb{Z}_{>0}$ such that $n_x \leq n$ for every closed point $x \in \operatorname{Spec}(A)$. Since $(\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) \otimes_R \widetilde{\widetilde{\varepsilon}}_{0,R}(V,\widetilde{\psi})^{\otimes -1})^{\otimes p^n}$ is trivial by Chebotarev's theorem, this completes the proof. **Definition 4.45.** Define the local $\widetilde{\varepsilon}_0$ -character $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ to be the unique continuous character $W_k \to R^{\times}$ satisfying $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) = \overline{\widetilde{\varepsilon}}_{0,R}(V,\widetilde{\psi}) \text{ in } \overline{\operatorname{Hom}}(W_k,R^{\times})$$ and $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) \mod \mathfrak{m}_R = \widetilde{\varepsilon}_0(V \otimes_R R/\mathfrak{m}_R,\widetilde{\psi}).$$ **Proposition 4.46** (cf. [10, Prop. 8.3]). Let R be a strict p'-coefficient ring, R_0 a pro-finite subring of R, and $V \neq \{0\}$ a totally wild object in $\text{Rep}(G, R_0)$. Then for every tamely ramified object W in $\text{Rep}(G, R_0)$, we have $$\widetilde{\varepsilon}_{0,R}(V \otimes_R W, \widetilde{\psi}) = (\det W)_{[\operatorname{rsw}_{\widetilde{\psi}}(V)]} \otimes \widetilde{\varepsilon}_{0,R}(V, \widetilde{\psi})^{\operatorname{rank} W}.$$ *Proof.* We may assume that R_0 is finite and that V is pure of refined slope Σ . Take $\chi \in \Sigma$ and let K_{χ} be the finite separable extension of K corresponding to the stabilizing subgroup of χ . Take a sufficiently large Galois extension L of K containing K_{χ} such that V and W come from objects in Rep(Gal(L/K), R_0). Take a sufficiently large integer $N \in \mathbb{Z}$. Take a good perfect \mathbb{F}_p -subalgebra A of k and a $(N, \widetilde{\psi})$ -admissible A-structure $(B, (\pi_M)_M)$ of L/K. Then we can define, in a canonical way, smooth invertible R-sheaves $\widetilde{\varepsilon}_{0,R,A}(V, \widetilde{\psi})$ and $\widetilde{\varepsilon}_{0,R,A}(V \otimes W, \widetilde{\psi})$ on Spec (A) whose pull-backs on Spec (k) are identified with $\widetilde{\varepsilon}_{0,R}(V, \widetilde{\psi})$ and $\widetilde{\varepsilon}_{0,R}(V \otimes W, \widetilde{\psi})$ respectively. Let $v \in \mathbb{Q}_{>0}$ be the slope of V. Let K' and L' be the subextensions of L/K_{χ} corresponding to $\operatorname{Gal}(L/K_{\chi})^{e_{K_{\chi}/K}v}$ and $\operatorname{Gal}(L/K_{\chi})^{e_{K_{\chi}/K}v+}$, respectively. Let $v_{K'} = \psi_{K'/K}(v)$ and $v_{L'} = \psi_{L'/K}(v)$. Consider the homomorphism $$\alpha:L'/K',v_{K'}:\mathfrak{m}_{L'}^{v_{L'}}/\mathfrak{m}_{L'}^{v_{L'}+1}\to\mathfrak{m}_{K'}^{v_{K'}}/\mathfrak{m}_{K'}^{v_{K'}+1}$$ defined by $N_{L'/K'}(1+x) = 1 + \alpha : L'/K', v_{K'}$. It is easily checked that the homomorphism $\alpha : L'/K', v_{K'}$ is induced from a morphism
