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Landau’s function for one million billions

par Marc DELÉGLISE, Jean-Louis NICOLAS et Paul
ZIMMERMANN

À Henri Cohen pour son soixantième anniversaire

Résumé. Soit Sn le groupe symétrique sur n lettres et g(n) l’or-
dre maximal d’un élément de Sn. Si la factorisation en nombres
premiers de M est M = qα1

1 qα2
2 . . . qαk

k , nous définissons `(M)
comme étant qα1

1 + qα2
2 + . . . + qαk

k ; il y a un siècle, E. Landau
a montré que g(n) = max`(M)≤n M et que, quand n tend vers
l’infini, log g(n) ∼

√
n log(n).

Il existe un algorithme élémentaire pour calculer g(n) pour
1 ≤ n ≤ N ; son temps d’exécution est en O

(
N3/2/

√
log N

)
et

la place mémoire nécessaire est en O(N) ; cela permet de calculer
g(n) jusqu’à, disons, un million. Nous donnons un algorithme pour
calculer g(n) pour n jusqu’à 1015. L’idée principale est de considé-
rer les nombres dits `-superchampions. Des nombres similaires, les
nombres hautement composés supérieurs, ont été introduits par
S. Ramanujan pour étudier les grandes valeurs de la fonction
nombre de diviseurs τ(n) =

∑
d |n 1.

Abstract. Let Sn denote the symmetric group with n letters,
and g(n) the maximal order of an element of Sn. If the standard
factorization of M into primes is M = qα1

1 qα2
2 . . . qαk

k , we define
`(M) to be qα1

1 + qα2
2 + . . . + qαk

k ; one century ago, E. Landau
proved that g(n) = max`(M)≤n M and that, when n goes to infin-
ity, log g(n) ∼

√
n log(n).

There exists a basic algorithm to compute g(n) for 1 ≤ n ≤
N ; its running time is O

(
N3/2/

√
log N

)
and the needed memory

is O(N); it allows computing g(n) up to, say, one million. We
describe an algorithm to calculate g(n) for n up to 1015. The
main idea is to use the so-called `-superchampion numbers. Similar
numbers, the superior highly composite numbers, were introduced
by S. Ramanujan to study large values of the divisor function
τ(n) =

∑
d |n 1.

Manuscrit reçu le 27 février 2008.
Mots clefs. Arithmetical function, symmetric group, maximal order, highly composite

number.
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1. Introduction

1.1. Known results about Landau’s function. For n ≥ 1, let Sn

denote the symmetric group with n letters. The order of a permutation of
Sn is the least common multiple of the lengths of its cycles. Let us call
g(n) the maximal order of an element of Sn. As far as we know, E. Landau
(cf. [9]) was the first to study the function g(n), which was called Landau’s
function in [21], whence the title of this paper.

If the standard factorization of M into primes is M = qα1
1 qα2

2 . . . qαk
k , we

define `(M) to be the additive function defined by

(1) `(M) = qα1
1 + qα2

2 + . . . + qαk
k .

E. Landau proved in [9] that

(2) g(n) = max
`(M)≤n

M

which implies

(3) `(g(n)) ≤ n

and for all positive integers n, M

(4) `(M) ≤ n =⇒ M ≤ g(n) ⇐⇒ M > g(n) =⇒ `(M) > n.

P. Erdős and P. Turán proved in [6] that

(5) M is the order of some element of Sn ⇐⇒ `(M) ≤ n.

E. Landau also proved in [9] that

(6) log g(n) ∼
√

n log n, n →∞.

This asymptotic estimate was improved by S. M. Shah [29] and M. Szalay
[30]; in [12], it is shown that

(7) log g(n) =
√

Li−1(n) +O(
√

n exp(−a
√

log n))

for some a > 0; Li−1 denotes the inverse function of the integral logarithm.
The survey paper [14] of W. Miller is a nice introduction to g(n); it

contains elegant and simple proofs of (2), (5) and (6).
J.-P. Massias proved in [11] that for n ≥ 1

(8) log g(n) ≤ log g(1319366)√
1319366 log(1319366)

√
n log n ≈ 1.05313

√
n log n.

