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Almost powers in the Lucas sequence

par Yann BUGEAUD, Florian LUCA, Maurice MIGNOTTE
et Samir SIKSEK

À Henri Cohen, à l’occasion de son soixantième anniversaire

Résumé. La liste complète des puissances pures qui apparaissent
dans les suites de Fibonacci (Fn)n≥0 et de Lucas (Ln)n≥0 ne fut
déterminée que tout récemment [10]. Les démonstrations com-
binent des techniques modulaires, issues de la preuve de Wiles du
dernier théorème de Fermat, avec des méthodes classiques d’ap-
proximation diophantienne, dont la théorie de Baker. Dans le pré-
sent article, nous résolvons les équations diophantiennes Ln =
qayp, avec a > 0 et p ≥ 2, pour tous les nombres premiers
q < 1087, et en fait pour tous les nombres premiers q < 106 à l’ex-
ception de 13 d’entre eux. La stratégie suivie dans [10] s’avère in-
opérante en raison de la taille des bornes numériques données par
les méthodes classiques et de la complexité des équations de Thue
qui apparaissent dans notre étude. La nouveauté mise en avant
dans le présent article est l’utilisation simultanée de deux courbes
de Frey afin d’aboutir à des équations de Thue plus simples, et
donc à de meilleures bornes numériques, qui contredisent les mi-
norations que donne le crible modulaire.

Abstract. The famous problem of determining all perfect pow-
ers in the Fibonacci sequence (Fn)n≥0 and in the Lucas sequence
(Ln)n≥0 has recently been resolved [10]. The proofs of those re-
sults combine modular techniques from Wiles’ proof of Fermat’s
Last Theorem with classical techniques from Baker’s theory and
Diophantine approximation. In this paper, we solve the Diophan-
tine equations Ln = qayp, with a > 0 and p ≥ 2, for all primes
q < 1087 and indeed for all but 13 primes q < 106. Here the
strategy of [10] is not sufficient due to the sizes of the bounds and
complicated nature of the Thue equations involved. The novelty
in the present paper is the use of the double-Frey approach to
simplify the Thue equations and to cope with the large bounds
obtained from Baker’s theory.
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1. Introduction

We consider the Fibonacci sequence (Fn)n≥0 and the Lucas sequence
(Ln)n≥0 which are both solutions to the linear recurrence un+2 = un+1+un,
with the initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1, respectively.

The problem of determining all perfect powers in the Fibonacci sequence
and in the Lucas sequence was a famous open problem for over 40 years, and
has been resolved only recently [10]; for a detailed history of the problem
see [10, Section 10].

Theorem 1. The only perfect powers among the Fibonacci numbers are
F0 = 0, F1 = F2 = 1, F6 = 8 and F12 = 144. For the Lucas numbers, the
only perfect powers are L1 = 1 and L3 = 4.

Subsequent papers studied several multiplicative generalizations such as
Fn = qayp with q prime (see [9]) and Fn1 · · ·Fnr = ayp with 1 ≤ r < p and
a fixed integer a (see [7]).

Here, we consider the Diophantine equations Ln = qayp, with a > 0, p ≥
2 and q prime. These equations appear to be much more difficult to solve
than the equations Fn = qayp. The reason for this is that the Lucas sequence
(Ln)n≥0 has weaker divisibility properties than the Fibonacci sequence. By
combining Baker’s theory of linear forms in logarithms and repeated use of
an efficient sieve obtained via the double-Frey approach, we were able to
solve it completely for all primes q less than 1087.

Theorem 2. The only nonnegative integer solutions (n, y, p) of the equa-
tions

(1) Ln = qayp, with a > 0 , and p ≥ 2 ,

with q < 106 prime and
q 6= 1087, 2207, 4481, 14503, 19207, 21503, 34303,

48767, 119809, 232049, 524287, 573569, 812167,
(2)

are

L0 = 2, L2 = 3, L3 = 22, L4 = 7, L5 = 11, L6 = 2× 32, L7 = 29,

L8 = 47, L9 = 19× 22, L11 = 199, L13 = 521, L17 = 3571, L19 = 9349.

We note that equation (1) also has the solutions L16 = 2207 × 1 and
L28 = 14503× 72. We expect that the equation has no other solutions with
q < 106, but for the moment are unable to prove this.

The traditional approach to Diophantine equations involving Fibonacci
numbers combines clever tricks with various elementary identities connect-
ing Fibonacci and Lucas numbers. Theorem 1 was proved by combining
some of the deepest tools available in Number Theory: namely the modu-
lar approach (used in the proof of Fermat’s Last Theorem) and a refined
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version of Baker’s theory of linear forms in logarithms. It also required sub-
stantial computations performed using the computer packages PARI/GP [1]
and MAGMA [4]. The total running time for the various computational parts
of the proof of Theorem 1 was about a week.

In [7] it is shown, among other things, how to deduce the solutions of
the equation Fn = ayp from those of Fn = yp for any fixed a using the
rich divisibility properties of the Fibonacci sequence. In contrast, the Lu-
cas sequence has weaker divisibility properties, and the method of [7] is
inapplicable. Moreover, a straightforward attempt to apply the method of
[10] leads to very complicated Thue equations 1 and terrible bounds for the
solutions that appear to be far too large for the modular sieve employed in
[10]. In the current paper, we replace the standard modular approach with
a double-Frey version (cf. [12]) which leads to a far more efficient sieve.
Moreover, we use the information obtained by the double-Frey approach to
simplify the Thue equations appearing along the way. This leads to sub-
stantially better bounds for the solutions and enables us to complete the
proof of Theorem 2.

Let r, s be non-zero integers with ∆ = r2 +4s 6= 0. Let α, β be the roots
of the equation x2−rx−s = 0 with the convention that |α| ≥ |β|. If α/β is
not a root of 1, then we define the Lucas sequence of the first kind (Un)n≥0

with parameters r, s to be the sequence of general term

Un =
αn − βn

α− β
.

This is also the sequence given by U0 = 0, U1 = 1 and Un+2 = rUn+1 + sUn

for all n ≥ 0. Its companion sequence (Vn)n≥0 with parameters r, s is the
sequence of general term

Vn = αn + βn,

that is, the sequence given by V0 = 2, V1 = r and Vn+2 = rVn+1 + sVn for
all n ≥ 0 and it is usually referred to as a Lucas sequence of the second
kind. In particular, the Lucas sequence (Ln)n≥0 is the companion sequence
of the Fibonacci sequence (Fn)n≥0 and as such is a Lucas sequence of the
second kind.

The general equation Un = ayp is studied in [7], and our aim is to
get similar results for the general equation Vn = ayp. However, this is a
more difficult problem, since the sequence (Vn)n≥0 has weaker divisibility
properties than the sequence (Un)n≥0. Nevertheless, we wish to point out
that the method developed in the present paper is not specific only to the
Lucas sequence (Ln)n≥0 but can be, at least in principle, applied to solve
any equation of the form Vn = qayp.

1Recall that a Thue equation is an equation of the form F (u, v) = c where F is an irreducible
homogeneous polynomial of degree ≥ 3, with integral coefficients, and where c is a nonzero
integer.
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The present paper is organized as follows. We show, in Sections 2 and 3,
that elementary arguments (and a little programming) establish Theorem 2
for any prime 2 ≤ q < 106, except for q = 3, q = 7, q = 47, q = 127 and do
not apply to the primes q in (2). The main part of the work is devoted to the
complete resolution of the equation (1) for q = 3, 7 and 47. In Section 4, we
show how to reduce to L2r = 3yp, L4r = 7yp and L8r = 47yp, where r is odd
and may be assumed to be prime when r > 1. These three equations have
the trivial solutions (r, y, p) = (1, 1, p), (1, 1, p) and (1, 1, p), respectively,
and it is precisely the existence of these trivial solutions that makes finding
all their solutions quite difficult. In Sections 5–7, we deal with small values
of y, r and p. Thus, we get lower bounds on y and r that help us to get
a sharp upper bound on p by applying estimates for linear forms in three
logarithms. This is the purpose of Section 8. The double–Frey approach is
explained in Section 9. Its starting point are the two identities

5F 2
2m + 4 = L2

2m and L2
m + 2(−1)m+1 = L2m.

To each we associate a Frey curve. The first application of this is to
construct a sieve, performed in Section 11, that yields that r (resp. 2r, 4r)
is congruent to ±1 (resp. ±2, ±4) modulo p when q = 3 (resp. q = 7,
q = 47). This important auxiliary result allows us to apply in Section 12
estimates for linear forms in two logarithms in order to get much better
upper bounds for the exponent p. Unfortunately, except for q = 3—for
which we get p < 1039—these bounds remain too large 2 for completing
the resolution of the equation. For q = 7, 47, we observe in Section 13 that,
working in the quadratic field Q(

√
2), we get the equations

L4r ±
√

2 = (3 +
√

2)(1 +
√

2)t(u + v
√

2)p

and
L8r ±

√
2 = (7 +

√
2)(1 +

√
2)t(u + v

√
2)p,

with 0 ≤ t ≤ p − 1. Now a second application of the double–Frey sieve
gives that t = 0. Using this information, we get another linear form in two
logarithms, to which we apply Baker’s theory to considerably improve upon
the upper bound for p when q = 7, 47. In particular, we get at this stage
that p ≤ 1487 for q = 7 and that p ≤ 797 for q = 47, provided that r
is large enough. We stress that the particular shape of this linear form in
two logarithms implies that the bound for p decreases when q increases.
In Section 14, we derive from our equations Thue equations of degree p
and, again by Baker’s method, upper bounds for r. Finally, in Section 16,
we perform again a modular sieve and conclude that r = ±1 for all three
equations.

2For q = 7 we get p < 2000, and p < 4000 for q = 47.
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In Section 10, we briefly indicate how we showed that (1) has no solutions
for q = 127 using a modification of the double-Frey approach used for
q = 3, 7, 47. In principle it should be possible to deal with the values of q
in the list (2). We have however found that the necessary modular forms
computations needed for these values are too demanding for the currently
available hardware.

We warmly thank the referees for suggesting several improvements and
corrections.

2. Elementary arguments

2.1. Some elementary facts. It is well-known—Binet’s formulæ—that

(3) Fn =
αn − βn

α− β
and Ln = αn + βn for all n ≥ 0,

where

α =
1 +

√
5

2
and β =

1−
√

5
2

.

This implies

(4) 5F 2
k − L2

k = 4(−1)k+1.

From this quadratic relation (4), one may deduce information on the
divisors of Lucas numbers. For example, we see that 5 does not divide any
Lucas number and also that, if k is even and q is an odd prime divisor of
Lk, then

(
5
q

)
=
(
−1
q

)
. Here and in what follows, (•q ) is the Jacobi symbol

with respect to the odd integer q.

For a prime number q, we denote by T(q) the period of (Ln)n≥0 modulo
q. We also define t(q) by

t(q) =

{
the smallest t > 0 such that q | Lt, if such a t exists;
∞, otherwise.

We define the set

D = {q : q prime and t(q) < ∞};

in other words, D is the set of primes dividing at least one Lucas number.
For a prime number p and a nonzero integer m we write vp(m) for the exact
order at which p appears in the prime factorization of m; i.e., vp(m) = a,
where pa | m but pa+1 - m. We write m |2 n if m | n and v2(m) = v2(n).

The following lemma collects several well-known facts; a proof is included
for convenience.
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Lemma 2.1. Let q 6= 5 be prime. Then

(5) T(q) |
{

q − 1, if q ≡ ±1 (mod 5);
2(q + 1), if q ≡ ±2 (mod 5).

Suppose from now on that q is odd. Then

(6) T(q) = min{n : αn ≡ βn ≡ 1 (mod q)}.

Suppose moreover that q ∈ D and put t = t(q). Then,

(7) T(q) =

{
2t, if t is odd;
4t, if t is even

and

(8) q | Ln ⇐⇒ n ≡ t (mod 2t) ⇐⇒ t |2 n.

Proof. Suppose q 6= 5. Then 5 is a square modulo q if and only if q ≡ ±1
(mod 5). If q ≡ ±1 (mod 5), then (5) follows from Fermat’s Little Theo-
rem, so suppose that q ≡ ±2 (mod 5). By the properties of the Frobenius
automorphism, αq ≡ β (mod q), so αq+1 ≡ βα ≡ −1 (mod q), therefore
α2(q+1) ≡ 1 (mod q) and a similar argument applies to β. This proves (5).