$$\widetilde{\alpha}: \widetilde{R}_{B_{k_{K}'},\pi_{L'}}^{[v_{L'},v_{L'}]} \rightarrow \widetilde{R}_{B_{k_{K}'},\pi_{K'}}^{[v_{K'},v_{K'}]}$$ of $B_{k_K'}$ -group schemes. By localizing A if necessary, we may assume that $\widetilde{\alpha}$ is finite etale and Ker $\widetilde{\alpha}$ is constant. Put $A_\chi = A_{k_{K_\chi}}$. Using the character sheaf on $\widetilde{R}_{B_{k_K'},\pi_{K'}}^{[v_{K'},v_{K'}]}$ and the sheaf $\widetilde{\psi}_{A_\chi}$, we can define the A_χ -valued point of the group scheme $\coprod_{m\in\mathbb{Z}[\frac{1}{p}]}\mathbb{G}_{m,A_\chi}$ which induces $\sigma_{\widetilde{\psi}}(\chi)$. Using this, we can define the refined swan conductor $\mathrm{rsw}_{\widetilde{\psi},A}(V)$ of V as a A-valued point of the group scheme $\coprod_{m\in\mathbb{Z}[\frac{1}{p}]}\mathbb{G}_{m,A_\chi}$. On the other hand, we have an invertible character sheaf $(\det W)_A$ on $\coprod_{m\in\mathbb{Z}} \mathbb{G}_{m,A}$ corresponding to $\det W$. Thus we obtain an invertible sheaf $(\det W)_{A,[\operatorname{rsw}_{\widetilde{\psi},A}(V)]}$ on $\operatorname{Spec}(A)$ which induces $(\det W)_{[\operatorname{rsw}_{\widetilde{\psi}}(V)]}$. Then we have $$i_z^* \widetilde{\varepsilon}_{0,R,A}(V \otimes_R W, \widetilde{\psi}) = i_z^* \left((\det W)_{A,[\operatorname{rsw}_{\widetilde{\psi},A}(V)]} \otimes \widetilde{\varepsilon}_{0,R,A}(V, \widetilde{\psi})^{\otimes \operatorname{rank} W} \right)$$ for all closed point $i_z: z \hookrightarrow \operatorname{Spec}(A)$. Hence the assertion follows. 4.11. Local $\tilde{\epsilon}_0$ -characters for torsion coefficients (tame case). Let R be a complete strict p'-coefficient ring with a positive residue characteristic. Define the k-algebra $\operatorname{Gr}^{\bullet}K$, $\operatorname{Gr}^{\geq 0}K$ and $\widehat{\operatorname{Gr}}^{\bullet}K$ in a similar way to that in [10, § 10.1]. Let ℓ be the residue characteristic of R, and set $R_0 := W(\mathbb{F}_{\ell}(\boldsymbol{\mu}_p))$. Let ϕ_0 be a non-trivial additive character R_0 -sheaf on $K^{[-1,-1]}$. Let \mathcal{L}_{ϕ_0} be the invertible R_0 -sheaf on $\operatorname{Spec}(\operatorname{Gr}^{\geq 0}K)$ corresponding to ϕ_0 by the canonical isomorphism $K^{[-1,-1]} \cong \operatorname{Spec}(\operatorname{Gr}^{\geq 0}K)$. Define schemes X_0 , X, and X_m , groups G, I, and I_m and a smooth R_0 -sheaf $\widetilde{\mathcal{L}}'_{\phi_0}$ on X_0 in a similar way to that in [10, § 10.1]. Put $W_m := H_c^1(X_m, \widetilde{\mathcal{L}}'_{\phi_0})$. W_m is a free $R_0[I_m]$ -module of rank one with a semi-linear action of $\operatorname{Gal}(X_m/X_0)$. **Definition 4.47.** Let (ρ, V) is a tamely ramified object in $\text{Rep}(W_K, R)$. Let $\widetilde{\psi}_0$ be a non-trivial additive character R-sheaf on $K^{[0,0]}$. For each $n \in \mathbb{Z}_{>0}$, take a sufficiently divisible m such that W_K^0 acts on $V \otimes_R R/\mathfrak{m}_R^n$ via the quotient I_m . Define the $R/\mathfrak{m}_R^n[W_k]$ -module $\widetilde{\varepsilon}_{0,R/\mathfrak{m}_R^n}(V \otimes_R R/\mathfrak{m}_R^n, \widetilde{\psi}_0, \phi_0)$ by $$\begin{split} \widetilde{\varepsilon}_{0,R/\mathfrak{m}_{R}^{n}}(V \otimes_{R} R/\mathfrak{m}_{R}^{n}, \widetilde{\psi}_{0}, \phi_{0}) &:= R/\mathfrak{m}_{R}^{n}(\operatorname{rank} V) \\ \otimes_{R/\mathfrak{m}_{R}^{n}} (V \otimes_{R} R/\mathfrak{m}_{R}^{n} \otimes_{R_{0}} W_{m})_{I_{m}} \\ \otimes_{R/\mathfrak{m}_{R}^{n}} \widetilde{\varepsilon}_{0,R/\mathfrak{m}_{R}^{n}}((\rho, V)_{\widehat{\operatorname{Gr}}} \otimes_{R_{0}} \widehat{\mathcal{L}}_{\phi_{0}}, \widetilde{\psi}')^{\otimes -1} \end{split}$$ where $\widetilde{\psi}'$ is an additive character R_0 -sheaf on $\widehat{\operatorname{Gr}}^{\bullet}K$ of conductor -1 which is the pull-back of $\widetilde{\psi}$ by the canonical morphism $$\widehat{\operatorname{Gr}}^{\bullet} K^{[-n,0]} \cong K^{[0,0]} \times_{\iota} \cdots K^{[1,1]} \times_{\iota} K^{[n,n]} \xrightarrow{\operatorname{pr}_{1}} K^{[0,0]} \xrightarrow{-1} K^{[0,0]}.$$ Define $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}_0,\phi_0)$ by the projective limit $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}_0,\phi_0) := \varprojlim_m \widetilde{\varepsilon}_{0,R/\mathfrak{m}_R^n}(V \otimes_R R/\mathfrak{m}_R^n,\widetilde{\psi}_0,\phi_0).$$ **Lemma 4.48.** The character $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}_0,\phi_0)$ does not depend on the choice of ϕ_0 . *Proof.* We may assume that V, $\tilde{\psi}_0$ and ϕ_0 are defined over a finite p'-coefficient ring R_0 . Let $\phi'_0: k \to R_0^{\times}$ be another additive character. Define the representation W'_m by $$W'_m:=H^1_c(X,(\pi_{m*}R_0)\otimes_{R_0}\widetilde{\mathcal{L}}'_{\phi'_0})\in\operatorname{Rep}(\operatorname{Gal}(X_m/X_0),R_0).$$ Then we have a canonical isomorphism $$H^1_c(X, \widetilde{V} \otimes_{R_0} \widetilde{\mathcal{L}}'_{\phi'_0}) \cong (V \otimes_{R_0} W'_m)_{I_m}.$$ There exists a unique element $a \in k^{\times}$ such that $\phi'(x) = \phi(ax)$ for all $x \in k$. Take an element $\alpha \in \overline{k}$ satisfying $\alpha^m = a$. Then the map $X_m \to X_m$ induced by the multiplication-by- α map $\mathfrak{m}_K/\mathfrak{m}_K^2 \to \mathfrak{m}_K/\mathfrak{m}_K^2$ induces an isomorphism $\varphi: W_m \cong W_m'$ of $R_0[I_m]$ -modules. Let $\sigma \in W_k$. Let $\left[\frac{\sigma^{-1}(\alpha)}{\alpha}\right] \in I_m$ be the element corresponding to $\frac{\sigma^{-1}(\alpha)}{\alpha} \in \mu_m(\overline{k})$ by the canonical isomorphism $I_m \cong \mu_m(\overline{k})$. It is easily checked that the action of σ on W_m is identified with the action of $\sigma \cdot \left[\frac{\sigma^{-1}(\alpha)}{\alpha}\right]$. Hence the proposition follows from Proposition 4.46. **4.12.** Local $\widetilde{\varepsilon}_0$ -characters for torsion coefficients (general case). Let R be a complete strict p'-coefficient ring with positive residue characteristic and $\widetilde{\psi}$ a non-trivial additive character R-sheaf on K. For every object V in $\text{Rep}(W_K, R)$, let $V = V^0 \oplus \bigoplus_{\Sigma} V^{\Sigma}$ be the refined slope decomposition of V and set $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) := \widetilde{\varepsilon}_{0,R}(V^0,\widetilde{\psi}) \otimes \bigotimes_{\Sigma} \widetilde{\varepsilon}_{0,R}(V^{\Sigma},\widetilde{\psi}).