OURNAL de Théorie des Nombres de Bordeaux

 anciennement Séminaire de Théorie des Nombres de Bordeaux
Marco ILLENGO
 Cohomology of integer matrices and local-global divisibility on the torus

 Tome 20, $\mathrm{n}^{\mathrm{o}} 2$ (2008), p. 327-334.http://jtnb.cedram.org/item?id=JTNB_2008__20_2_327_0
© Université Bordeaux 1, 2008, tous droits réservés.
L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Cohomology of integer matrices and local-global divisibility on the torus

par Marco ILLENGO

RÉSumé. Soient $p \neq 2$ un nombre premier et G un p-groupe de matrices dans $\mathrm{SL}_{n}(\mathbb{Z})$, pour un nombre entier n. Dans cet article nous montrons que, pour $n<3(p-1)$, un certain sous-groupe du groupe de cohomologie $H^{1}\left(G, \mathbb{F}_{p}^{n}\right)$ est trivial. Nous montrons aussi que cette affirmation peut être fausse pour $n \geqslant 3(p-1)$. Avec un résultat de Dvornicich et Zannier (voir [2]), nous obtenons que le principe local-global de divisibilité pour p vaut pour tout tore algébrique de dimension $n<3(p-1)$.

Abstract. Let $p \neq 2$ be a prime and let G be a p-group of matrices in $\mathrm{SL}_{n}(\mathbb{Z})$, for some integer n. In this paper we show that, when $n<3(p-1)$, a certain subgroup of the cohomology group $H^{1}\left(G, \mathbb{F}_{p}^{n}\right)$ is trivial. We also show that this statement can be false when $n \geqslant 3(p-1)$. Together with a result of Dvornicich and Zannier (see [2]), we obtain that any algebraic torus of dimension $n<3(p-1)$ enjoys a local-global principle on divisibility by p.

1. Introduction

Let G be a subgroup of $\mathrm{SL}_{n}(\mathbb{Z})$, for some n. Then G acts on \mathbb{Z}^{n} and, by projection, on \mathbb{F}_{p}^{n}, for some prime p. Consider the group cohomology of the couple $\left(G, \mathbb{F}_{p}^{n}\right)$ and note that, for every subgroup C of G, there is a well-defined restriction map $H^{1}\left(G, \mathbb{F}_{p}^{n}\right) \rightarrow H^{1}\left(C, \mathbb{F}_{p}^{n}\right)$. In this paper we prove the following theorem.

Theorem 1. Let $p \neq 2$ be a prime and let $n<3(p-1)$. For every p group G in $\mathrm{SL}_{n}(\mathbb{Z})$ the projection $H^{1}\left(G, \mathbb{F}_{p}^{n}\right) \xrightarrow{\varphi} \prod H^{1}\left(C, \mathbb{F}_{p}^{n}\right)$, the product being taken on all cyclic subgroups C of G, is injective.

We also prove that this statement is 'best possible' on n.
Proposition 2. Let $p \neq 2$ be a prime and let $n \geqslant 3(p-1)$. There exists a p-group G in $\mathrm{SL}_{n}(\mathbb{Z})$ such that the map $H^{1}\left(G, \mathbb{F}_{p}^{n}\right) \xrightarrow{\varphi} \prod H^{1}\left(C, \mathbb{F}_{p}^{n}\right)$, the product being taken on all cyclic subgroups C of G, is not injective.

Manuscrit reçu le 21 janvier 2008.

Our Theorem 1 is motivated by a paper of Dvornicich and Zannier on local-global divisibility for algebraic groups. In [2, Sections 4-5] they proved that local-global divisibility by a prime p holds on every algebraic torus of dimension $n \leqslant \max \{3,2(p-1)\}$, but fails for at least one torus of dimension $n=p^{4}-p^{2}+1$. (We are using the additive notation for the torus: division by p corresponds to taking p-th roots in the multiplicative group \mathbb{G}_{m}.)

The authors also suggested that their proof of the condition $n \leqslant 2(p-1)$ in the case $p \neq 2$ could be adapted to prove local-global divisibility by p under a weaker condition, so to reduce the gap of uncertainty for n. In particular, in the first part of their proof they show that, for $p \neq 2$ and n fixed, the injectivity of φ for any p-group $G<\mathrm{SL}_{n}(\mathbb{Z})$ implies local-global divisibility by p for every algebraic torus of dimension n.