Suppose now that q is odd. Using the definition of T = T(q), we have
that αT + βT ≡ L0 ≡ 2 (mod q) and αT+1 + βT+1 ≡ L1 ≡ 1 (mod q).
Multiplying the first relation by β and subtracting it from the second we
get αT(α − β) ≡ 1 − 2β (mod q). Since 1 − 2β = (1 − β) − β = α − β,
is a number of norm 5 in K = Q[α], we get (as q is not 5) that αT ≡ 1
(mod q), and a similar argument works with α replaced by β. Since it is
also clear that any positive n with αn ≡ βn ≡ 1 (mod q) must also satisfy
n ≥ T, the desired formula (6) follows. Note that when q = 5, T(5) = 4
but min{n : αn ≡ βn ≡ 1 (mod 5)} = 20.

We now turn to the proof of (7). Note αt+βt ≡ 0 (mod q), which implies,
via the fact that β = −α−1, that

(9) α2t ≡ (−1)t+1 (mod q).

The desired assertion (7) now follows easily from (6); it is now easy to
deduce (8). �

Lemma 2.2. Let X and Y be commuting variables. Put S = X + Y and
P = XY . Then for n odd,

Xn + Y n = S Qn(S, P ),

where Qn(S, P ) is a polynomial with integer coefficients, which is even in
S, and satisfies the relations Qn(0, 1) = (−1)nn and Qn(0,−1) = n.
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Proof. If n = 1 this is trivial. If n = 3, then

X3 + Y 3 = (X + Y )(X2 −XY + Y 2) = S(S2 − 3P ),

as wanted. For n ≥ 5 and odd,

Xn + Y n = (X2 + Y 2)(Xn−2 + Y n−2)− (XY )2(Xn−4 + Y n−4),

so that

Qn(S, P ) = (S2 − 2P )Qn−2(S, P )− P 2Qn−4(S, P ).

The desired result now follows easily by induction. �

The previous lemma implies at once:

Corollary 2.3. If i, j and k are positive integers, with i odd and k = ij,
then

Lk = LjLk,j ,

where Lk,j is an integer, and the greatest common divisor d of Lj and Lk,j

divides i. Furthermore, when i is an odd prime, then either d = 1, or
d = i, in which case i2 - Lk,j, and vi(Lk) = 1 + vi(Lj).

We also mention the following elementary result for further use.

Lemma 2.4. The Lucas sequence satisfies the following divisibility prop-
erties:

2 | Ln ⇔ n ≡ 0 (mod 3);
4 | Ln ⇔ n ≡ 3 (mod 6);
3 | Ln ⇔ n ≡ 2 (mod 4);
9 | Ln ⇔ n ≡ 6 (mod 12).

From this result we derive the following lemma.

Lemma 2.5. Suppose that q 6= 2, 3 is prime with t = ∞ or v2(t) = 1,
where t = t(q). Then equation (1) has no solutions.

Proof. By the definition of t(q), the conclusion is clear when t = ∞. Suppose
instead that v2(t) = 1 and (n, y, p, a) is a solution to (1). Now q | Ln implies
that t |2 n by Lemma 2.1. From v2(t) = 1 we see that v2(n) = 1. By
Lemma 2.4, 3 | Ln. However, q 6= 3 and so from Ln = qayp and the fact
that p ≥ 2 we see that 9 | Ln. By the Lemma 2.4 again, we obtain n ≡ 6
(mod 12). Finally, we see from the above divisibility properties that 2 | Ln

but 4 - Ln giving a contradiction. �
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2.2. The avalanche. We introduce a lemma which enables us to solve,
in a few steps, most equations of the form Ln = qayp.

Lemma 2.6. Let q be an odd prime and write t0 = t(q). Suppose that there
is a sequence of odd primes q1, q2, . . . , qk (and write ti = t(qi)) such that
the following three conditions are satisfied:

(i) ti < ∞ and v2(ti) = v2(t0) for i = 1, . . . , k − 1,
(ii) qi | ti−1 for i = 1, . . . , k,
(iii) either tk = ∞ or v2(tk) 6= v2(t0).

Then
(a) any solution to (1) satisfies

(10) n =
k∏

i=1

qri
i or p = 2 and n = 3

k∏
i=1

qri
i ,

for some non-negative integers ri.
(b) If t0 is not of the form 3bqa1

1 · · · qak
k for some non-negative integers

ai and for b = 0 or 1, then equation (1) has no solutions.
(c) Suppose there are positive integers A1, . . . , Ak such that none of the

Lucas numbers L
q

Ai
i

is of the form

qα3βqγ1
1 . . . qγk

k zp, α, β, γi, z ≥ 0, p ≥ 2.

Then the exponents ri in (10) satisfy ri < Ai.

Proof. We prove (a) by contradiction. Let n be the smallest positive integer
satisfying Ln = qayp for some a ≥ 1, that is not of the form (10). By
Lemma 2.1, q | Ln implies that t0 |2 n. But q1 | t0 and so q1 | n. Suppose first
that q1 - Ln. Let m = n/q1. By Corollary 2.3, we have that Lm = qbyp

1 . If
b ≥ 1, then we quickly contradict minimality. Thus Lm = yp

1 . By Theorem 1,
we see that m = 1 or m = 3, implying that n = q1 or 3q1 which contradicts
the fact that n is not of the form (10).

Hence we deduce that q1 | Ln. We repeat the above argument to show
that qi | Ln for i = 1, . . . , k−1. Now as qk−1 | Ln we obtain that tk−1 | n and
qk | n. However the assumptions on tk ensure that qk - Ln. This is trivially
true if tk = ∞. Suppose that v2(tk) 6= v2(t0). We know that t0 |2 n. Hence
tk -2 n. Thus, either way, qk - Ln. Writing m = n/qk and arguing as above
we obtain a contradiction. This completes the proof of (a).

Part (b) follows immediately from (a) since t0 |2 n as stated above. Let
us prove (c). Suppose that for some i, ri ≥ Ai. By Corollary 2.3, we have
Ln = L

q
Ai
i

L′ where the greatest common divisor of the two factors divides

n/qAi
i . Part (c) follows at once as we are supposing that Ln is of the form

qayp and n satisfies (10). �
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3. Proof of Theorem 2 for most q

We programmed Lemmas 2.5 and 2.6 in PARI/GP, and used our program
for all primes 3 ≤ q < 106 (we return to the case q = 2 below). Our program
took 1 hour and 21 minutes on a 2.8 GHz Opteron and succeeded in solving
(1) for all primes q in this range except for the primes in (2) and for q = 3,
7, 47, 127. The remainder of this paper will be devoted to solving (1) for
these four values q = 3, 7, 47, 127. Indeed, we shall show that there are
no solutions for q = 127, and that the only solutions for q = 3, 7, 47 are
respectively n = 2, 4, 8.

Before we solve (1), we illustrate the workings of our program by solving
(1) for a few values of q.

• q = 13 and q = 41
Note that t(13) = ∞ and t(41) = 10. By Lemma 2.5, equation (1) has

no solutions in these cases.

• q = 29
Note that t(29) = 7 and t(7) = 22. By Lemma 2.6 we know that n is of

the form
n = 7r1 or n = 3× 7r1 .

However, L72 = 29 × 599786069 as product of primes. By part (c) of
Lemma 2.6 we have that r1 = 0 or 1, so that n = 1, 3, 7, 21. We im-
mediately obtain that L7 = 29 × 1p is the only solution to equation (1)
with q = 29.

• q = 709
Note that t(709) = 59, t(59) = 29, t(29) = 7, t(7) = 22. By Lemma 2.6

we know that n is of the form

n = 59r1 × 29r2 × 7r3 or n = 3× 59r1 × 29r2 × 7r3 .

However,

L59 = 709× 8969× 336419, L29 = 59× 19489, L72 = 29× 599786069,

and so by part (c) of Lemma 2.6 we have that r1 = r2 = 0 and r3 = 0 or
1. Thus n = 1, 3, 7, 21, and none of these give a solution to equation (1)
with q = 709, which completes our proof in this case.

• q = 812167
Note that

t(812167) = 22 × 7× 14503, t(14503) = 22 × 7, t(7) = 22.

Thus neither the conditions of Lemma 2.5 nor of Lemma 2.6 are satisfied,
and we are unable to solve (1) in this case.

Finally we turn to the case q = 2 to which Lemma 2.5 and Lemma 2.6
are inapplicable, but which we can still solve.
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• q = 2
Since 8 does not divide any Lucas number, there are two cases here,

namely when Ln = 2yp and when Ln = 4yp.
Consider first the case

Ln = 4yp.

By Lemma 2.4, n ≡ 3 (mod 6) and so 3 - Ln. Write n = 3m; by Corollary
2.3

Lm =

{
4yp

1 , if 3 | m;
yp
1 , if 3 - m.

If Lm = 4yp
1 and 3 | m then we can continue in this way (eliminating a factor

3 at each step). We finally arrive at an equation for the form Lk = zp and
by Theorem 1, the only solutions are k = 1, 3. Hence n = 3b for some b > 0.
Since L9 = L3(L2

3 +3) = 4× 19 is not of the form 4yp, we get that the only
solution to Ln = 4yp is n = 3 for which L3 = 4× 1p.

We now look at the equation

Ln = 2yp.

Then n ≡ 0 (mod 6). Suppose first that n ≡ 0 (mod 12). Then 3 does not
divide Ln (because t(3) = 2), and the previous process works again. At the
end, we arrive at m = 1, which gives a contradiction. Thus, the equation
Ln = 2yp has no positive solution with 4 | n. Suppose next that n ≡ 6
(mod 12). Then 3 divides Ln. Put b = v3(Ln). We then have that 3 divides
Ln/3, and, by Corollary 2.3,

Ln/3 = 2× 3b−1yp
1 .

Similarly, Ln/32 = 2 × 3b−2yp
2 , Ln/33 = 2 × 3b−3yp

3 , . . . etc. If n = 3γm,
where 3 does not divide m, then at the end of the above process, we get
Lm = 3zp. We later show that the only solution to this latter equation is
m = 2 and this completes the proof for q = 2.

4. A useful reduction

In this section, we simplify equation (1) for q = 3, 7, 47.

Lemma 4.1. Let n = 2km, where m > 1 is odd. Let l be the smallest prime
divisor of m and put t = t(l). Then l divides Ln if and only if t = 2k.

Proof. By Lemma 2.1, the number t divides either (l− 1) or (l + 1). Either
way, all its odd prime divisors are < l. Suppose l divides Ln. Again by
Lemma 2.1, t |2 n. Since l is the smallest prime divisor of m, we see that t
has no odd prime divisors and that t = 2k. The converse is clear. �
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Corollary 4.2. Let k ≥ 1 be such that L2k = q is prime. Suppose that the
equation

Ln = qayp, a > 0, p prime,

admits a solution with n > 2k and let r be the largest odd prime factor of
n that does not equal q. Then

L2kr = qzp,

for some z | y.

Proof. Let v = vq(n) and n′ = n/qv. By Corollary 2.3, we see that Ln′ =
qby′p for some y′ | y. However, again by the same corollary, but considering
the factorisation Ln′ = L2kLn′,2k we see that b = 1.

If n′/2k is prime then we are finished. Otherwise let l be the smallest odd
prime factor of n′/2k. By Lemma 4.1 we see that l - Ln. Let n′′ = n′/l. By
Corollary 2.3 we see that Ln′′ = qy′′p. We continue removing the smallest
odd prime divisor of the index each time until we are left with 2kr where r
is the largest prime factor of n that does not equal q. �

Note that Corollary 4.2 applies to q = 3, 7, 47 with respective values
of k = 1, 2, 3. Hence to complete the proof of Theorem 2 we require a
proof that (1) has no solutions for q = 127 and we require a proof that the
equation

(11) L2m = qyp

has no solutions subject to the conditions
(12)

p prime, (q, m) = (3, r), (7, 2r), (47, 4r), where r is an odd prime.

Our choice of writing L2m instead of Ln will allow us to introduce a slightly
more uniform presentation in what follows. In Sections 5–16 we focus on
q = 3, 7, 47. In the final section we explain briefly how the arguments
used for these primes can be modified to show that (1) has no solutions for
q = 127.