In [13] more accurate effective results are given, including

(9) log g(n) ≥
√

n log n, n ≥ 906

and

(10) log g(n) ≤
√

n log n

(
1 +

log log n− 0.975
2 log n

)
, n ≥ 4.
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Let P+(g(n)) denote the greatest prime factor of g(n). In [8], J. Grantham
proved

(11) P+(g(n)) ≤ 1.328
√

n log n, n ≥ 5.

Some other functions similar to g(n) were studied in [7], [10], [22], [30] and
[31].

1.2. Computing Landau’s function. A table of Landau’s function up
to 300 is given at the end of [18]. It has been computed with the algorithm
described and used in [19] to compute g(n) up to 8000. By using similar
algorithms, a table up to 32000 is given in [15], and a table up to 500000 is
mentioned in [8]. The algorithm given in [19] will be referred in this paper
as the basic algorithm. We shall recall it in Section 2. It can be used to
compute g(n) for n up to, say, one million, maybe a little more. It cannot
compute g(n) without calculating simultaneously g(n′) for 1 ≤ n′ ≤ n.

If we look at a table of g(n) for 31000 ≤ n ≤ 31999 (such a table can be
easily built by using the Maple procedure given in Section 2), we observe
three parts among the prime divisors of g(n). More precisely, let us set

g(n) =
∏
p

pαp , g(1)(n) =
∏

p≤17

pαp ,

g(2)(n) =
∏

19≤p≤509

pαp , g(3)(n) =
∏

p>509

pαp ;

the middle part g(2)(n) is constant (and equal to
∏

19≤p≤509 p) for all n

between 31000 and 31999, while the first part g(1)(n) takes only 18 values,
and the third part g(3)(n) takes 92 values.

So, if n′ is in the neighbourhood of n, g(n′)/g(n) is a fraction which is
the product of a prefix (made of small primes) and a suffix (made of large
primes).

The aim of this article is to make precise this remark to get an algorithm
able to compute g(n) for some fixed n up to 1015.

1.3. The new algorithm. Let τ(n) =
∑

d |n 1 be the divisor function. To
study highly composite numbers (that is the n’s such that m < n implies
τ(m) < τ(n)), S. Ramanujan (cf. [24, 25, 20]) has introduced the superior
highly composite numbers which maximize τ(n)/nε for some ε > 0. This
definition can be extended to function `: N is said to be `-superchampion if
it minimizes `(N)−ρ log(N) for some ρ > 0. These numbers will be defined
(cf. (4.1)) and discussed in Section 4: they are easy to compute and have
the property that, if n = `(N), then g(n) = N .

If N minimizes `(N) − ρ log(N), we call benefit of an integer M the
non-negative quantity ben (M) = `(M) − `(N) − ρ log(M/N) (cf. (6.1)).
If n is not too far from `(N), a relatively small bound can be obtained
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for ben g(n), and this allows computing it. This notion of benefit will be
discussed in Section 6.

To compute g(n), the main steps of our algorithm are

1. Determine the two consecutive `-superchampion numbers N and
N ′ such that `(N) ≤ n < `(N ′) and their common parameter ρ (cf.
Section 5).1

2. For a guessed value B′, determine a set D(B′) of plain prefixes
whose benefit is smaller than B′ (cf. Section 7.1 and Section 7.2).

3. Use the setD(B′) to compute an upper bound B such that ben g(n) ≤
ben g(n) + n − `(g(n)) ≤ B (cf. Section 7.3); note that, from (3),
`(g(n)) ≤ n holds.

4. DetermineD(B), a set containing the plain prefix of g(n). If B < B′,
to get D(B), we just have to remove from D(B′) the elements whose
benefit is bigger than B. If B > B′, we start again the algorithm
described in Section 7.2 to get D(B′) with a new value of B′ greater
than B.

5. Compute a set containing the normalized prefix of g(n) (cf. Sections
7.7, 7.8 and 7.9).

6. Determine the suffix of g(n) by using the function G(pk,m) intro-
duced in Section 1.4 and discussed in Sections 8 and 9.

In the sequel of our article, “ step ” will refer to one of the above six steps,
and “ the algorithm ” will refer to the algorithm sketched in Section 1.3.

On the web site of the second author, there is a Maple code of this
algorithm where each instruction is explained according to the notation of
this article.