$$ Then $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})$ has the following properties: - (1) The isomorphism class of $\tilde{\varepsilon}_{0,R}(V,\tilde{\psi})$ depends only on the isomorphism class of (ρ,V) . - (2) Let R' be another strict p'-coefficient ring, and $h:R\to R'$ a local ring homomorphism. Then we have $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})\otimes_R R'\cong \widetilde{\varepsilon}_{0,R'}(V\otimes_R R',\widetilde{\psi}\otimes_R R').$$ (3) Suppose that there exists an exact sequence $$0 \to V' \to V \to V'' \to 0$$ in $Rep(W_K, R)$. Then we have $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) \cong \widetilde{\varepsilon}_{0,R}(V',\widetilde{\psi}) \otimes_R \widetilde{\varepsilon}_{0,R}(V'',\widetilde{\psi}).$$ (4) Suppose that the residue field k of K is finite. Let $\psi: K \to R^{\times}$ be the additive character canonically corresponding to $\widetilde{\psi}$. Then $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi})(\operatorname{Fr}_k) = (-1)^{\operatorname{rank} V + \operatorname{sw}(V)} \cdot \varepsilon_{0,R}(V,\psi).$$ (5) Let $a \in K^{\times}$. Then we have $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}_a) = \det(V)_{[a]} \otimes_R R(-v_K(a) \cdot \operatorname{rank} V) \otimes_R \widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}).$$ (6) Let W be an object in $\text{Rep}(W_K, R)$ on which W_K acts via $W_K/W_K^0 \cong W_k$. Then we have $$\widetilde{\varepsilon}_{0,R}(V \otimes W, \widetilde{\psi}) = (\det W)^{\otimes \mathrm{sw}(V) + \mathrm{rank}\, V \cdot (\mathrm{ord}\, \widetilde{\psi} + 1)} \otimes_R \widetilde{\varepsilon}_{0,R}(V, \widetilde{\psi})^{\otimes \mathrm{rank}\, W}.$$ (7) Suppose that the coinvariant $(V)_{W_K^0}$ is zero. Let V^* be the R-linear dual of V. Then we have $$\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}) \otimes \widetilde{\varepsilon}_{0,R}(V^*,\widetilde{\psi}) = (\det V)_{[-1]} \otimes_R R(-\mathrm{sw}(V) - \mathrm{rank}\, V \cdot (2\mathrm{ord}\,\widetilde{\psi} + 1)).$$ **Theorem 4.49.** Let L/K be a finite separable extension of p-CDVFs, R a complete strict p'-coefficient ring with a positive residue characteristic, $\tilde{\psi}$ a non-trivial additive character R-sheaf. Then for every object (ρ, V) in $\text{Rep}(W_L, R)$, we have $$\widetilde{\varepsilon}_{0,R}(\operatorname{Ind}_{W_L}^{W_K}V,\widetilde{\psi})=\widetilde{\lambda}_R(L/K,\widetilde{\psi})^{\otimes \operatorname{rank} V}\otimes_R \widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}\circ \operatorname{Tr}_{L/K}).