5. Auxiliary equations

In this section, we write down three auxiliary equations that will help us
to solve (11). Note the following three identities which follow easily from
Binet’s formulæ:

5F 2
2m + 4 = L2

2m,

L2
m + 2(−1)m+1 = L2m,

5F 2
m + 2(−1)m = L2m.
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From (11), we immediately deduce the following three equations:

5F 2
2m + 4 = q2y2p,(13)

L2
m + 2(−1)m+1 = qyp,(14)

5F 2
m + 2(−1)m = qyp.(15)

5.1. Eliminating small exponents p. We will later use the modular
approach to help us solve the equations L2m = qyp by attaching Frey
curves to one or more of the three auxiliary equations (13)–(15). In the
modular approach, it is useful to avoid small exponents p where the Galois
representation may be reducible. We thus first solve the equations L2m =
qyp for 2 ≤ p ≤ 11 with the help of the computer algebra systems PARI/GP
[1] and MAGMA [4].

Lemma 5.1. The only solutions to the equation L2m = qyp with 2 ≤ p ≤ 11
and with (q, m) = (3, r), (7, 2r), (47, 4r) and r odd, have r = y = 1.

Proof. For p = 2, we work with equation (13). We make the substitution

Y = 25q2yF2m, X = 5q2y2,

and obtain the equation

Y 2 = X(X2 − 100q2).

This is an elliptic curve in standard Weierstrass form and we want its
integral points. MAGMA quickly computes the integral points for q = 3, 7, 47.
For example, for q = 47, we obtain

(X, Y ) = (−470, 0), (0, 0), (470, 0), (−20,±2100), (11045,±1159725).

We instantly see that 5 × 472y2 = X = 11045 = 5 × 472, giving y = 1 as
required. The cases q = 3 and q = 7 with p = 2 are similar.

We now turn our attention to 3 ≤ p ≤ 11. For the sake of uniformity,
we work with equation (13) which is independent of the parity of m. Using
the fact that the class number of Q(

√
−5) is 2, equation (13) implies that

formula
2± F2m

√
−5 = λ(u + v

√
−5)p

holds, where y2 = u2 + 5v2 and λ = 2 +
√
−5, 2 + 3

√
−5, or 2 + 7

√
−5,

according to whether q = 3, 7, or 47, respectively. Identifying the coefficients
of
√
−5, we obtain a Thue equation of the form F (u, v) = 2, where the

leading coefficient of F (u, 1) is 2. However, since y is odd, exactly one of u,
v must be odd. An elementary examination of the coefficients of the Thue
equation quickly shows that v is even and u is odd. Thus, we may write v =
2v′, and rewrite our equation in the form F ′(u, v′) = 1, where F ′(u, 1) is now
monic. The best practical algorithms for solving Thue equations that we are
aware of are those of Bilu and Hanrot [3], and of Hanrot [18]. Fortunately,
these are implemented as part of the computer package PARI/GP, and using
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these we have been able to solve the Thue equations for 3 ≤ p ≤ 11 in under
a day on a 2.4 GHz Xeon. �

6. Eliminating small values of y

We will apply several variants and refinements of Baker’s method to solve
equation (11) subject to conditions (12). In this section, we show that y is
large. One sees at once that for large y, the equation L2m = qyp implies
that the linear form

Λ = 2m log α− log q − p log y

is very small (recall that α = (1 +
√

5)/2). Then a lower bound for linear
forms in logarithms gives an upper bound on the exponent p. Applying
directly Matveev’s theorem [25] (see Theorem 3 of Section 8.2 for a precise
statement) here gives p < 4× 1014. We then apply the following version of
the classical Baker–Davenport Lemma:

Proposition 6.1. ([16]) Let A, B, θ, µ be positive real numbers and M a
positive integer. Suppose that P/Q is a convergent of the continued fraction
expansion of θ such that Q > 6M . Put ε = ‖µQ‖ − M‖θQ‖, where ‖·‖
denotes the distance from the nearest integer. If ε > 0, then there is no
integer solution (j, k) to the inequality

0 < jθ − k + µ < A ·B−j

subject to the restriction that
log(AQ/ε)

log B
≤ j ≤ M.

Corollary 6.2. Suppose that m, y and q satisfy equation (11) and condi-
tions (12). Then y = 1, or y ≥ 1010.

Proof. One way of proving this result is to verify that
• if q = 3, then y ≡ 1, 41, 281, 601 (mod 840);
• if q = 7, then y ≡ 1, 241 (mod 480);
• if q = 47, then y ≡ 1 (mod 3360).

Using these congruences, we apply the Baker–Davenport Lemma for
Λ/ log α, choosing M = 4× 1014 as an upper bound for j. After around 36
hours of computation we get that

1 < y < 1010 =⇒ p ≤ 3.

However, we have already solved the cases p = 2, 3 in Lemma 5.1 and
found that y = 1. We deduce that y ≥ 1010. An alternative proof of this
result goes as follows. For every prime q let z(q) be the order of apparition
of q in the Fibonacci sequence, namely the smallest positive integer k such
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that q | Fk. It is known that z(q) always exists. It is even precisely when
t(q) exists and in this case z(q) = 2 t(q). D. D. Wall [35] conjectured that
q ‖Fz(q) holds for all primes q. No counterexample to this conjecture (nor
a proof of it either) has been found. Sun and Sun [33] deduced that the
so-called first case of Fermat’s Last Theorem is impossible under Wall’s
conjecture. However, recently McIntosh and Roettger [24] verified Wall’s
conjecture for all p < 1014 and found it to be true. We now note that the
computation of McIntosh and Roettger immediately implies that y > 1014

if y > 1. Indeed, assume that y ∈ [2, 1014]. Let s be any prime factor of y.
Since Lm = qyp, and m = r, 2r or 4r, we get easily that t(s) = m, therefore
z(s) = 2m. However, since vs(Lm) = p > 2, it follows that Wall’s conjecture
is false for s. Hence, we must have y ≥ s > 1014 by the calculation from
[24]. �

We next prove another elementary lower bound on y.

Lemma 6.3. If Ln = qyp with y > 1 and n minimal, where q = 3, 7 or
47, then

y >
4

log α
p log y.

Proof. We first notice that since n is even and not divisible by 3, we have
Ln ≡ 3 (mod 4). Thus, the relation Ln = qyp implies y ≡ 1 (mod 4) since
q ≡ 3 (mod 4).

Now let s be the minimal prime divisor of y. Then, with the notation of
the second section, t(s) = n and the period of (Ln)n≥0 modulo s is equal to
T(s) = 4n. Moreover, we also know that T(s) divides either s−1 or 2(s+1).
We now distinguish two cases according to whether y = s or y ≥ s2. In
case y = s, then 2(y +1) = 2(s+1) is not a multiple of 8. Thus, 4n divides
s− 1. Since Ln = qyp implies

n log α > p log y,

we get the result. If y ≥ s2, it is clear that a much better lower bound
holds. �

Remark. It may be interesting to notice that the proof of the previous
lower bound on y does not involve any computer verification. As an exam-
ple, it gives the following estimate:

p > 108 =⇒ y > 9.17× 1010.

7. Eliminating small indices m

It will be useful to know that the index 2m (which is either 2r, 4r or 8r)
is large. We prove this by using a simple sieve adapted from [10, Lemma
4.3].



Almost powers in the Lucas sequence 569

Lemma 7.1. Suppose that m, y, p, q and r satisfy equation (11) and
conditions (12). Then r > 2× 105.

Proof. By Lemma 5.1 and Corollary 6.2, we may suppose that p ≥ 13 and
y ≥ 1010. We can write 2m = 2ir, where i = 1, 2, 3 for q = 3, 7, and 47,
respectively. Note that

q · 1010p ≤ qyp = L2m = L2ir ≤ Lr
2i ≤ qr.

Thus,

13 ≤ p ≤ (r − 1) log q

10 log 10
.

It is sufficient to show that for each odd prime r ≤ 2 × 105 and each p
in the corresponding range above, the number L2m is not of the form qyp.
Of course, it is not practical to write down L2m once m gets large, but we
explain a quick way of testing that L2m 6= qyp.

Suppose l 6= q is a prime satisfying l ≡ 1 (mod p), and let k = (l− 1)/p.
We can write down L2m modulo l very quickly using (3) since all that is
involved is exponentiation modulo l. Now if (L2m/q)k 6≡ 0, 1 (mod l) then
L2m 6= qyp as desired.

We wrote a short PARI/GP [1] program to check for each odd prime
r ≤ 2 × 105 and each p in the above range that there is some prime l
proving that L2m 6= qyp. This took about 22 minutes for q = 3, about 35
minutes for q = 7, and about 40 minutes for q = 47, respectively, on a 3.2
GHz Pentium IV. �

8. A bound for p

We noted previously that Matveev’s lower bound for linear forms in
logarithms [25] gives p < 4 × 1014. This bound is far too large for our
purposes. In this section, by applying certain results on linear forms in
three logarithms, we shall deduce the following better bound.

Proposition 8.1. Suppose that m, y, p, q and r satisfy equation (11) and
conditions (12). Then

p <


1.05× 108, if q = 3;
1.92× 108, if q = 7;
3.94× 108, if q = 47.

8.1. Preliminaries. From the equation

Ln = qyp

and Binet’s formula, we get at once that the linear form

Λ = n log α− p log y − log q
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satisfies
0 < −Λ < α−2n < 1.001(qyp)−2,

since n > 10000 (see Lemma 7.1).
We write

n = kp + r, with |r| < p/2,

and rewrite the linear form Λ in the more convenient form

Λ = r log α− p log(yα−k)− log q.

We shall apply the result below to this expression. We have already men-
tioned Matveev’s bound a few times. It is now time to state it explicitly.

8.2. Matveev’s lower bound for linear forms in logarithms. Let L
be a number field of degree D, let α1, . . . , αn be non-zero elements of L
and b1, . . . , bn be rational integers. Set

B = max{|b1|, . . . , |bn|},

Λ = αb1
1 · · ·α

bn
n − 1,

and

Λ′ = b1 log α1 + · · ·+ bn log αn.

Let h denote the absolute logarithmic height 3 and let A1, . . . , An be real
numbers with

Aj ≥ h′(αj) = max{D h(αj), |log αj |, 0.16}, for all 1 ≤ j ≤ n.

We call h′ the modified height with respect to the field L. With this nota-
tion, the main result of Matveev [25] implies the following estimate.

Theorem 3. Assume that Λ′ is non-zero. We then have

log|Λ| > −1.4 · 30n+4 (n + 1)5.5 D2 (1 + log D) (1 + log nB) A1 · · ·An.

Assume that Λ is non-zero. We then have

log|Λ| > −3 · 30n+4 (n + 1)5.5 D2 (1 + log D) (1 + log nB) A1 · · ·An.

3Throughout this paper we use the following notation and definitions. The measure of a
polynomial P (X) = a

∏d

j=1
(X − zj) with complex coefficients is equal to

M(P ) = |a|
d∏

j=1

max{1, |zj |}.

If α is an algebraic number of degree d whose minimal polynomial over the integers is equal to
P then the height of α—or more precisely its logarithmic absolute height—is equal to

h(α) =
log M(P )

d
.
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Additionally, if L is real, we then have

log|Λ| > −1.4 · 30n+3 n4.5 D2 (1 + log D) (1 + log B) A1 · · ·An.

A better estimate for Λ′ when n = 2 and n = 3 has been obtained in [22]
and in [27], respectively.

8.3. A lower bound for the linear form. We use the following technical
result proved in [27].

Theorem 4. Let α1, α2 and α3 be algebraic numbers, which are either all
real and > 1, or all complex non-real of modulus one. Let b1, b2 and b3 be
positive integers with gcd(b1, b2, b3) = 1. Let

Λ = b2 log α2 − b1 log α1 − b3 log α3,

where the determinations of the logarithms are arbitrary, but are either all
real or all purely imaginary. We further assume that

0 < |Λ| < 2π/w,

where w is the largest order of any root of unity belonging to the number
field Q[α1, α2, α3]. We assume that

b2|log α2| = b1 |log α1|+ b3 |log α3| ± |Λ|.
We put

d1 = gcd(b1, b2), d3 = gcd(b2, b3), b2 = d1b
′
2 = d3b

′′
2.