If we want to calculate g(n) for consecutive values n = n1, n = n1 +
1, . . . , n = n2, most of the operations of the algorithm are similar and can
be put in common; however, due to some technical questions, it is more
difficult to treat this problem, and here, we shall restrict ourselves to the
computation of g(n) for one value of n.

To compute the first 5000 highly composite numbers, G. Robin (cf. [27])
already used a notion of benefit similar to that introduced in this article.

1.4. The function G(pk, m). In step 6, the computation of the suffix of
g(n) leads to the function G(pk,m), defined by

Definition 1. Let pk be the k-th prime, for some k ≥ 3 and m an integer
satisfying 0 ≤ m ≤ pk+1 − 3. We define

(12) G(pk,m) = max
Q1Q2 . . . Qs

q1q2 . . . qs
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where the maximum is taken over the primes Q1, Q2, . . . , Qs, q1, q2, . . . , qs

(s ≥ 0) satisfying

(13) 3 ≤ qs < qs−1 < . . . < q1 ≤ pk < pk+1 ≤ Q1 < Q2 < . . . < Qs

and

(14)
s∑

i=1

(Qi − qi) ≤ m.

This function G(pk,m) is interesting in itself. It satisfies

(15) `(G(pk,m)) ≤ m.

We study it in Section 8, where a combinatorial algorithm is given to com-
pute its value when m is not too large. For m large, a better algorithm is
given in Section 9.

Let us denote by µ1(n) < µ2(n) < . . . the increasing sequence of the
primes which do not divide g(n), and by P (n) the largest prime factor of
g(n). It is shown in [17] that limn→∞ P (n)/µ1(n) = 1. We may guess from
Proposition 10 that µ1(n) can be much smaller than P (n) while µ2(n) is
closer to P (n). It seems difficult to prove any result in this direction.

1.5. The running time. Though we have the feeling that the algorithm
presented in this paper (and implemented in Maple) yields the value of
g(n) for all n’s up to 1015 (and possibly for greater n’s) in a reasonable
time, it is not proved to do so.

Indeed, we do not know how to get an effective upper bound for the
benefit of g(n) (see Sections 6, 7.3 and 11.1) and in the second and third
steps, what we do is just, for a given n, to provide such an upper bound
B = B(n) by an experimental way.

In the fourth step, the algorithm determines a set D(B) of plain prefixes
(cf. Sections 7.2 and 7.3). It turns out that the number ν(n) of these prefixes
is rather small and experimentally satisfies ν(n) = O(n0.3) (cf. (55)); but
we do not know how to prove such a result, and it might exist some values
of n for which ν(n) is much larger.

Let us now analyze each of the six steps described in Section 1.3.
The first step determines the greatest superchampion number N such

that `(N) ≤ n. Let S(x) =
∑

p≤x p be the sum of the primes up to x.
The main part of this step is to compute S(x) for x close to

√
n log n.

In our Maple program, by Eratosthenes’ sieve, we have precomputed a
function close to S(x), the details are given in Section 5. However, a faster
way exists to evaluate S(x). By extending Meissel’s technique to compute
π(x) =

∑
p≤x 1, (cf. [3]), M. Deléglise is able to compute

∑
p≤x f(p) where

f is a multiplicative function. E. Bach (cf. [1, 2]) has considered a wider
class of functions for which this method also works. By his algorithm, M.



630 Marc Deléglise, Jean-Louis Nicolas, Paul Zimmermann

Deléglise has computed S(1018), and computing S(x) costs O(x2/3/ log2 x).
We hope to implement soon this new evaluation of S(x) in our first step.

The second and the fourth steps compute respectively D(B′) and D(B).
If B′ is “well” chosen, we may hope that Card(D(B′)) is not much larger
than ν(n) = Card(D(B)). The running time of the computation of D(B′)
as explained in Section 7.2 could be larger than ν(n). For n ≈ 1020, most
of the time of the computation of g(n) is spent in the second and fourth
steps. But any precise estimation of these steps seems unaccessible.

The running time of the third step is O(Card(D(B′))), and we may hope
that it is O(ν(n)).