Together with this result, Theorem 1 allows to replace the condition $n \leqslant 2(p-1)$ with the weaker condition $n<3(p-1)$.

Theorem 3. Let $p \neq 2$ be a prime, k be a number field, and \mathcal{T} be an algebraic k-torus of dimension $n<3(p-1)$. Fix any point $P \in \mathcal{T}(k)$; if for all but a finite number of completions k_{ν} of k there exists a point $D_{\nu} \in \mathcal{T}\left(k_{v}\right)$ with $p D_{\nu}=P$, then there exists a $D \in \mathcal{T}(k)$ such that $p D=P$.

Using the terminology of [2], we say that a cocycle Z on $\left(G, \mathbb{F}_{p}^{n}\right)$ satisfies the local conditions if for every $g \in G$ there exists a $W_{g} \in \mathbb{F}_{p}^{n}$ such that $Z_{g}=g W_{g}-W_{g}$. Note that the set of cocycles that satisfy the local conditions is precisely the kernel of φ.

For $p \neq 2$ and $n \geqslant 3(p-1)$ the example in Proposition 2 allows, as Dvornicich and Zannier pointed out in [2, Section 4] and [3, Section 3], to build an algebraic torus of dimension n defined over some number field k and, possibly extending the field k, a k-rational point on the torus for which the local-global divisibility by p fails.

In Section 2 we shall prove Theorem 1, using some elementary results of the geometry of numbers and of the theory of representations.

In Section 3 we shall prove Proposition 2 for the case $n=3(p-1)$; the general case can be obtained by means of a direct sum with the trivial representation of dimension $n-3(p-1)$.

Throughout this paper, whenever their orders are known, we shall denote by I the identity matrix and by O the null matrix.

2. Proof of theorem

We begin the proof of Theorem 1 by an inspection of the p-group G. The following result is slightly more general than needed.

Lemma 4. Let p be a prime and let G be a p-group of matrices in $\mathrm{SL}_{n}(\mathbb{Q})$. If $n<p(p-1)$ then G is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{b}$, for some $b \leqslant n /(p-1)$.

Proof. Note that any non-trivial element g of G is a matrix of multiplicative order p^{m}, for some positive integer m. Then at least one of the eigenvalues of g is a p^{m}-th primitive root of unity; since g is defined over \mathbb{Q}, every p^{m}-th primitive root of unity must be an eigenvalue of g. This implies that the number of eigenvalues of g, bounded by its order $n<p(p-1)$, is at least $\phi\left(p^{m}\right)=p^{m-1}(p-1)$. It follows that $m=1$, i.e. that g has order p. Thus G has exponent p.

Let now K be $(\mathbb{Z} / p \mathbb{Z})^{*}$; we say that two elements, g and h, of G are K-conjugate if there exists a $k \in K$ such that g^{k} and h are conjugate by an element of G. By the theory of characters for finite representations (see [4, Section 12.3]), the number of representations of G which are irreducible over \mathbb{Q} is equal to the number of K-conjugation classes of G. Now, let g be a non-trivial element of G and assume that it is conjugate to g^{k}, for some $k \in K$. This means that there exists an element h in G such that conjugation by h maps g to g^{k}. This implies that conjugation by h^{p} maps g to $g^{k^{p}}=g^{k}$; on the other hand h^{p} is the neuter element, thus $g^{k}=g$. This shows that any two distinct powers of a same element are not conjugate, and that every K-conjugation class of G - except the class of the identity element - is the union of $p-1$ distinct conjugation classes of G. In other words, every \mathbb{Q}-irreducible representation of G is equivalent to the direct sum of the distinct conjugates of some \mathbb{C}-irreducible representation of G.

Now, if the group G was non-commutative, its faithful representation G would contain an irreducible representation of degree $d \geqslant p$, thus also a \mathbb{Q} irreducible representation of degree $(p-1) d \geqslant(p-1) p>n$, which is not possible. This implies that G is an abelian group.

By the classification of abelian groups, we obtain that G is isomorphic to the direct product of b copies of $\mathbb{Z} / p \mathbb{Z}$, for some integer b. Note that any faithful representation of G over \mathbb{C} has order at least b, and that any faithful representation of G over \mathbb{Q} has order at least $b(p-1)$. Then $b \leqslant n /(p-1)$.

For the rest of this section, we shall assume the hypotesis of Theorem 1, that is, we have a prime number $p \neq 2$, an integer $n<3(p-1)$, and a p-group $G<\mathrm{SL}_{n}(\mathbb{Z})$.