We let K, L, R, R1, R2, R3, S, S1, S2, S3, T , T1, T2 and T3 be positive
integers, with

K ≥ 3, L ≥ 5, R > R1+R2+R3, S > S1+S2+S3, T > T1+T2+T3.

Let ρ ≥ 2 be a real number. Assume further that

(
KL

2
+

L

4
− 1− 2K

3L

)
log ρ ≥ (D + 1) log N + gL(a1R + a2S + a3T )

+ D(K − 1) log b− 2 log(e/2),

(16)

where N = K2L, D = [Q[α1, α2, α3] : Q]
/

[R[α1, α2, α3] : R], e = exp(1),

g =
1
4
− N

12RST
, b = (b′2η0)(b′′2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

,

where

η0 =
R− 1

2
+

(S − 1)b1

2b2
, ζ0 =

T − 1
2

+
(S − 1)b3

2b2
,

and the numbers a1, a2 and a3 satisfy

ai ≥ ρ|log αi| − log|αi|+ 2D h(αi), for i = 1, 2, 3.
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Put
V =

√
(R1 + 1)(S1 + 1)(T1 + 1).

If, for some positive real number χ, all the above inequalities

(i) (R1 + 1)(S1 + 1)(T1 + 1) > K · max
{
R1 + S1 + 1, S1 + T1 + 1,

R1 + T1 + 1, χV
}

,

(ii) Card
{
αr

1α
s
2α

t
3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1

}
> L,

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2,
(iv) Card

{
αr

1α
s
2α

t
3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2

}
> 2KL,

and
(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L,

are satisfied, then either

Λ′ > ρ−KL, where Λ′ = |Λ| · LSeLS|Λ|/(2b2)

2|b2|
,

or—degenerate case—at least one of the following three conditions (C1),
(C2), (C3) holds:

(C1) |b1| ≤ R1, |b2| ≤ S1 and |b3| ≤ T1;

(C2) |b1| ≤ R2, |b2| ≤ S2 and |b3| ≤ T2;

(C3) either there exist two non-zero rational integers r0 and s0 such that

r0b2 = s0b1

with

|r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)
M− T1

,

where we put

M = max
{
R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV

}
,

or there exist rational integers r1, s1, t1 and t2, with r1s1 6= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ δ
(R1 + 1)(S1 + 1)
M−max{R1, S1}

, |s1t1| ≤ δ
(S1 + 1)(T1 + 1)
M−max{S1, T1}

,

|r1t2| ≤ δ
(R1 + 1)(T1 + 1)
M−max{R1, T1}

,

where we take
δ = gcd(r1, s1).
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Moreover, when t1 = 0, we can take r1 = 1, and when t2 = 0 we can take
s1 = 1.

8.4. Application. The first step is to get an upper bound on p free of
any condition. For this purpose, our previous Theorem 4 is inconvenient to
use: we have to deal with the conditions (C1), (C2) and (C3). This is the
reason why we first apply Matveev’s estimate, which leads to

p < 4× 1014,

as already mentioned at the beginning of Section 6.

In practice, it is important to notice that the larger y is, the smaller is
the upper bound on p obtained via linear forms of logarithms is. Hence, the
lower bounds on y proved at the end of Section 6 will be very useful.

Now we can apply Theorem 4. First, we may suppose that p > 108. To
apply our result, we have to distinguish two cases according to whether
r ≥ 0, or r < 0. Since n = d × prime with d ≤ 8 and n > 8p by the proof
of the above Lemma 6.3, we see that r 6= 0.

An application of a linear form in two logarithms shows that |r| > 8
for p > 108. [More precisely, if |r| ≤ 8, we write Λ = (r log α − log q) −
p log(yα−k) and we consider it as a linear form in two logarithms, to which
we apply the main result of [22]; then we get p < 108: a contradiction.]

We thus have two cases, namely when r > 8 and when r < −8, respec-
tively.

In the first case, following the notation of Theorem 4, we can take

α1 = yα−k, α2 = α, α3 = q, b1 = p, b2 = r, b3 = 1.

Then
h(α1) = 1

2

(
log(yα−k) + log(yαk)

)
= log y,

and
log α1 = 1

p(r log α− log q − Λ) < 1
2 log α.

In the second case, we take

α1 = α, α2 = αk/y, α3 = q, b1 = |r|, b2 = p, b3 = 1.

Then
h(α2) = h(y/αk) = 1

2 log(yα−k) = log y + log(αk/y),
and

log α2 = log(αk/y) = 1
p(log q − r log α− Λ) < 1

2 log α + 4
p .

Thus,
h(α2) < log y + 1

4 log α + 2
p .

We also notice that we have to use linear forms in two logarithms in the
degenerate case, in which case we apply the main result of [22]. In practice,
it is important to optimize the choice of the parameter χ of Theorem 4.
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Namely, we have to choose χ in such a way that the bounds obtained in
the non-degenerate case and in the degenerate case are roughly the same.

Of course our results are obtained via a suitable program which chooses
all the parameters in an optimal way. The details were given in several
preceding papers ([10], [11]).

After several iterations of our program, we obtain Proposition 8.1.

9. Frey curves and level-lowering

In this section, we tackle equation (11) using the modular approach (by
which we mean the approach to Diophantine equations via Frey curves and
Galois representations). Before doing so, we make a choice concerning the
value of m modulo 3. It follows from Lemma 2.1 and equation (4) that Fn

and Ln are even precisely when n is divisible by 3. It follows, from (14) for
example, that 3 - m. We note also that L2m = L−2m. Thus, by replacing m
by −m, if necessary, we can suppose that m ≡ 1 (mod 3). This assumption
will bring some simplification in the application of the modular approach.
However, the fact that we have allowed m to be negative means that we
have to slightly change our conditions (12). Here, we rewrite our conditions
to take into account both the possible change of sign for m as well as
Lemmas 5.1 and 7.1 as:

p ≥ 13 is prime, r > 2× 105 is prime,(17)
(q, m) = (3,±r), (7,±2r), (47,±4r), m ≡ 1 (mod 3).(18)

We attach a Frey curve to each solution of equations (13), (14), (15) and
use them to help solve our problem. Experience shows that the simultaneous
use of more than one Frey curve gives far better information than the use
of just one Frey curve. Such an approach is called the multi-Frey approach;
see, for example, [12]. In the current paper, we use two Frey curves, one
attached to equation (13) and the other to (14). Both these are equations
of the form Axp + Byp = Cz2. These equations are usually referred to as
ternary Diophantine equations. For ternary Diophantine equations, suitable
Frey curves have been specifically written down by Bennett and Skinner
in [2]. The recipes of [2] are replicated in [13, Chapter 15], which is also a
good introductory reference on the modular approach.

The reader will have noted that (15) is also of the same form Axp+Byp =
Cz2 and could also be used; alas, we have found that the relevant newforms
that need to be computed for this equation are at too high a level to make
such calculations useful.

Following the recipes in [2], we associate to solutions to equations (13)
and (14) the Frey elliptic curves

(19) Gm : Y 2 = X3 + 5F2mX2 − 5X,
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and

(20) Hm : Y 2 = X3 + 2LmX2 + 2(−1)mX,

respectively.

Lemma 9.1. The Galois representations on the p-torsion of Gm and of Hm

arise from normalized cuspidal newforms g and h of weight 2 and levels 100q
and 128q, respectively.

The newforms have Fourier expansions around the cusp at infinity

g = w +
∑
i≥2

giw
i, h = w +

∑
i≥2

hiw
i,

where the coefficients gi, hi are integers in certain number fields Kg, Kh.
We denote the traces of the Frobenius of an elliptic curve E at a prime l
by al(E).

Lemma 9.2. Suppose l 6= 2, 5, q, p is a prime. There exist primes Pg, Pf

of the fields Kg, Kh, both above p, such that
(i) if l - y, then

al(Gm) ≡ gl (mod Pg), al(Hm) ≡ hl (mod Ph).

(ii) if l | y, then

l + 1 ≡ ±gl (mod Pg), l + 1 ≡ ±hl (mod Ph).

For a prime l 6= 5 define

(21) Ml =
{

l − 1, if l ≡ ±1 (mod 5),
2(l + 1), if l ≡ ±2 (mod 5).

We will need the following lemma.

Lemma 9.3. Suppose that l 6= 5 is a prime and u ≡ v (mod Ml). Then

Fu ≡ Fv (mod l) and Lu ≡ Lv (mod l).

It follows that the traces of Frobenius al(Gm) and al(Hm) depend only on
the value of m modulo Ml.

Proof. The first part follows from Lemma 2.1. The last part follows imme-
diately from the first and the definitions of the Frey curves Gm and Hm. �

Now let Sl be the set of integers 0 ≤ m′ ≤ Ml−1 satisfying the following
conditions:

(a) if 3 | Ml, then m′ ≡ 1 (mod 3),
(b) gcd(m′,Ml) = gcd(2α,Ml), where α = 0, 1, 2 according to whether

q = 3, 7 or 47.
Let Pl be the largest prime factor of Ml.
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Lemma 9.4. Suppose that (m, y, p) is a solution to equation (11) satisfying
conditions (17), (18). Let l be a prime satisfying

(22) l 6= 2, 5, q, Pl < 2× 105.

Then m ≡ m′ (mod Ml) for some m′ ∈ Sl.

Proof. Let 0 ≤ m′ ≤ Ml − 1 be the unique integer satisfying m ≡ m′

(mod Ml). We would like to show that m′ ∈ Sl. Suppose that r′ is an odd
prime dividing gcd(m′,Ml). Then r′ | m, and so from conditions (17) and
(18) we deduce that r′ = r > 2 × 105. But r′ | Ml, so Pl > 2 × 105, giving
a contradiction.

Hence, gcd(m′,Ml) = 2α. The fact that m′, α satisfy (a) and (b.1–b.4) in
the definition of Sl is quickly deduced from conditions (17) and (18). Thus,
m′ ∈ Sl as required. �

The definition of Sl takes into account the information about m shown
in (17) and (18). It does not take into account the information about m
given by the Frey curves and the level-lowering. We will shortly introduce
refinements of Sl that take into account this information also. Fix a pair of
newforms (g, h) as above. Let l 6= 2, 5, q be prime. For m′ ∈ Sl define

Bg,h(l,m′) =

{
gcd (Norm(al(Gm′)− gl),Norm(al(Hm′)− hl)) , if l - L2m′ ;
gcd

(
Norm((l + 1)2 − g2

l ),Norm((l + 1)2 − h2
l )
)
, otherwise.

Here, the norms are the absolute norms for the fields Kg and Kh, respec-
tively. Let

(23) Bg,h(l) = l
∏

m′∈Sl

Bg,h(l, m′).

Lemma 9.5. Suppose m, y, p and q satisfy equation (11) and conditions
(17) and (18). Suppose that the Galois representations on Gm, Hm arise
from newforms g, h, respectively, and that l satisfies (22). Then

p | Bg,h(l).

Proof. We note from the definition (23) that l | Bg,h(l), and so the result
follows trivially in the case l = p. We may therefore suppose that l 6= p.

By Lemma 9.4, we know that m ≡ m′ (mod Ml) for some m′ ∈ Sl.
Moreover, by Lemma 9.3, we observe that l | L2m′ if and only if l | L2m,
which by equation (11) is equivalent to the condition l | y.

Lemma 9.3 also tells us that al(Gm) = al(Gm′) and al(Hm) = al(Hm′). It
follows from Lemma 9.2 that p divides Bg,h(l, m′) and so it divides Bg,h(l).

�
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9.1. Eliminating newforms. Lemma 9.1 gives too many possibilities for
the newforms (g, h). For example, when q = 47, all we know is that g
is a newform at level 4700 and h is a newform at level 6016. There are
27 newforms at level 4700 and 20 newforms at level 6016 (up to Galois
equivalence). This gives us 540 possibilities for the pair (g, h). We would
now like to eliminate all the possible pairs of newforms and keep just one
pair for each of q = 3, q = 7 and q = 47, respectively. In each case the
pair of newforms remaining will consist of two rational ones, and hence
correspond to elliptic curves. We refer to these elliptic curves using their
Cremona reference (as in Cremona’s book [14], or his extended online tables
[15]).