In practice, the fifth step (finding the possible normalized prefixes) is
fast. For every plain prefix π̂, Inequations (80) have at most one solution,
and the cost of this step is O(ν(n)).

The sixth and last step also is fast. Under the strong assumption that
δ1(p) is polynomial in log p (see (117)), for any m, the computation of
G(p, m) (where p is a prime satisfying p ≈

√
n log n) is polynomial in log n,

and the number of normalized prefixes surviving the fight (cf. Section 7.9)
seems to be bounded (we have no examples of more than three of them),
so that (see Section 7.8) this step might be polynomial in log n.

1.6. Plan of the paper. In Section 3, some mathematical lemmas are
given. The various steps of the algorithm presented in Section 1.3 are ex-
plained in Sections 4-9; Section 10 presents some results while Section 11
describes five open problems.

1.7. Notation. We denote by P = {2, 3, 5, 7, . . .} the set of primes, by
p ∈ P a generic prime, by pi the i-th prime and by vp(N) the p-adic
valuation of N , that is the greatest integer α such that pα divides N . Qi

and qi also denote primes, except in Lemma 1 which is stated in a more
general form, but which is used with Qi and qi primes. The integral part of a
real number t is denoted by btc = maxn∈Z,n≤t n. The additive function ` can
be easily extended to a rational number by setting `(A/B) = `(A) − `(B)
(with A and B coprime).

2. The basic algorithm

2.1. The first version. For j ≥ 0, let us denote by Sj the set of numbers
having only p1, p2, . . . , pj as prime divisors

(16) Sj = {M ; p |M =⇒ p ≤ pj}.

We have S0 = {1}, S1 = {1, 2, 4, 8, 16, . . .}. The algorithm described in [19]
computes the functions

(17) gj(n) = max
M∈Sj , `(M)≤n

M
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which obviously satisfy the induction relation

(18) gj(n) = max
[
gj−1(n), pjgj−1(n− pj), . . . , pk

j gj−1(n− pk
j )
]

where k is the largest integer such that pk
j ≤ n, and g0(n) = 1 for all n ≥ 0.

Using the upper bound (11), we write the following Maple procedure:

Algorithm 1 The basic algorithm: this Maple procedure computes g(n)
for 0 ≤ n ≤ N and stores the results in table g.

gden := proc(N) local n, g, pmax, p, k, a
for n from 0 to N do

g[n] := 1
endo;
pmax := floor(1.328 ? eval(sqrt(N ? log N)));
p := 2;
while p ≤ pmax do

for n from N to p by −1 do
for k from 1 while pk ≤ n do

a := pk ? g[n− pk];
if g[n] < a then

g[n] := a
end if

endo
endo;
p := nextprime(p)

end while;
end;

The running time of this procedure is 13 hours for N = 106 on a 3 Ghz
Pentium 4 with a storage of 337 Mo. To compute g(n), 1 ≤ n ≤ N , the
theoretical running time is O

(
N3/2/

√
log N

)
and the needed memory is

O(N) integers of size exp(O(
√

N log N)).

2.2. The merging and pruning algorithm. The above algorithm takes
a very long time to compute gj(n) when j is small. It is better to represent
(gj(n))n≥1 by a list Lj = [[M1, l1], . . . , [Mi, li], . . .] (where li = `(Mi)) or-
dered so that Mi+1 > Mi and li+1 > li. If li ≤ n < li+1, then gj(n) = Mi.
So, L0 = [[1, 0]] and L1 = [[1, 0], [2, 2], [4, 4], [8, 8], . . .].

To calculate Lj+1 from Lj we construct the list of all elements
[Mip

a
j+1, li + `(pa

j+1)] for all elements [Mi, li] ∈ Lj and a ≥ 0 such that
li + `(pa

j+1) ≤ N . We sort this new list with respect to the first term
of the elements (merge sort is here specially recommended) to get a list
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Λ = [[K1, λ1], [K2, λ2], . . .] with K1 < K2 < . . . Now, to take (18) into ac-
count, we have to prune the list Λ: if Kr < Ks and λr ≥ λs, we take off the
element [Kr, λr] from the list Λ. The list Lj+1 will be the pruned list of Λ.