We remark that, when G is a cyclic group, the theorem is trivially true. Applying Lemma 4, we obtain that G is cyclic (and the theorem is proved), except for the case $G \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$, where $2(p-1) \leqslant n<3(p-1)$. Let us put ourselves in this case.

Note that the proof of Lemma 4 shows that the representation G is the direct sum of two distinct \mathbb{Q}-irreducible representations of order $p-1$ and $(n-2(p-1))$ copies of the trivial representation.

We remark that, after a base-change to the p-th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$, the representation G could be written in diagonal form, as a direct sum
of its irreducible subrepresentations. Also, after a base-change to \mathbb{Q}, the representation G could be written as a direct sum of its \mathbb{Q}-irreducible subrepresentations. Since we are dealing with the action of G on \mathbb{F}_{p}^{n}, though, we shall restrict to base-changes to \mathbb{Z}, which are preserved under reduction modulo p.

Consider the lattice $\mathrm{N}:=\mathbb{Z}^{n}$; it contains a sublattice M that is fixed by G : it is the intersection of N with the subspace $\left(\mathbb{Q}^{n}\right)^{G}$ of vectors which are invariant by G. We fix a \mathbb{Z}-basis for M and we apply a result on lattices (see $[1$, Cor. 3 to Thm. 1, Ch. 1]) to extend it to a basis of N : this splits the lattice as $\mathrm{N}=\mathrm{M} \oplus \mathrm{L}$. Now, let ρ be one of the two non-trivial, \mathbb{Q} irreducible subrepresentations of G, and let H be its kernel. Repeating the above argument on the restriction of H to L , we determine a basis for \mathbb{Z}^{n} that allows us to write N in the form $\mathrm{N}^{(1)} \oplus \mathrm{N}^{(2)} \oplus \mathrm{N}^{(3)}$. Using this new basis, we can assume that every element g of G is of the form

$$
g=\left(\begin{array}{ccc}
I & A_{g} & B_{g} \\
O & M_{g} & C_{g} \\
O & O & N_{g}
\end{array}\right)
$$

where M and N are the two \mathbb{Q}-irreducible representations of G of order $p-1$. In particular, we can choose generators σ and τ for G of the forms

$$
\sigma=\left(\begin{array}{ccc}
I & A_{\sigma} & B_{\sigma} \\
O & M & C_{\sigma} \\
O & O & I
\end{array}\right) ; \quad \quad \tau=\left(\begin{array}{ccc}
I & A_{\tau} & B_{\tau} \\
O & I & C_{\tau} \\
O & O & N
\end{array}\right)
$$

Note that the eigenvalues of M are the $p-1$ distinct p-th roots of unity. This implies that the minimal polynomial of M is $\left(x^{p}-1\right) /(x-1)$ and that the determinant of $M-I$ is p.

Over \mathbb{F}_{p}, the matrix M solves the polynomial $(x-1)^{p-1}$. Its minimal polynomial is thus of the form $(x-1)^{s}$, for some $s<p$. This implies that $(M-I)^{s}$ has all entries in $p \mathbb{Z}$, so that p divides every column of $(M-I)^{s}$. Then p^{p-1} divides its determinant, $\operatorname{det}(M-I)^{s}=p^{s}$; it follows that, over \mathbb{F}_{p}, the minimal polynomial of M is $(x-1)^{p-1}$ and M is a Jordan block. In particular we deduce the following proposition.

Proposition 5. Let M be as above. For every two non-negative integers i and j with $i+j=p-1$, the image of $(M-I)^{i}$ is the kernel of $(M-I)^{j}$, i.e. for every vector ${ }^{1} A \in \mathbb{Z}^{p-1}$

$$
(M-I)^{j} A \equiv O \quad(\bmod p) \Longleftrightarrow \exists B \in \mathbb{Z}^{p-1} \mid A \equiv(M-I)^{i} B \quad(\bmod p)
$$

The same holds for N.