Proposition 9.6. The Galois representations on the p-torsion of Gm and
Hm arise from newforms corresponding to the elliptic curves G and H as
follows:

• if q = 3, then G = 300D1 and H = 384D1;
• if q = 7, then G = 700H1 and H = 896D1;
• if q = 47, then G = 4700K1 and H = 6016A1.

Proof. By Lemma 9.1, the Galois representation on the p-torsion of Gm,
and of Hm respectively arise from newforms at levels 100q and 128q. MAGMA
allows us to list all the newforms at these levels (the MAGMA program for
doing this is based on algorithms explained in [32]). Suppose the Galois
representation on the p-torsion of Gm and of Hm arise from a particular
given pair of newforms g and h, respectively. By Lemma 9.5, we know that
p | Bg,h(l) for any prime l satisfying (22). We wrote a short MAGMA script
which computes

Cg,h = gcd{Bg,h(l) : l < 100, l 6= 2, 5, q, l is prime}.
Now p ≥ 13. If Cg,h is divisible only by primes 2, 3, . . . , 11, then we have a
contradiction, and we know that the pair (g, h) can be eliminated. For q = 3
and q = 7 we were able to eliminate all pairs except for the pair indicated
in the proposition. For the indicated pair, all Bg,h(l) computed were equal
to 0. Let us explain why that is not surprising, taking for illustration the
case q = 7. We note that the equation L2m = 7yp has the solution m = −2
satisfying our condition m ≡ 1 (mod 3). Now fix a prime l satisfying the
above conditions. Let m′ = Ml − 2. It is straightforward to check that
m′ ∈ Sl. By Lemma 9.3,

al(Gm′) = al(G−2), al(Gm′) = al(G−2).

But the elliptic curves G−2 and H−2 are isogeneous to the elliptic curves
G = 700H1 and H = 896D1, respectively; let g and h be the newforms
corresponding to this pair of elliptic curves. Thus,

gl = al(G) = al(G−2) = al(Gm′), hl = al(H) = al(H−2) = al(Hm′).
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It is easy to see that Bg,h(l,m′) = 0 and so Bg,h(l) = 0.
For q = 47, there is a complication, which we now discuss. Let g and

h be the newforms corresponding to the elliptic curves G = 4700K1 and
H = 6016A1, respectively. At level 4700, there are 27 newforms (including
g). One of these is

g′ = w + θw3

+
1
5
(−6θ8+23θ7+76θ6−304θ5−301θ4+1215θ3+383θ2−1390θ−213)w7+. . . ,

with coefficients in K = Q(θ) and θ is a root of

(24) x9 − x8 − 22x7 + 12x6 + 169x5 − 33x4 − 508x3 + 4x2 + 503x + 71.

Our script eliminated all possible pairs of newforms except for (g, h) and
(g′, h). For (g, h), again all the Bg,h(l) are zero for a similar reason to the
above: G4 and H4 are isogeneous to the elliptic curves G = 4700K1 and
H = 6016A1, respectively. However,

Bg′,h(3) = 71, Bg′,h(7) = 132 × 712, Bg′,h(11) = 210 × 7× 41× 47× 71, . . .

If p 6= 71, then we can eliminate the pair (g′, h), and our proof is complete.
For p = 71, we are unable to eliminate the pair (g′, h) because all of the
Bg′,h(l) are divisible by 71 as we shall prove shortly. Let P = (θ) be the
principal ideal of K generated by θ. Note, by (24), that NormK(θ) = −71
and therefore P is a prime ideal above 71. Write g =

∑
gnwn as before,

and g′ =
∑

g′nwn. We would like to show that g′n ≡ gn (mod P) for all
n ≥ 1. Proposition 9.7 below, applied to the modular form g − g′, says
that it is sufficient for us to show that g′n ≡ gn (mod P) for all n ≤ 1440.
We checked this again using a short MAGMA script. We deduce that g′n ≡ gn

(mod P) for all n. The reader can now use this to show that

71 | Bg′,h(l, 4)

for all primes l. At first sight, eliminating the pair (g′, h) when p = 71
appears hopeless, but there is a surprising twist coming up. Suppose the
Galois representations on the p-torsion of Gm and Hm arise from g′ and h.
Then there is some prime ideal P′ of the field K, lying above 71, such that

al(Gm) ≡ g′l (mod P′),

for all l 6= 2, 5, 47, l - L2m. One checks that M3 = 8 and S3 = {4}.
Moreover, 3 - L8 = 47. Hence, a3(Gm) = a3(G4) = 0. Thus, P′ | g′3 = θ. It
follows that P′ = P. We deduce that

al(Gm) ≡ g′l ≡ gl (mod P).

But al(Gm) and gl are in Z. Hence,

al(Gm) ≡ gl (mod 71),
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for all but finitely many l. It now follows that the Galois representation on
the p-torsion of Gm, Hm also arises from the pair (g, h), as required! �

In the above proof, we used the following result of Kraus [19, Proposition
8.1] on congruences of modular forms.

Proposition 9.7. (Kraus) Suppose that
∑

n≥0 anwn is the Fourier expan-
sion around infinity of a modular form of weight k and level N , with coeffi-
cients an belonging to the ring of integers OK of a number field K. Suppose
that I is a ideal of OK dividing an for all

n ≤ kN

12

∏
q prime,

q|N

(
1 +

1
q

)
.

Then I divides an for all n.

10. Proof of Theorem 2 for q = 127

We now briefly turn our attention to equation (1) with q = 127 showing
that it has no solutions. Note in this case, by Lemma 2.1, 26 = t(127) |2 n.
It is straightforward to adapt the first part of the proof of Corollary 2.3 to
reduce to the case

L2m = 127yp,

where p ≥ 2 is prime and m = 25r. We are unable to show that r can be
taken to be a prime, but merely observe that r must be odd. It is enough
to show that this equation has no solutions.

Using a simple adaptation of the sieve used in the proof of Lemma 7.1,
we can show that there are no solutions for prime exponent 2 ≤ p ≤ 11.
We now turn our attention to the p ≥ 13. We may apply the double-Frey
approach to L2m = 127yp as in the previous section. We are forced to
change the definition of Sl since m = 25r with r odd but not necessarily
prime; we define Sl to be the set of integers 0 ≤ m′ ≤ Ml− 1 satisfying the
following conditions:

(a) if 3 | Ml, then m′ ≡ 1 (mod 3),
(b) gcd(25,Ml) | gcd(m′,Ml).

The arguments of the previous section now show that Galois representations
on the p-torsion of Gm and of Hm arise from normalized cuspidal newforms
g and h of weight 2 and levels 100× 127 and 128× 127, respectively. There
are 26 newforms at the first level and 28 at the second level. Moreover, if l is
any prime 6= 2, 5, 127, then p | Bg,h(l) where Bg,h(l) is as given in (23). We
now apply the argument used in the proof of Proposition 9.6 which succeeds
in eliminating all possible pairs of newforms g, h, giving a contradiction.
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The computation of the relevant newforms took about 4.5 hours on a 2.8
GHz Opteron with 16 GB memory. The computation of newforms at high
levels is a notoriously memory-intensive operation. In our case MAGMA used
about 2 GB of memory. The same method can probably be used to solve
equation (1) for the other values of q in (2), provided that the newforms
at the relevant levels can be computed. This however is very much beyond
the hardware that is currently available to us.

11. Congruences for m modulo p

In this section, we continue exploiting the modular approach. This time,
our aim is to prove congruences for m modulo the exponent p. We continue
with the notation of the previous section. In particular m, y, p, q and r are
assumed to satisfy (11), (17), (18), Gm and Hm are the Frey curves given
in (19) and (20), and G and H are as in Proposition 9.6.

Lemma 11.1. Suppose l 6= 2, 5, q is a prime.
(i) If l - y, then

al(Gm) ≡ al(G) (mod p), al(Hm) ≡ al(H) (mod p).

(ii) If l | y, then

l + 1 ≡ al(G)
(−10F2m

l

)
(mod p), l + 1 ≡ al(H)

(−Lm

l

)
(mod p).

Proof. The lemma follows from [20, Proposition 3]. If l - y, then all the
elliptic curves have good reduction at l. If l | y, then G and H have good
reduction at l, and Gm andHm have multiplicative reduction at l. Moreover,
a quick calculation shows that Gm, Hm have split reduction at l if and only
if −10F2m, −Lm are squares modulo l, respectively. �

The above Lemma 11.1 includes a slight but very useful strengthening
of Lemma 9.2, in that it allows the case l = p. This is very useful since p
is not known and therefore awkward to avoid. We now fix a prime p ≥ 13.
Let l 6= q be a prime with l = kp + 1, and l ≡ ±1 (mod 5). Let A(p, k) be
the set of ζ ∈ (F∗l )p\{1} satisfying(

qζ − 2
l

)
=
(

qζ + 2
l

)
= 1.

For each ζ ∈ A(p, k), we choose an integer δζ such that

δ2
ζ ≡ qζ + 2(−1)m.

Let
Hζ : Y 2 = X3 + 2δζX

2 + 2(−1)mX.
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Lemma 11.2. Suppose that p ≥ 13 is prime. Suppose furthermore that
there exists an integer k satisfying the following conditions:

(a) The integer l = kp + 1 is prime and l ≡ ±1 (mod 5).
(b) The order of α modulo l is divisible p; equivalently, αk 6≡ 1 (mod l).
(c) For all ζ ∈ A(p, k),

(c.1) if l < p2/4 and l ≡ 1 (mod 4) then al(Hζ) 6= al(H);
(c.2) if l < p2/4 and l ≡ 3 (mod 4) then al(Hζ) 6= ±al(H);
(c.3) if l > p2/4 and l ≡ 1 (mod 4) then al(Hζ) 6≡ al(H) (mod p);
(c.4) if l > p2/4 and l ≡ 3 (mod 4) then al(Hζ) 6≡ ±al(H) (mod p).

Then m ≡ ±1, ±2, ±4 (mod p) according to whether q = 3, 7 and 47,
respectively.

Proof. We first prove that l - y. Suppose l | y. Then y > 1, and so by
Corollary 6.2 we have that y > 1010. However, from (11), we see that
l | L2m or equivalently α2m + β2m ≡ 0 (mod l). Equation (9) leads to
α8m ≡ 1 (mod l). However, by assumption (b), we see that p | m, and
from conditions (17) and (18) we deduce that p = r. We explain how to
get a contradiction for q = 47; the other cases are almost identical. Since
m = 4r = 4p, equation (11) can be rewritten as L8p = 47yp. Thus,

47yp = α8p + β8p < (α8 + β8)p = 47p,

easily contradicting y > 1010. Thus, l - y. A similar reasoning shows that
l - Lm and l - Fm.

We next show that yp ≡ 1 (mod l). Suppose yp 6≡ 1 (mod l). It is easy
to see from equations (14) and (15) that there is some ζ ∈ A(k, p) such
that yp ≡ ζ (mod l); for this, we need our observation that l - FmLm, and
the fact that 5 is a quadratic residue modulo l because l ≡ ±1 (mod 5).
Further, from (14), Lm ≡ ±δζ (mod l). Regarded as elliptic curves over Fl,
we note that Hm and Hζ are either identical, or quadratic twists by −1. If
l ≡ 1 (mod 4), then al(Hm) = al(Hζ), and otherwise al(Hm) = ±al(Hζ).
We complete the proof for l ≡ 3 (mod 4); the proof for l ≡ 1 (mod 4) is
almost identical. By Lemma 11.1, we know that al(Hm) ≡ al(H) (mod p).
Hence,

al(Hζ) ≡ ±al(H) (mod p).

We have obtained a contradiction if l > p2/4. Suppose now that l < p2/4.
The Hasse-Weil bounds tell us that both inequalities

|al(Hζ)| ≤ 2
√

l, |al(H)| ≤ 2
√

l

hold, so

|al(Hζ)∓ al(H)| ≤ 4
√

l < 2p.
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But al(Hζ)∓al(H) is divisible by p. Moreover, both curves Hζ and H have
2-torsion and so al(Hζ) ∓ al(H) is divisible both by 2 and by p. It follows
that al(Hζ)∓ al(H) = 0, giving a contradiction.