3. Two lemmas

Lemma 1. Let s be a non-negative integer, and t1, q1, q2, . . . , qs, Q1, Q2, . . . ,
Qs be real numbers satisfying

(19) 0 < t1 ≤ qs < qs−1 < . . . < q1 < Q1 < Q2 < . . . < Qs.

If we set S =
s∑

i=1

Qi − qi, then the following inequality holds:

1.
Q1Q2 . . . Qs

q1q2 . . . qs
≤ exp

(
S

t1

)
.

Moreover, if s ≥ 1 and S < Q1, we have

2.
Q1Q2 . . . Qs

q1q2 . . . qs
≤ Qs

Qs − S
<

Qs−1

Qs−1 − S
< . . . <

Q1

Q1 − S

with the first inequality in 2. strict when s ≥ 2.

Proof. Lemma 1 is a slight improvement of Lemma 3 of [18] where, in 2.,
only the upper bound Q1/(Q1− S) was given. Point 1. is easy by applying
1 + u ≤ expu to u = Qi/qi − 1. Let us prove 2. by induction. For s = 1,
2. is an equality. Let us assume that s ≥ 2. Setting S′ =

∑s
i=2 Qi − qi =

S− (Q1− q1), we have S′ < S < Q1 < Qs and by the induction hypothesis,
we get

(20)
Q1Q2 . . . Qs

q1q2 . . . qs
=

Q1

q1

Q2 . . . Qs

q2 . . . qs
≤ Q1

q1

Qs

Qs − S′
·

We shall use the following principle:

Principle 1. If x and y add to a constant, the product xy decreases when
|y − x| increases.

We have Qs − S′ ≤ Qs − (Qs − qs) = qs < q1, and using Principle 1, we
get by increasing q1 to Q1 and decreasing Qs − S′ to Qs − S

q1(Qs − S′) > Q1(Qs − S)

which, from (20), proves 2. �

Lemma 2. Let x > 4 and y = y(x) be defined by
y2 − y

log y
=

x

log x
· The

function y is an increasing function satisfying y(x) > 2 and

1. y(x) =
√

x

2

(
1− log 2

2 log x
− (4 + log 2) log 2

8 log2 x
+O

(
1

log3 x

))
, x →∞

2. y(x) <
√

x for x > 4.
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Figure 1. The points (log(N), `(N)), with `(N) ≤ 50, for
1 ≤ N ≤ 60060.

3. y(x) ≤
√

x

2
for x ≥ 80.

Proof. 1. and 3. are proved in [12], p. 227. Since t 7→ (t2 − t)/ log t is

increasing for t > 1, in order to show 2., one should prove
x−

√
x

1
2 log x

>
x

log x
which holds for x > 4. �

4. The superchampion numbers

Definition 2. An integer N is said `-superchampion (or more simply su-
perchampion) if there exists ρ > 0 such that, for all M ≥ 1

(21) `(M)− ρ log M ≥ `(N)− ρ log N.

When this is the case, we say that N is a `-superchampion associated to ρ.

Geometrically, if we represent log M in abscissa and `(M) in ordinate,
the straight line of slope ρ going through the point (log M, `(M)) has an
intersep equal to `(M)− ρ log(M) and so, the superchampion numbers are
the vertices of the convex envelop of all these points (see Fig. 1).
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Similar numbers, the so-called superior highly composite numbers were
first introduced by S. Ramanujan (cf. [24]). The `-superchampion numbers
were already used in [17, 18, 11, 12, 13, 21, 22]. The first ones are (with, in
the third column, the corresponding values of ρ) shown in Fig. 2.

Lemma 3. If N is an `-superchampion, the following property holds:

(22) N = g(`(N)).

Proof. Indeed, let N be any positive number and n = `(N); it follows from
(4) that N ≤ g(n) = g(`(N)). If moreover N is a `-superchampion, then,
for all M such that `(M) ≤ n = `(N), from (21), we have ρ log M ≤
ρ log N + `(M)− `(N) ≤ ρ log N which implies M ≤ N , and thus, from (2),
(22) holds. �

Definition 3.
1. For each prime p ∈ P, let us define the sets

(23) E ′p =
{

p

log p

}
, E ′′p =

{
p2 − p

log p
, . . . ,

pi+1 − pi

log p
, . . .