$$ Proof. Take a sufficiently large finite Galois extension L' of K containing L such that ρ factors through $W_K/W_{L'}$. Take a sufficiently large integer $N \in \mathbb{Z}$. Take a good perfect \mathbb{F}_p -subalgebra A of k and a $(N,\widetilde{\psi})$ -admissible A-structure $(B,(\pi_M)_M)$ of L'/K. Then we can define, in a canonical way, smooth invertible R-sheaves $\widetilde{\varepsilon}_{0,R,A}(\operatorname{Ind}_{W_K}^{W_L}V,\widetilde{\psi})$, $\widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi}\circ\operatorname{Tr}_{L/K})$, and $\widetilde{\lambda}_{R,A}(L/K,\widetilde{\psi})$ on Spec (A) whose pull-backs on Spec (k) are identified with $\widetilde{\varepsilon}_{0,R}(\operatorname{Ind}_{W_K}^{W_L}V,\widetilde{\psi})$, $\widetilde{\varepsilon}_{0,R}(V,\widetilde{\psi}\circ\operatorname{Tr}_{L/K})$, and $\widetilde{\lambda}_R(L/K,\widetilde{\psi})$ respectively. Then for any closed point $x \in \operatorname{Spec}(A)$, we have $$i_x^* \widetilde{\varepsilon}_{0,R,A} (\operatorname{Ind}_{W_K}^{W_L} V, \widetilde{\psi}) \cong i_x^*
\widetilde{\varepsilon}_{0,R,A}' (V, \widetilde{\psi} \circ \operatorname{Tr}_{L/K}) \otimes i_x^* \widetilde{\lambda}_R (L/K, \widetilde{\psi})^{\otimes \operatorname{rank} V},$$ where $i_x: x \hookrightarrow \operatorname{Spec}(A)$ be the canonical inclusion. Hence we have $\widetilde{\varepsilon}_{0,R,A}(\operatorname{Ind}_{W_K}^{W_L}V,\widetilde{\psi}) \cong \widetilde{\varepsilon}_{0,R,A}(V,\widetilde{\psi} \circ \operatorname{Tr}_{L/K}) \otimes \widetilde{\lambda}_R(L/K,\widetilde{\psi})^{\otimes \operatorname{rank} V}$. This completes the proof. \square Let k be a perfect field of characteristic p, X_0 a proper smooth connected curve over $k, U_0 \subset X_0$ a non-empty open subscheme of $X_0, j_0 : U_0 \hookrightarrow X_0$ the inclusion, $X = X_0 \otimes_k \overline{k}, U = U_0 \otimes_k \overline{k}, j = j_0 \times id : U \hookrightarrow X, R$ a strict p'-coefficient ring, $R_0 \subset R$ a finite subring, and \mathcal{F} a smooth R_0 -flat R_0 -sheaf on U_0 . Define the global $\widetilde{\varepsilon}$ -character $\widetilde{\varepsilon}_{R_0}(U_0, \mathcal{F})$ by $$\varepsilon_{R_0}(U_0, \mathcal{F}) := \det(R\Gamma_c(U, \mathcal{F}))^{\otimes -1} = \det(R\Gamma_c(X, j_{0,!}\mathcal{F}))^{\otimes -1}.$$ Let $\omega \in \Gamma(U_0, \Omega^1_{U_0/k})$ be a non-zero differential on U. Fix a non-trivial additive character R_0 -sheaf $\widetilde{\psi}$ on $\mathbb{G}_{a,k}$. For a closed point $x \in X$, let $\kappa(x)$ be the residue field at x, K_x the completion of the function field of X at x, and \mathcal{F}_x the isomorphism class in $\text{Rep}(W_{K_x}, R)$ corresponding to the pull-back of \mathcal{F} by the canonical morphism $\operatorname{Spec}(K_x) \to U$. Define the additive character R-sheaf $\widetilde{\psi}_{\omega,x}$ on K_x to be the pull-back of $\widetilde{\psi}|_{\mathbb{G}_{a,\kappa(x)}}$ by the morphism $K_x^{[m,-\operatorname{ord}_x(\omega)-1]} \to \mathbb{G}_{a,\kappa(x)}$ defined by $a \mapsto \operatorname{Res}(a\omega)$. **Theorem 4.50.