We have finally deduced that yp ≡ 1 (mod l). We complete the proof for
the case q = 47, the other cases being similar. For q = 47, we have shown
that

α2m + β2m = L2m = 47yp ≡ 47 (mod l).
Hence,

α4m − 47α2m + 1 ≡ 0 (mod l).
The roots of the quadratic equation X2−47X+1 = 0 are α8 and β8 = α−8.
Thus,

α2m ≡ α±8 (mod l).
Since p divides the order of α modulo l, we obtain m ≡ ±4 (mod p) as
required. �

Proposition 11.3. Suppose that m, y, p and q satisfy equation (11) and
conditions (17) and (18). Then m ≡ ±1, ±2, ±4 (mod p) according to
whether q = 3, 7, 47, respectively.

Proof. The result is true for y = 1, so we may suppose that y > 1. Propo-
sition 8.1 says that 13 ≤ p < 1.05 × 108, 13 ≤ p < 1.92 × 108 and
13 ≤ p < 3.94 × 108 for q = 3, 7 and 47, respectively. Lemma 11.2 gives
a criterion for showing that m satisfies the required congruence modulo p.
We wrote a short PARI/GP program which, given a prime p in the indicated
range, searches for suitable k satisfying the conditions of Lemma 11.2. For
q = 3, 7 and 47, it took our program about 12 hours, 20 hours and 51
hours, respectively, to complete the proof of the proposition on a 3.2GHz
Pentium IV. �

12. Linear forms in two logs I.
A better upper bound for p

We now consider again the linear form studied previously, namely

Λ = n log α− log q − p log y,

with n = 2r, 4r or 8r with r prime for q = 3, 7 and 47, respectively. Let us
put n = dr to simplify the notation, where d ∈ {2, 4, 8}. We have seen that
the modular method implies that

r ≡ ε (mod p), when ε = ±1.

We write n = kdp + dε. Thus, Λ can be written as

Λ = p log(αkd/y)− log(qα−dε).

Recall that
|Λ| < y−2p.
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We apply the main result of [22] to this linear form in two logarithms. The
heights of the implied algebraic numbers satisfy

h(αk/y) < log(y) + 2/p, h(qα−dε) = log q.

In the case ε = 1, the logarithms which occur are very small and we get
extremely good bounds:

• if q = 3, then p ≤ 167 (take L = 8 and ρ = 32 in the theorem of
[22]);

• if q = 7, then p ≤ 83 (take again L = 6 but ρ = 111);
• if q = 47 then p ≤ 113 (choose now L = 6 and ρ = 113.5).

In the case ε = −1, the logarithms which occur are not small and we only
get:

• if q = 3, then p ≤ 1249 (take L = 8 and ρ = 23 in the theorem of
[22]);

• if q = 7, then p ≤ 1949, (take again L = 8 and ρ = 23);
• if q = 47, then p ≤ 3863, (choose now L = 8 and ρ = 22).

It may be useful to notice that in the case q = 3 and ε = −1, we get

p ≤ 1039 if n > 2 · 106

and that, in the case ε = 1, we get

p ≤ 127, 67, 107

for q = 3, 7 and 47, respectively, provided that n > 1.1× 106.

13. Simplifying the Thue equations

Later on, we will write down some Thue equations and use them to
obtain an upper bound for n in terms of p.

Solving a Thue equation usually requires knowledge of the class group
and units of the number field defined by the polynomial F (u, 1) (see [3]);
obtaining this information is a major difficulty once the degree of F is
large. However, in case our Thue equation is of the form F (u, v) = ±1,
where F (u, 1) is monic, then all that is needed to solve the Thue equation
is a subgroup of the unit group of full rank (see [18]). Likewise, the usual
approach to bounding the size of the solutions of a Thue equation gives
much better bounds if our Thue equation is of this desirable form.

Of the three auxiliary equations (13)–(15) in Z[
√
−2], the simplest one

is (14). For q = 3, factoring the left-hand side of it we deduce that

(25) Lm ±
√
−2 = (1 +

√
−2)(u + v

√
−2)p.

Identifying imaginary parts, we obtain a Thue equation of the form
F (u, v) = ±1, where F (u, 1) is a monic polynomial.
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For q = 7 and 47, we obtain instead

(26) Lm ±
√

2 = λ(1 +
√

2)r(u + v
√

2)p,

where 0 ≤ r ≤ p− 1, and λ = 3+
√

2 or 7+
√

2 according to whether q = 7
or 47, respectively. Thus, we obtain p different Thue equations of the form
F (u, v) = ±1, with unpleasant coefficients. Moreover, for r 6= 0, these Thue
equations will not have the desirable property that F (u, 1) is monic. In this
section, we use the modular approach to prove that for q = 7 and 47, the
only possible value for r is r = 0. Thus, instead of having to solve p Thue
equations, we only need to solve one which furthermore has the desirable
property that F (u, 1) is monic. More importantly, as we will show in the
next section, having r = 0 allows us also to derive that another linear form
in two logarithms is small which improves our upper bounds on p for q = 7
and 47.

We establish that r = 0 by using a similar sieving technique to the one
used in Section 11.

We assume that m, y, p, q and r satisfy equation (11) and conditions
(17) and (18), where q is one of 7 or 47. Fix a prime p ≥ 13. Let l 6= q
be a prime with l = kp + 1 and l ≡ ±1 (mod 8). Let B(l, p) be the set of
ζ ∈ (F∗l )p satisfying (

5(qζ − 2)
l

)
=
(

qζ + 2
l

)
= 1.

Let C(l, p) be the set of δ ∈ Fl such that δ2 = qζ + 2 for some ζ ∈ B(l, p).
Let

Hδ : Y 2 = X3 + 2δX2 + 2X.

Let D(l, p) be the set of δ ∈ C(l, p) such that al(Hδ) ≡ al(H) (mod p). A
straightforward modification of the first half of the proof of Lemma 11.2
proves that Lm ≡ δ (mod l) for some δ ∈ D(l, p).

Since l ≡ 1 (mod 8), we may choose a square-root of 2 in Fl which we
denote by

√
2. We also fix a primitive root of F∗l , and let

θl : F∗l → Z/(l − 1)Z

denote the discrete logarithm with respect to our fixed root. As p | (l− 1),
we may compose this with the natural map Z/(l − 1)Z → Fp to obtain

φl : F∗l → Fp.

Using the fact that Lm ≡ δ (mod l) for some δ ∈ D(l, p), and applying φl

to (26), we obtain

φl(δ ±
√

2)− φl(λ) ≡ rφl(1 +
√

2) (mod p),

for some δ ∈ D(p, k).
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Lemma 13.1. Under the above conditions and notation, suppose moreover
that φl(1 +

√
2) 6≡ 0 (mod p). Let

E(l, p) =

{
φl(δ +

√
2)− φl(λ)

φl(1 +
√

2)
,

φl(δ −
√

2)− φl(λ)
φl(1 +

√
2)

: δ ∈ D(p, k)

}
.

Then r mod p ∈ E(l, p).

Proposition 13.2. We assume that m, y, p, q and r satisfy equation (11)
and conditions (17) and (18), where q is one of 7 or 47. Then r = 0 in
equation (26).

Proof. We know that 0 ≤ r ≤ p − 1. To show that r = 0, all we have to
show is that r ≡ 0 (mod p). We wrote a short PARI/GP program which
for a given p computes E(li, p) for suitable primes li satisfying the above
conditions. If

∩iE(li, p) = {0 mod p},
then our proof is complete for the particular prime p. It took about 2
minutes for our program to complete the proof for primes of the range
13 ≤ p ≤ 104. But we have already shown in Section 12 that p is less than
4000. This completes the proof. �

14. Linear forms in two logs II.
An even better upper bound for p

We previously witnessed in Section 12 the dramatic improvement in the
upper bound for p after we were able to rewrite our linear form in 3 loga-
rithms as a linear form in 2 logarithms. The bounds for p thus obtained are
still somewhat large for the next step. However, for q = 7 and q = 47, there
is another way of deriving a small linear form in two logarithms which can
be used to yield better bounds for p. In this section, we prove the following
result.

Proposition 14.1. Suppose that (m, y, p) is a solution to equation (11)
satisfying conditions (17) and (18). Suppose furthermore that m ≥ 109.
Then

(1) if q = 3, then p ≤ 1039;
(2) if q = 7, then p ≤ 1487;
(3) if q = 47, then p ≤ 797.

The bound for the case q = 3 is the same one from Section 12; the
method of this section is inapplicable here.

We continue with the previous notation and put n = 2m. Proposition
13.2 allows to write

Lm ±
√

2 = λγp,
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where γ is some algebraic number of norm y and λ = 3 +
√

2 or 7 +
√

2
according to whether q = 7 or 47, respectively. Applying the algebraic
conjugation (denoted by z 7→ z′) and dividing we get

1 < (λ/λ′)±1(γ/γ′)±p < 1 + 3L−1
m < 1 + 2y−p/2.

Thus, we consider the new linear form in two logarithms

Λ = log(λ/λ′)− p log(γ′/γ),

which satisfies

|Λ| < 2y−p/2.

We apply again the main result of [22] to this linear form in two logarithms.
To estimate the heights of the implied algebraic numbers, the following
elementary lemma is useful.

Lemma 14.2. Let aX2 + bX + c be a quadratic polynomial with integer
coefficients and with complex roots ξ and ξ′. Then the quotients ξ/ξ′ and
ξ′/ξ are the roots of the polynomial

Q = acX2 − (b2 − ac)X + ac

whose Mahler measure is equal to |ac|max{|ξ/ξ′|, |ξ′/ξ|}.
In particular, if ξ and ξ′ are real, then

M(Q) = |b2 − ac|+ (b4 − 4acb2)1/2.

Otherwise,

M(Q) = |ac|.

We now apply this Lemma 14.2. For q = 7, we have λ = 3+
√

2, which is
a root of the polynomial X2−6X+7. Thus, λ′/λ is a root of the polynomial
7X2 − 22X + 7, therefore

h

(
3 +

√
2

3−
√

2

)
= 1

2 log(11 + 6
√

2).

To estimate the height of γ′/γ, we may assume that γ′ > γ without loss of
generality. Then

γ >

(
Lm −

√
2

3 +
√

2

)1/p

and γ′ <

(
Lm +

√
2

3−
√

2

)1/p

.
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We then get easily using the fact that Lm −
√

2 > 2p −
√

2 > 4p2 that

1 <
γ

γ′
<

(
(3 +

√
2)(Lm +

√
2)

(3−
√

2)(Lm −
√

2)

)1/p

<

(
3 +

√
2

3−
√

2

)1/p

e
2
√

2

p(Lm−
√

2)

<

(
3 +

√
2

3−
√

2

)1/(p−1)

and

M(γ/γ′) < y×
(

3 +
√

2
3−

√
2

)1/(p−1)

, h(γ/γ′) <
1
2

log y+
1

2(p− 1)
log

3 +
√

2
3−

√
2
.

For q = 47 we have λ = 7 +
√

2, which is a root of the polynomial
X2 − 14X + 47. Then λ′/λ is a root of the polynomial 47X2 − 102X + 47.
Thus,

h

(
7 +

√
2

7−
√

2

)
= 1

2 log(51 + 14
√

2).

In this case,

M(γ/γ′) < y×
(

7 +
√

2
7−

√
2

)1/(p−1)

, h(γ/γ′) <
1
2

log y+
1

2(p− 1)
log

3 +
√

2
3−

√
2
.

Applying now the main theorem of [22], we deduce Proposition 14.1 in
the following way; for q = 7, we take L = 8 and ρ = 33.5 in the main
theorem of [22], while for q = 47, we take L = 9 and ρ = 42 in that
theorem.

15. A bound for n in terms of p

Our objective in this section is to obtain bounds for n in terms of p
for solutions to the equation Ln = qyp for the cases q = 3, 7 and 47,
respectively.

15.1. Preliminaries. It follows from Baker’s theory of linear forms in log-
arithms (see for example Chapter 9 from the book of Shorey and Tĳdeman
[30]), that the sizes of n and y are bounded in terms of p. Unfortunately,
these bounds are huge, and there is no hope to complete the resolution of
our equations by proceeding in that way. But to solve our problem, we have
just to consider the solutions which are Lucas numbers and then we can
find all of them.