[^0]We remark that a direct computation of $\sigma \tau=\tau \sigma$ provides

$$
\sigma \tau=\left(\begin{array}{ccc}
I & A_{\sigma} & \star \\
O & M & C_{\sigma}+C_{\tau} \\
O & O & N
\end{array}\right)
$$

and the relations

$$
\text { (1) } A_{\tau}=O, \quad(M-I) C_{\tau}=-C_{\sigma}(N-I), \quad B_{\sigma}=A_{\sigma}(M-I)^{-1} C_{\sigma}
$$

Let now \tilde{Z} be a $\left(G, \mathbb{F}_{p}^{n}\right)$-cocycle that satisfies the local conditions. Then for every g in G there exists a \tilde{W}_{g} in \mathbb{F}_{p}^{n} such that $\tilde{Z}_{g} \equiv g \tilde{W}_{g}-\tilde{W}_{g}(\bmod p)$; we choose representants W_{g} of \tilde{W}_{g} in \mathbb{Z}^{n} and we define $Z_{g}:=g W_{g}-W_{g}$ for every g in G. Note that $\tilde{Z}_{g} \equiv Z_{g}(\bmod p)$ for every g in G.

Modulo a coboundary we can assume $Z_{\tau} \equiv O(\bmod p)$. This implies, by the cocycle relation, $Z_{\sigma \tau} \equiv Z_{\sigma}+\sigma Z_{\tau} \equiv Z_{\sigma}(\bmod p)$. By definition, Z_{σ} and $Z_{\sigma \tau}$ are:

$$
\begin{aligned}
& \left(\begin{array}{c}
Z_{\sigma}^{(1)} \\
Z_{\sigma}^{(2)} \\
Z_{\sigma}^{(3)}
\end{array}\right)=\left(\begin{array}{c}
A_{\sigma} W_{\sigma}^{(2)}+B_{\sigma} W_{\sigma}^{(3)} \\
(M-I) W_{\sigma}^{(2)}+C_{\sigma} W_{\sigma}^{(3)} \\
O
\end{array}\right) \\
& \left(\begin{array}{c}
Z_{\sigma \tau}^{(1)} \\
Z_{\sigma \tau}^{(2)} \\
Z_{\sigma \tau}^{(3)}
\end{array}\right)=\left(\begin{array}{c}
\star \\
(M-I) W_{\sigma \tau}^{(2)}+\left(C_{\sigma}+C_{\tau}\right) W_{\sigma \tau}^{(3)} \\
(N-I) W_{\sigma \tau}^{(3)}
\end{array}\right)
\end{aligned}
$$

We remark that $(N-I) W_{\sigma \tau}^{(3)} \equiv O(\bmod p)$; by Proposition 5 , this implies that $W_{\sigma \tau}^{(3)} \equiv(N-I)^{p-2} \tilde{R}(\bmod p)$, for some \tilde{R} with entries in \mathbb{F}_{p}. It follows that, modulo $p,(M-I)^{p-2} Z_{\sigma \tau}^{(2)}$ is of the form

$$
(M-I)^{p-1} W_{\sigma \tau}^{(2)}+(M-I)^{p-2}\left(C_{\sigma}+C_{\tau}\right)(N-I)^{p-2} \tilde{R}
$$

Applying the second relation in (1) and $(M-I)^{p-1} \equiv(N-I)^{p-1} \equiv O$, we obtain $(M-I)^{p-2} Z_{\sigma \tau}^{(2)} \equiv O(\bmod p)$. Applying Proposition 5 to $Z_{\sigma}^{(2)}$ (or to $\left.Z_{\sigma \tau}^{(2)}\right)$ we obtain $Z_{\sigma}^{(2)} \equiv(M-I) \tilde{S}(\bmod p)$, for some \tilde{S} with entries in \mathbb{F}_{p}. Let S be any representant of \tilde{S} over \mathbb{Z}; since the entries of $Z_{\sigma}^{(2)}-(M-I) S$ are all divisible by p and since $(M-I)$ has determinant p, we may assume $Z_{\sigma}^{(2)}=(M-I) S$. Thus we have

$$
Z_{\sigma}^{(1)}=A_{\sigma}(M-I)^{-1} Z_{\sigma}^{(2)}=A_{\sigma} S
$$

Taking $V=\left(\begin{array}{c}O \\ S \\ O \\ \tilde{Z}\end{array}\right)$, we have $Z_{\sigma}=\sigma V-V$ and $Z_{\tau} \equiv \tau V-V(\bmod p)$. This implies that \tilde{Z} is a $\left(G, \mathbb{F}_{p}^{n}\right)$-coboundary, concluding the proof of Theorem 1.