** With the above notations, we have $$\widetilde{\varepsilon}_{R_0}(U_0, \mathcal{F}) = R(-\frac{1}{2}\chi(X)\operatorname{rank}(\mathcal{F})) \otimes_R \bigotimes_{x \in X_0 - U_0} \widetilde{\varepsilon}_{0,R}(\mathcal{F}_x, \widetilde{\psi}_{\omega,x}),$$ where $\chi(X)$ is the Euler number of X. *Proof.* We may assume that $X_0 = \mathbb{P}^1_k$. Let K_0 denote the function field of \mathbb{P}_1 . For a closed point x on \mathbb{P}^1_k , let K_x be the completion of K at x. Take a sufficiently large integer N. Take a finite etale Galois covering V_0 of U_0 such that the sheaf \mathcal{F} and the sheaves $\widetilde{\psi}_{\omega,x}|_{K_x^{[-N,-\operatorname{ord}_x(\omega)-1]}}$ is constant on V_0 . Let \overline{V}_0 be the smooth completion of V_0 . The morphism f is canonically extension to the morphism $\overline{f}: \overline{V}_0 \to \mathbb{P}^1_k$. Let L_0 denote the function field of V_0 . For a closed point y on \overline{V}_0 , let L_y denote the completion of L_0 at y. There exists a datum $$(A, (i_{A,x})_x, U_A, \omega_A, V_A, (B_y, (\pi_{M_y})_{M_y})_y)$$ which satisfies the following conditions: - A is a good perfect \mathbb{F}_p -subalgebra of k, - In $(i_{A,x})_x$, x runs over all points in $\mathbb{P}^1_k U_0$. For each such x, $i_{A,x}$ is a closed A-immersion Spec $(A_x) \hookrightarrow \mathbb{P}^1_A$ from a finite etale A-subalgebra of $\kappa(x)$ to \mathbb{P}^1_A which is equal to $i_x : x \hookrightarrow \mathbb{P}^1_k$ after tensored with k over A. - $U_A := \mathbb{P}^1_A \bigcup_x i_x(\operatorname{Spec}(A_x)).$ - $\omega_A \in \Gamma(U_A, \Omega^1_{U_A/A})$ is a 1-differential on U_A such that $\omega_A|_{U_0} = \omega$. - $V_A \to U_A$ is a finite etale morphism such that $V_A \otimes_A k \cong V_0$ as U_0 -schemes. - In $(B_y, (\pi_{M_y})_{M_y})_y$, y runs over all pairs of closed point $y \in \overline{Y}_0$ with $x = \overline{f}(y) \notin U_0$. For each such y, $(B_y, (\pi_{M_y})_{M_y})$ is an $(N, \widetilde{\psi}_{\omega,x})$ -admissible A_x -structure of L_y/K_x . Let \mathcal{F}_A be the smooth etale R_0 -sheaf on U_A corresponding to \mathcal{F} . Let $\mathcal{F}_{A,x}$ be the object in $$\operatorname{Rep}(\pi_1(\operatorname{Spec}(A_x((\pi_{K_x}))), R_0))$$ corresponding to \mathcal{F}_x . By using $\mathcal{F}_{A,x}$, we define a smooth invertible R_0 -sheaf $\widetilde{\varepsilon}_{0,R_0,A_x}(\mathcal{F}_x,\widetilde{\psi}_{\omega,x})$ on Spec (A_x) whose pull-back on Spec (k) is the sheaf corresponding to $\widetilde{\varepsilon}_{0,R}(\mathcal{F}_x,\widetilde{\psi}_{\omega,x})$. We also define the smooth invertible R_0 -sheaf $\widetilde{\varepsilon}_{R_0,A}(U,\mathcal{F})$ on $\operatorname{Spec}(A)$ to be $\det_{R_0} Rf_!(U_A, \mathcal{F}_A)$, where $f: U_A \to \operatorname{Spec}(A)$ is the structure morphism. Let $z \in \operatorname{Spec}(A)$ be a closed point, and $i_z : \operatorname{Spec}(\kappa(z)) \hookrightarrow \operatorname{Spec}(A)$ the canonical inclusion. Set $U_z := U_A \otimes_A \kappa(z)$. Then U_z is an open subscheme of \mathbb{P}^1_k . Let $i_{U,z}: U_z \hookrightarrow U_A$ be the canonical inclusion and set $\mathcal{F}_z = i_{U,z}^* \mathcal{F}$ and $\omega_z = i_{U,z}^* \omega_A$. Then we have $$\operatorname{Tr}(-\operatorname{Fr}_z; i_z^* \widetilde{\varepsilon}_{R_0,A}(U,\mathcal{F})) = \varepsilon_{R_0}(U_z,\mathcal{F}_z).