To get upper bounds for the solutions of the Thue equation involved here
we might apply the results of Bugeaud and Győry [6] (see also Győry and
Yu [17]). However, it is of much interest to rework the proof of Bugeaud and
Győry in our particular context. On the one hand, our particular equations
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have some nice properties not taken into account in the general result of
[6], and, on the other hand, there has been an important improvement, due
to Matveev, in the theory of linear forms in logarithms (see Theorem 3 of
Section 8.2 for a precise statement) since [6] has appeared. Altogether, we
actually compute a much better upper bound than the one obtained by
applying the main result of [6] directly.

Before giving a precise statement of the main results of this section, we
need an upper bound for the regulators of number fields. Several explicit
upper bounds for regulators of a number field are available in the literature;
see, for example, [23] and [31]. We have however found it best to use a result
of Landau.

Lemma 15.1. Let K be a number field of degree d = r1+2r2, where r1 and
r2 are the number of its real and complex embeddings, respectively. Denote
its discriminant by DK, its regulator by RK, and the number of roots of
unity in K by w. Let L be a real number such that DK ≤ L. Let

a = 2−r2 π−d/2
√

L.

Define the function fK(L, s) by

fK(L, s) = 2−r1 w as (Γ(s/2)
)r1
(
Γ(s)

)r2sd+1 (s− 1)1−d,

and let CK(L) = min {fK(L, 2− t/1000) : t = 0, 1, . . . , 999}. Then

RK < CK(L).

We next apply again Matveev’s lower bound for linear forms in loga-
rithms (but now in the general case), given in Theorem 3 of Section 8.2.

We also need some precise results from algebraic number theory. In the
rest of this section, K denotes a number field of degree d = r1 + 2r2 and
positive unit rank r = r1 +r2−1. Let again DK and RK be its discriminant
and regulator, respectively, and let w denote the number of roots of unity
in K. Observe that w = 2 if r2 = 0.

Now we prove a lemma which gives a lower bound on the height of some
algebraic numbers.

Lemma 15.2. Let η be a real algebraic integer of degree d with r real
conjugates and let M be the Mahler measure of η. Then

r2 ≤ 16d log(2dM),

or, equivalently,

M ≥ 1
2d

er2/(16d).
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Proof. Without any loss of generality, we may suppose that η is positive.
Let H be a positive integer and D ≥ d to be chosen later. Consider the set

E = {P ∈ Z[X] : P =
D∑

i=0

aiX
i, 0 ≤ ai ≤ H},

and the map P 7→ P (η) from E to the real interval I = [0,H(D +1)(η∗)D],
where we use z∗ = max{1, |z|}. If we partition the interval I into H(H+1)D

subintervals of equal length, then, since E contains (H + 1)D+1 elements,
there exist two different polynomials P1 and P2 in E such that P1(η) and
P2(η) belong to the same subinterval. Putting P = P2 − P1, we then have

|P (η)| ≤ (D + 1)(H + 1)−D(η∗)D,

and
|P (ηj)| ≤ (D + 1)H(η∗j )

D

for each conjugate ηj of η. If now follows that

|Norm P (η)| < (D + 1)d(H + 1)d−1−DMD.

Thus, taking

H =
⌊(

MD(D + 1)d
) 1

D+1−d

⌋
,

we see that |Norm P (η)| < 1. Hence, P (η) = 0. To conclude, we apply a
theorem of Schur [29] to the polynomial P :

r2 ≤ 4D log(L(P )),

where L(P ) is the length of P ; i.e., the sum of the absolute values of
the coefficients of this polynomial. The result follows easily choosing D =
2d− 1. �

We next need some standard estimates on the roots of polynomials.

Lemma 15.3. Let P =
∑d

i=0 aiX
d−i be a polynomial with complex coeffi-

cients, and let z be one of its roots. Then

|a0z| ≤ 2 max
1≤i≤d

{|ai|1/i},

and the measure of P satisfies

M(P ) ≤
(

d∑
i=0

|ai|2
)1/2

.

Moreover, if sep(P ) is the minimal distance between different roots of P ,
then

sep(P ) > d−(d+2)/2M(P )1−d.
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Proof. The first inequality is a weaker version of an estimate proved by
Lagrange. The bound on the measure is a corollary of a result of Landau
of 1905 and the lower bound on sep(P ) is due to Mahler. �

In the course of our proof, we use fundamental systems of units in K
with specific properties.

Lemma 15.4. There exists a fundamental system {ε1, . . . , εr} of units in
K such that

r∏
i=1

h(εi) ≤ 21−r (r!)2 d−r RK,

and the absolute values of the entries of the inverse matrix of
(log|ε(j)

i |)i,j=1...r do not exceed (r!)2 2−r (log(3d))3. Here, α → α(j) for
j = 1, . . . , r are the r complex embeddings of K.

Proof. This is Lemma 1 of [5] combined with a result of Voutier [34] (see
[6]) giving a lower bound for the height of any non-zero algebraic number
which is not a root of unity. �

We also need sharp bounds for discriminants of number fields in a relative
extension.

Lemma 15.5. Let K1 ⊆ K2 be number fields and denote the discriminant
of the extension K2/K1 by DK2/K1

. Then

|DK2 | = |DK1 |[K2:K1] |NK1/Q(DK2/K1
)|.

Proof. This is Proposition 4.9 of [28]. �

15.2. Statement of the results. In the case q = 3, we prove:

Proposition 15.6. Suppose that q = 3 and that p ≥ 13 is prime. Let γ be
any root of the polynomial

(27) P (X) =
p∑

k=0

(−2)bk/2c
(

p

k

)
Xk,

and let K = Q[γ]. Let CK(·) be as in Lemma 15.1 and

Θ = 11.7·30p+3 p15/2 (p−1)p+1 ((p−1)!
)2 (1+log(p(p−1))

)
CK((6

√
2)p−1pp).

Let Cp,q = 2.5p Θ log Θ. If (m, y, p) satisfies the equation (11) and condi-
tions (17) and (18), then m < Cp,q.

In the cases q = 7 and q = 47, we prove:

Proposition 15.7. Suppose that q = 7 or 47 and that p ≥ 13 is prime.
Let again α = (1 +

√
5)/2. For q = 7, put e = 4 and for q = 47, put e = 8.
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Denote the real p-th root of qαe by ξ, set K = Q[
√

5, ξ], and let CK(·) be as
in Lemma 15.1. Let also

Θ = 67 · 30p+5(p− 1)p+2p3 (p + 2)5.5 (p!)2
(
1 + log(2p(p− 1))

)
× CK(p2p (q2 − 4)p q2(p−1))

and Cp,q = 1.25p Θ log Θ. If (m, y, p) satisfies the equation (11) and condi-
tions (17) and (18), then m < Cp,q.

The method used to get Proposition 15.7 can also be applied for
q = 3, but it then gives a larger upper bound for m than that obtained in
Proposition 15.6.

15.3. Proof of Proposition 15.6. Let n = 2m with m being an odd
prime. From the relation Ln = L2

m + 2, we reduce the problem to solving
the superelliptic equation x2 + 2 = 3yp. Put ω =

√
−2. Factoring the left-

hand side of it over Z[ω], we deduce the existence of integers a and b with
a2 + 2b2 = y2 and

(x + ω)(x− ω) = (1 + ω)(1− ω)(a + bω)p(a− bω)p.

Consequently, we get

(28) ± 2ω = (1 + ω)(a + bω)p − (1− ω)(a− bω)p.

Dividing by 2ω, we get the Thue equation

(29)
p∑

k=0

(−2)bk/2c
(

p

k

)
Xk Y p−k = ±1.

To bound the size of the solutions of (29) we follow the general scheme of [6],
which was also used in [8]. Let P (X) and γ and K be as in Proposition 15.6.
We note that P (X) is the polynomial naturally associated to the Thue
equation (29). We first need information on the number field K and its
Galois closure. We use the following lemma, a variant of which was proved
in [10]:

Lemma 15.8. The field K = Q[γ] is totally real and its Galois closure
L has degree p(p − 1) over Q. Furthermore, the discriminant of K divides
3p−12(p−1)/2(2p)p.

Proof. Observe that any root of the polynomial

P (X) =
1
2ω

(
(1 + ω)(X + ω)p − (1− ω)(X − ω)p)

satisfies |X + ω| = |X − ω|, and so must be real. Hence, K is a totally real
field. Furthermore, L[ω]/Q[ω] is a Kummer extension obtained by adjoining
the p-th roots of unity and the p-th roots of (1 + ω)/(1 − ω). Hence, this
extension has degree p(p− 1), and this is also true for L/Q.
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Observe now that K[ω] is generated over Q[ω] by any root of either
one of the following two monic polynomials with coefficients in Z[ω],
Y p − (1 + ω)(1 − ω)p−1, or Y p − (1 − ω)(1 + ω)p−1. Since the discrimi-
nant D1 of the extension K[ω]/Q[ω] divides the discriminant of each of
these polynomials, we get that D1 divides pp3p−1(1 − ω)(p−1)(p−2) and
pp3p−1(1+ω)(p−1)(p−2). However, 1+ω and 1−ω are relatively prime, thus
D1 divides 3p−1pp. Furthermore, estimating the discriminant of K[ω]/Q in
two different ways thanks to Lemma 15.5, gives

(30) |DK[ω]| = 8pD2
1 = |DK|2|NK/Q(DK[ω]/K)|.

Consequently, |DK| divides 3p−12(p−1)/2(2p)p. �

Let γ1, . . . , γp be the roots of P (X) and let (X, Y ) be a solution of (29).
Without any loss of generality, we assume that γ = γ1 and |X − γ1Y | =
min1≤j≤p |X − γjY |. We will make repeated use of the fact that |γ1|, . . . ,
|γp| are not larger than 2p by the first assertion of Lemma 15.3. Moreover,
the Mahler measure of P is at most (1 +

√
2)p by an easy application of

Landau’s inequality given in Lemma 15.3. Assuming that Y is large enough,
namely that

(31) log |Y | ≥ (30p)p,

we get (using the lower bound for sep(P ) of Lemma 15.3)

|Y | ≥ p max
2≤j≤p

{|γ1 − γj |−1},

which implies

|X − γjY | ≥ |γ1 − γj ||Y | − |X − γ1Y | ≥
(

1− 1
p

)
|γ1 − γj ||Y |.

Hence,

(32) |X − γ1Y | ≤ 3

 ∏
2≤j≤p

|γ1 − γj |

 |Y |−p+1 ≤ (4p)p |Y |−p+1,

since
∏

2≤j≤p |γ1 − γj | = P ′(γ1) ≤ p (1 +
√

2 |γ1|)p−1 < p (3p + 1)p−1.

From the ‘Siegel identity’

(X − γ1Y )(γ2 − γ3) + (X − γ2Y )(γ3 − γ1) + (X − γ3Y )(γ1 − γ2) = 0,

we have

Λ =
γ2 − γ3

γ3 − γ1
· X − γ1Y

X − γ2Y
=

X − γ3Y

X − γ2Y
· γ2 − γ1

γ3 − γ1
− 1.
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Observe that the unit rank of K is p − 1 since K is totally real. Let ε1,1,
. . . , ε1,p−1 be a fundamental system of units in K = Q[γ1] satisfying

(33)
∏

1≤i≤p−1

h(ε1,i) ≤
(
(p− 1)!

)2
2p−2pp−1

RK.

The fact that this exists is a consequence of by Lemma 15.4. Denote the
conjugates of ε1,1, . . . , ε1,p−1 in Q[γ2] and Q[γ3], by ε2,1, . . . , ε2,p−1 and
ε3,1, . . . , ε3,p−1, respectively. They all belong to the Galois closure L of K.

The polynomial P (X) is monic and the left-hand side of equation (29)
is a unit. Thus X − γ1Y is a unit. This simple observation appears to be
crucial, since, roughly speaking, it allows us to gain a factor of size around
ppRK (compare with the proofs in [6] and in [8]).

Since the only roots of unity in K are ±1, there exist integers b1, . . . ,
bp−1 such that X − γ1Y = ±εb1

1,1 · · · ε
bp−1

1,p−1. We thus have

Λ = ±
(

ε3,1

ε2,1

)b1

· · ·
(

ε3,p−1

ε2,p−1

)bp−1 α2 − α1

α3 − α1
− 1.