3. A counterexample

In this section we shall prove Proposition 2. Let $p \neq 2$ be a prime and let $n \geqslant 3(p-1)$ be an integer. As we have said in Section 1, we can assume $n=3(p-1)$. We are going to define a p-group G of matrices in $\mathrm{SL}_{n}(\mathbb{Z})$ and a $\left(G, \mathbb{F}_{p}^{n}\right)$-cocycle Z that satisfies the local conditions without being a coboundary.

Let $M \in \mathrm{SL}_{p-1}(\mathbb{Z})$ be a matrix with minimal polynomial $\left(x^{p}-1\right) /(x-1)$ (for instance, the Frobenius matrix of this polynomial). Note that M satisfies Proposition 5, as in the previous section. Let now \mathbf{u} and \mathbf{v} be vectors in \mathbb{Z}^{p-1} such that

$$
\begin{aligned}
\mathbf{u} \not \equiv O & (\bmod p), & \mathbf{v} \not \equiv O & (\bmod p) ; \\
(M-I) \mathbf{u} \equiv O & (\bmod p), & \mathbf{v}^{t}(M-I) \equiv O & (\bmod p) .
\end{aligned}
$$

We define the matrix $X:=\frac{1}{p} \mathbf{u} \times \mathbf{v}^{t}$, with entries in \mathbb{Q}; note that its entries are not all in \mathbb{Z}. We also define the matrices $A:=(M-I) X$ and $B:=X(I-M)$, with entries in \mathbb{Z}.

Let G be the group generated by the matrices σ and τ defined as

$$
\sigma=\left(\begin{array}{ccc}
M & O & A \\
& M & A \\
& & I
\end{array}\right), \quad \tau=\left(\begin{array}{ccc}
I & O & B \\
& M & A+B \\
& & M
\end{array}\right)
$$

it is easily verified that G is a subgroup of $\mathrm{SL}_{n}(\mathbb{Z})$ and that the map

$$
(i, j) \quad \mapsto \quad \sigma^{i} \tau^{j}=\left(\begin{array}{ccc}
M^{i} & O & M^{i} X-X M^{j} \\
& M^{i+j} & M^{i+j} X-X M^{j} \\
& & M^{j}
\end{array}\right)
$$

provides an isomorphism $G \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
Lemma 6. There exist vectors \mathbf{r}, \mathbf{s} and \mathbf{t} in \mathbb{Z}^{p-1} such that:

$$
\begin{array}{ll}
B \mathbf{t} \equiv(M-I) \mathbf{r} \not \equiv O & (\bmod p), \\
(M-I) B \mathbf{t} \equiv O & (\bmod p), \\
(A+B) \mathbf{t} \equiv(M-I) \mathbf{s} & (\bmod p) .
\end{array}
$$

Proof. Assume $B(M-I)^{p-2} \equiv O(\bmod p)$. Then by Proposition 5 there exists an integer matrix X_{0} with $B \equiv X_{0}(M-I)(\bmod p)$; since $(M-I)$ has determinant p, this implies that $X=-B(M-I)^{-1}$ is an integer matrix, which is absurd. Thus $B(M-I)^{p-2} \not \equiv O(\bmod p)$.

We take a vector \mathbf{t}_{0} in \mathbb{Z}^{p-1} with $B(M-I)^{p-2} \mathbf{t}_{0} \not \equiv O(\bmod p)$ and we define $\mathbf{t}=(M-I)^{p-2} \mathbf{t}_{0}$; then $B \mathbf{t} \not \equiv O(\bmod p)$.

By definition of A and B we have $(M-I) B=-A(M-I)$. Together with $(M-I)^{p-1} \equiv O(\bmod p)$, this implies

$$
(M-I) B(M-I)^{p-2} \equiv(M-I)^{p-2} A(M-I) \equiv O \quad(\bmod p) .
$$

Then $(M-I) B \mathbf{t} \equiv O(\bmod p)$ and $(M-I)^{p-2}(A+B) \mathbf{t} \equiv O(\bmod p)$; we conclude by Proposition 5.

Proposition 7. The vectors $Z_{\sigma}^{(1)}:=O$ and $Z_{\tau}^{(1)}:=B \mathbf{t}$ define $a\left(G, \mathbb{F}_{p}^{n}\right)$ cocycle $Z \equiv\left(\begin{array}{c}Z_{(1)}^{(1)} \\ O \\ O\end{array}\right)(\bmod p)$ that is not a $\left(G, \mathbb{F}_{p}^{n}\right)$-coboundary.