$$ For $x \in \mathbb{P}^1_k - U_0$, put $z_x = z \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A_x)$. For all point $y \in z_x$, let $i_{z,y} : y \hookrightarrow z_x \hookrightarrow \operatorname{Spec}(A_x)$ be the canonical inclusion. Then we have $$\operatorname{Tr}(\operatorname{Fr}_y; i_{z,y}^* \widetilde{\varepsilon}_{0,R,A_x}(\mathcal{F}_x, \widetilde{\psi}_{\omega,x})) = (-1)^{\operatorname{rank} \mathcal{F} + \operatorname{sw}_y(\mathcal{F}_z)} \varepsilon_{0,R}(\mathcal{F}_{z,y}, \psi_{\omega_z,y}).$$ By [11, Thm. 4.1], we have $$\varepsilon_{R_0}(U_z, \mathcal{F}_z) = (\sharp \kappa(z))^{\operatorname{rank}(\mathcal{F}_z)} \prod_{x \in \mathbb{P}^1_{\kappa(z)} - U_z} \varepsilon_{0,R}(\mathcal{F}_{z,x}, \psi_{\omega_z,x}).$$ From this we have $$i_z^* \widetilde{\varepsilon}_{R_0,A}(U,\mathcal{F}) \cong R_0(-\frac{1}{2}\chi(X) \operatorname{rank}(\mathcal{F})) \otimes_{R_0} \bigotimes_x i_z^* \pi_{x,*} \widetilde{\varepsilon}_{0,R,A_x}(\mathcal{F}_x,\widetilde{\psi}_{\omega,x})),$$ where $\pi_x : \operatorname{Spec}(A_x) \to \operatorname{Spec}(A)$ is the structure morphism. Hence the theorem follows from the standard argument using Chebotarev's theorem (cf. proof of Lemma 4.18). **Acknowledgements.** The author would like to thank his supervisor Prof. Takeshi Saito for many fruitful discussions and helpful comments. ## References - [1] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular functions in one variable II. Lecture Notes in Math. 349, 501–597. Springer, Berlin, 1973. - [2] P. Deligne, Les constantes locales de l'équation fonctionnelle de la fonction L d'Artin d'une représentation orthogonale. Invent. Math. 35 (1976), 299–316. - [3] M. HAZEWINKEL, Corps de classes local, appendix of M. DEMAZURE, P. GABRIEL, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, 648–681. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. - [4] G. LAUMON, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil. Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210. - [5] T. Saito, Ramification groups and local constants. UTMS preprint 96-19, University of Tokyo (1996). - [6] J.-P. SERRE, Groupes proalgébriques. Inst. Hautes Études Sci. Publ. Math. 7 (1960), 1–67. - [7] J.-P. SERRE, Zeta and L functions. Arithmetical Algebraic Geometry, 82–92. Harper and Row, New York, 1965. - [8] J.-P. Serre, Représentations linéaires des groupes finis. Hermann, Paris, 1967. - [9] J.-P. Serre, Corps locaux. Hermann, Paris, 1968. - [10] S. Yasuda, Local constants in torsion rings. Preprint (2001). - [11] S. Yasuda, The product formula for local constants in torsion rings. Preprint (2001). Seidai YASUDA Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan *E-mail*: yasuda@kurims.kyoto-u.ac.jp