As in [6, 6.12], we infer from Lemma 15.4 that

B = max{|b1|, . . . , |bp−1|} ≤ 22−p p (p!)2 (log(3p))3 h(X − γ1Y )

≤ p2(p+1) log |Y |,
(34)

by (32).
Further, we notice that

h
(

γ2 − γ1

γ3 − γ1

)
≤ 4 h(γ1) + log 4 ≤ 4 log(1 +

√
2) + log 4,

since we have

h(γ1) ≤
log M(P )

p
≤ log(1 +

√
2).

Hence, with the modified height h′ related to the field L, we have

h′
(

γ2 − γ1

γ3 − γ1

)
≤ 2(2 log(1 +

√
2) + log 2)p(p− 1).

By Lemma 15.8, we may replace the absolute value of the discriminant of
K by (6

√
2)p−1pp, since for the upper bound on n we only aim to find an

increasing function of p. For i = 1, . . . , p − 1, we have h(ε1,i) = h(ε2,i) =
h(ε3,i) and, by Lemma 15.2, the height of the real algebraic integer ε1,i

satisfies h(ε1,i) > 1. We thus get

h′
(

ε2,i

ε3,i

)
≤ 2p(p− 1)h(ε1,i).
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Consequently, using Theorem 3 in the real case with n = p and D = p(p−1),
we get

log |Λ| > −2.8 · 30p+3p9/2(p(p− 1)
)p+2 (2 log(1 +

√
2) + log 2)

×
(
1 + log(p(p− 1))

)
(1 + log B) (1 + log 2) 2p−1

∏
1≤i≤p−1

h(ε1,i).

(35)

Now (33) gives us that

log |Λ| > −2.8 · 30p+3 p15/2 (p− 1)p+2 (2 log(1 +
√

2) + log 2)
(
(p− 1)!

)2
× (1 + log 2)

(
1 + log(p(p− 1))

)
(1 + log B) RK.

(36)

Furthermore, it follows from (32) that

(37) log |Λ| < 2p log(2p)− (p− 1) log |Y |.
By (34), we have the upper bound

(38) (1 + log B) < 3p2 + log log |Y |.
Finally, we observe that since Ln = 3yp for some even n > 100, then
there are integers X and Y such that (X, Y ) is a solution of the Thue
equation (29) and (Ln/3)1/p = X2 + 2Y 2. Since |X| ≤ 3p|Y | and Ln ≥ αn

(since n is even), we derive from (31) that n < 4.2 p log |Y |. It then follows
from (36), (37), and (38), together with Lemmas 15.1 and 15.8, that

n < 5 p Θ log Θ,

with

Θ = 11.7·30p+3 p15/2 (p−1)p+1 ((p−1)!
)2 (1+log(p(p−1))

)
CK((6

√
2)p−1pp).

This proves Proposition 15.6.

15.4. Proof of Proposition 15.7. Recall that

qyp = Ln = αn + βn.

By Proposition 11.3, the index n is congruent to ±e modulo p, where e = 4
if q = 7, and e = 8 if q = 47. This means that there exists an integer ν such
that

(αν)p − qα∓eyp = −α∓eβn.

Thus, we are left with a Thue equation, namely

(39) Xp − qα∓e Y p = unit in Q[
√

5].

We only deal with the + case, since the − case is entirely similar.
As in the statement of Proposition 15.7, we denote the real p-th root of

qαe by ξ and set K = Q[
√

5, ξ]. Let ζ be a primitive p-th root of unity.
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Lemma 15.9. The field K has degree 2p and we have r1 = 2, r2 =
p − 1 and r = p. The absolute value of the discriminant of K is at most
p2p (q2−4)p q2(p−1). Its non-trivial subfields are Q[

√
5] and Q[ξ−ξ−1], whose

discriminants are, in absolute value, at most pp 3p q′p 5p−1 qp−1, where q′ =
1 if q = 7, and q′ = 7 if q = 47. Furthermore, the Galois closure L of K is
the field K[ζ], of degree 2p(p− 1).

Proof. It is easy to verify that the minimal defining polynomial of ξ over Z
is R(X) = X2p − q2Xp + q2. We thus have

|DK| ≤ |NK/Q(R′(ξ))| = |NK/Q(pq(2αe − q)ξp−1)| = p2p (q2 − 4)p q2(p−1).

The fact that K has only two non-trivial subfields, one of degree two, and
another of degree p, is clear. Furthermore, since K is obtained from the
field Q[ξ − ξ−1] by adjoining

√
5, we get from Lemma 15.5 that the abso-

lute value of the discriminant of the field Q[ξ − ξ−1] is not greater than
pp 3p q′p 5p−1qp−1, where q′ = 1 if q = 7, and q′ = 7 if q = 47 (here, we use
the factorizations 72− 4 = 32 · 5 and 472− 4 = 32 · 72 · 5). Since the roots of
the polynomial R(X) are the algebraic numbers ξ, ζξ, . . . , ζp−1 ξ, p

√
qα−e,

ζ p
√

qα−e, . . . , ζp−1 p
√

qα−e, we see that the Galois closure of K is the field
K[ζ]. �

Let ε1,1, . . . , ε1,p be a fundamental system of units in K given by Lemma 15.4.
There exist integers b1, . . . , bp such that

X − ξY = ±εb1
1,1 · · · ε

bp

1,p.

We recall that we are only interested in the solutions (X, Y ) of (39) with X
and Y algebraic integers in the field Q[

√
5]. Thus, X/Y is real, |X − p

√
ωY |

is small, and |X − ζjξY | is quite large for j = 1, . . . , p − 1 (look at its
imaginary part, for example). More precisely, for Y > 2, we get

(40) |X − ξY | ≤ pp Y −p+1.

Furthermore, setting B = max{|b1|, . . . , |bp|}, Lemma 15.4 yields that

(41) B ≤ 21−p p(p!)2(log 6p)3 h(X − ξY ) ≤ p2(p+1) log Y,

by our assumptions on X and Y .
Recall that ζ is a primitive p-th root of unity. We introduce the quantity

(42) Λ =
ζ − ζ2

ζ2 − 1
· X − ξY

X − ζξY
=

X − ζ2ξY

X − ζξY
· ζ − 1
ζ2 − 1

− 1;

hence, the linear form in logarithms

Λ =
(

ε3,1

ε2,1

)b1

· · ·
(

ε3,p

ε2,p

)bp ζ − 1
ζ2 − 1

− 1,
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where ε2,p (resp. ε3,p) is the image of ε1,p under the embedding sending ξ
to ζξ (resp. to ζ2ξ). Let h′ denote the modified height related to the field
L. We have

h′
(

ζ − 1
ζ2 − 1

)
≤ 2p(p− 1) log 4,

and h′(ε1,i) = h(ε1,i). To check this, we observe that any algebraic unit in K
generates one of the subfields of K, and we apply Lemma 15.9 (we may again
replace the absolute value of the discriminant of K by p2p (q2 − 4)p q2(p−1),
since we merely aim only to find an increasing function of p as an upper
bound for n). Using Theorem 3 in the complex case with n = p + 1 and
D = 2p(p− 1), we get

log |Λ| > −3 · 30p+5(p + 2)5.5(2p(p− 1)
)p+3 (1 + log(2p(p− 1))

)
× (1 + log(p + 1)B) (log 4) 2p

∏
1≤i≤p

h(ε1,i).
(43)

By (43) and Lemma 15.4, we get

log |Λ| > −3 · 30p+5(p + 2)5.5(2p(p− 1)
)p+3 (1 + log(2p(p− 1))

)
×
(
1 + log((p + 1)B)

)
(log 4) 2−p+1 p−p (p!)2 RK.

(44)

Furthermore, it follows from (40) and (42), that

(45) log |Λ| < 5p2 − (p− 1) log |Y |.

Since Ln = qyp for some n > 1000, equation (39) has a solution (X, Y ) with
Y =

(
qα(n∓e)

)1/p. We get that n < 2.2 p log Y . It then follows from (41),
(43)–(45) and Lemma 15.1, that

n < 2.5 p Θ log Θ,

with

Θ = 67 · 30p+5(p− 1)p+2p3 (p + 2)5.5 (p!)2
(
1 + log(2p(p− 1))

)
× CK(p2p (q2 − 4)p q2(p−1)).

This completes the proof of Proposition 15.7.

16. The double–Frey sieve

We continue with the assumption that m, y, p, q and r satisfy (11), (17),
(18). From Propositions 15.6 and 15.7, we have that |m| ≤ Cp,q for some
huge bound depending of p and q. In this section, we show that m ≡ m0

(mod M) where m0 = 1,−2 or 4, according to whether q = 3, 7 or 47,
respectively and M > Cp,q. It follows at once that m = m0 completing the
proof of Theorem 1.
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Let l be a prime satisfying (22). Let Ml, Sl be as in Section 9. We know
from Lemma 9.4 that m ≡ m′ (mod Ml) for some m′ ∈ Sl. Now fix some
prime P ≥ 13. Let N (l,P) be set of m′ ∈ Sl satisfying

• L2m′ 6≡ 0 (mod l) and

gcd (al(Gm′)− al(G), al(Hm′)− al(H))

is divisible by some prime ≥ P, or
• L2m′ ≡ 0 (mod l) and

gcd
(

l + 1− al(G)
(−10F2m′

l

)
, l + 1− al(H)

(−Lm′

l

))
is divisible by some prime ≥ P.

We see from Lemma 11.1 that m ≡ m′ (mod Ml) for some m′ ∈ N (l,P),
provided p ≥ P. It is convenient to think of N (l,P) as a subset of Z/MlZ.

Now given two sets N ⊂ Z/MZ and N ′ ⊂ Z/M ′Z we define their ‘inter-
section’ N ∩N ′ to the set of elements in Z/ lcm(M,M ′)Z whose reduction
modulo M , M ′ is in N , N ′, respectively. If L = {l1, . . . , lu} is a set of
primes satisfying the conditions (22) on l, define

N (L,P) =
u⋂

i=1

N (li,P), ML = lcm (Ml1 , . . . ,Mlu) .

We deduce the following lemma.

Lemma 16.1. If p ≥ P, then the reduction of m modulo ML is in N (L,P).
Let Cp,q be as in either of Propositions 15.6 and 15.7. Suppose that the
following two conditions are satisfied:

• ML > Cp,q.
• N (L,P) = {m0 ∈ Z/MLZ}, where m0 = 1 if q = 3, m0 = −2 if

q = 7 and m0 = 4 if q = 47.
Then the only solutions to equation L2m = qyp have m = ±m0.

This is a far stronger sieve than the one used in [10, Section 10] and
[7, Section 7] due to the simultaneous use of congruence conditions on the
index m derived from two Frey curves.

16.1. Completion of the proof of Theorem 2. The rest of the proof
is very much like [10, Section 10] and [7, Section 7]. We give some details
for q = 3. We have reduced to solving the equation (11) and we would like
to show that m = ±1. Let

M = 6983776800 = 25 × 33 × 52 × 7× 11× · · · × 19.

Let P = 13. Start with L = {7}. We go through the primes l ≥ 11 in order
and we pick out those that satisfy Ml | M . If such a prime is found then
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we append it to L and compute N (L,P). Using 36 primes l, we find that

N (L,P) = {1 mod M}.

We know so far, thanks to Lemma 16.1, that m ≡ 1 (mod M). Hence, if
m 6= ±1, then certainly |m| ≥ 1010. From Proposition 14.1, we know that
p ≤ 1039.

Now replace M by M ×23, and continue to search for primes l such that
23 | Ml and Ml | M ; append these to L and compute N (L,P) until it is
{1 mod M}, etc. After a few seconds we have that

M = 25 × 33 × 52 × 7× 11× · · · × 193 ≈ 1.4× 1080

and N (L,P) = {1 mod M} with L having 104 elements. But C13,3 ≈ 2.3×
1079. By Lemma 16.1 our proof is complete for p = 13. So, we let P = 17
and suppose that p ≥ P. The reader will note that increasing P imposes a
more stringent condition on the elements of N (l,P) making the sieve more
efficient.

The entire computation for 13 ≤ p ≤ 1039 took about 12 hours on a 2.2
GHz Intel Pentium IV. The approximates times for q = 7 and q = 47 were
74 hours, and 23 hours respectively.
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