Proof. To show that Z is a cocycle we only need to verify, on $Z^{(1)}$, the cocycle conditions derived from the relations $\sigma^{p}=I, \tau^{p}=I$ and $\sigma \tau=\tau \sigma$:

$$
\begin{aligned}
Z_{\sigma^{p}}^{(1)}-Z_{I}^{(1)} \equiv\left(M^{p-1}+\ldots+M+I\right) Z_{\sigma}^{(1)} \equiv O & & (\bmod p) ; \\
Z_{\tau^{p}}^{(1)}-Z_{I}^{(1)} \equiv p Z_{\tau}^{(1)} \equiv O & & (\bmod p) ; \\
Z_{\sigma \tau}^{(1)}-Z_{\tau \sigma}^{(1)} \equiv(M-I) Z_{\tau}^{(1)} \equiv O & & (\bmod p) .
\end{aligned}
$$

If Z was a coboundary, then there would exist a vector W in \mathbb{Z}^{n} such that $Z_{g} \equiv(g-I) W(\bmod p)$ for every g in G; computing Z_{σ} and Z_{τ}, we would obtain

$$
\begin{array}{ll}
Z_{\sigma}^{(2)} \equiv(M-I) W^{(2)}+A W^{(3)} & (\bmod p), \\
Z_{\tau}^{(1)} \equiv B W^{(3)} & (\bmod p), \\
Z_{\tau}^{(2)} \equiv(M-I) W^{(2)}+A W^{(3)}+B W^{(3)} & (\bmod p),
\end{array}
$$

which is absurd, since $Z_{\tau}^{(2)} \equiv Z_{\sigma}^{(2)} \equiv O(\bmod p)$ and $Z_{\tau}^{(1)} \not \equiv O(\bmod p)$.
It now remains to be shown that Z satisfies the local conditions, i.e. that for every g in G there exists a W_{g} in \mathbb{F}_{p}^{n} such that $Z_{g} \equiv(g-I) W_{g}(\bmod p)$.

Over τ we have

$$
(\tau-I)\left(\begin{array}{c}
O \\
-\mathbf{s} \\
\mathbf{t}
\end{array}\right) \equiv\left(\begin{array}{ccc}
O & O & B \\
O & M-I & A+B \\
O & O & M-I
\end{array}\right)\left(\begin{array}{c}
O \\
-\mathbf{s} \\
\mathbf{t}
\end{array}\right) \equiv\left(\begin{array}{c}
Z_{\tau}^{(1)} \\
O \\
O
\end{array}\right) \quad(\bmod p)
$$

For every $i \in \mathbb{F}_{p}^{*}$ we have $Z_{\tau^{i} \sigma}^{(1)} \equiv i Z_{\tau}^{(1)}+Z_{\sigma}^{(1)} \equiv i B \mathbf{t}(\bmod p)$; then

$$
\left(\sigma \tau^{i}-I\right)\left(\begin{array}{c}
i \mathbf{r} \\
O \\
O
\end{array}\right) \equiv\left(\begin{array}{ccc}
M-I & \star & \star \\
O & \star & \star \\
O & O & \star
\end{array}\right)\left(\begin{array}{c}
i \mathbf{r} \\
O \\
O
\end{array}\right) \equiv\left(\begin{array}{c}
Z_{\sigma \tau^{i}}^{(1)} \\
O \\
O
\end{array}\right) \quad(\bmod p)
$$

Since τ and the $\sigma \tau^{i}$ with $i \in \mathbb{F}_{p}$ are the generators of all non-trivial cyclic subgroups of G, this shows that Z satisfies the local conditions. This completes the proof of Proposition 2.

References

[1] J. W. S. Cassels, An introduction to the Geometry of Numbers. Springer, 1997.
[2] R. Dvornicich, U. Zannier, Local-global divisibility of rational points in some commutative algebraic groups. Bull. Soc. Math. France 129 (2001), no. 3, 317-338.
[3] R. Dvornicich, U. Zannier, On a local-global principle for the divisibility of a rational point by a positive integer. Bull. London Math. Soc. 39 (2007), 27-34.
[4] J.-P. Serre, Représentations linéaires des groupes finis. Hermann, 1967.

Marco Illengo
Scuola Normale Superiore
Piazza dei Cavalieri 7
56126 Pisa, Italia
E-mail: marco.illengo@sns.it

[^0]: ${ }^{1}$ This immediately extends to matrices $(p-1) \times m$, for any positive integer m.