}
, Ep = E ′p∪E ′′p .

2. And we define

(24) E ′ =
⋃

p∈P
E ′p, E ′′ =

⋃
p∈P

E ′′p and E = E ′ ∪ E ′′.

Remark: Note that all the elements of Ep are distinct at the exception,

for p = 2, of
2

log 2
=

22 − 2
log 2

and that, for p 6= q, Ep ∩ Eq = ∅ holds.

Lemma 4. Let ρ a real number.
1. If ρ ∈ Ep, ρ 6= 2

log 2 , there exist exactly 2 superchampion numbers
associated to ρ. Let Nρ be the smaller one and N+

ρ the bigger one.
Then N+

ρ = pNρ and
(25)

Nρ =
∏

p/ log p <ρ

pαp with αp =


1 if

p

log p
< ρ ≤ p2 − p

log p

i if
pi − pi−1

log p
< ρ ≤ pi+1 − pi

log p

(26)

N+
ρ =

∏
p/ log p≤ρ

pα+
p with α+

p =


1 if

p

log p
≤ ρ <

p2 − p

log p

i if
pi − pi−1

log p
≤ ρ <

pi+1 − pi

log p
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2. If ρ =
2

log 2
=

22 − 2
log 2

∈ E, there exist 3 superchampion numbers as-

sociated to ρ: Nρ defined by (25) is equal to 3, N+
ρ defined by (26)

is equal to 12 and the third one is 6.
3. If ρ 6∈ E, there exists a unique superchampion number Nρ = N+

ρ

associated to ρ. Its value is given by both formulas (25) and (26). Let
ρ′ and ρ′′ be the two consecutive elements of E such that ρ′ < ρ < ρ′′.
Then we have Nρ = Nρ′′ = N+

ρ′ .
4. Let us consider the sequence ρ(i) defined by ρ(0) = −∞, ρ(1) =

3/ log 3, ρ(2) = 2/ log 2, ρ(3) = (22−21)/ log 2 = ρ(2), ρ(4) = 5/ log 5
and such that

{
ρ(i), i ≥ 1

}
= E and ρ(i) > ρ(i−1) for i ≥ 4. If

N (0) = 1, N (1) = 3, N (2) = 6, N (3) = 12, N (4) = 60, etc... is the
increasing sequence of all superchampion numbers, it satisfies:

i. For i ≥ 0, N (i) divides N (i+1) and the quotient N (i+1)/N (i) is
a prime number. The number of prime factors of N (i), count-
ing them with multiplicity, is equal to i.

ii. For i 6= 2, we have N (i) = N+
ρ(i) = Nρ(i+1) where N+

ρ(i) and
Nρ(i+1) are defined respectively in (25) and (26).

iii. For all i ≥ 0, N (i) is associated to ρ if and only if ρ(i) ≤ ρ ≤
ρ(i+1).

iv. If i 6= 1 (i.e., N (i) 6= 3), then vp(N (i)) is a non-increasing
function of the prime p.

Proof. We are looking for an N =
∏

pαp which minimizes F (N) = `(N)−
ρ log N .

An arithmetic function h is said additive if h(M1M2) = h(M1) + h(M2)
when M1 and M2 are coprime. The functions log and ` are additive. Thus F
is additive, and to minimize F (N) =

∑
p |N F (pvp(N)) we have to minimize

F (pα) on α for each p ∈ P. We have F (1) = 0 and for p prime and i ≥ 1,
F (pi) = pi − ρ i log p. The difference

(27) F (pi+1)− F (pi) =

p− ρ log p if i = 0

pi(p− 1)− ρ log p if i > 0

is a non-decreasing function of i that tends to +∞ with i. Thus if F (p) =
F (p) − F (0) = p − ρ log p > 0, the smallest value of F (pα) is 0 obtained
for α = 0. If F (p) ≤ 0 let i be the largest positive integer such that
F (pi) − F (pi−1) ≤ 0. Then the smallest value of F (pα) is obtained on the
set

{
j ≤ i |F (pj) = F (pi)

}
and the number of choices for αp is the cardinal

of this set.
This proves that we have more than one choice for the exponent αp if

and only if there exists i ≥ 0 such that F (pi) = F (pi+1). Due to (27) this
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N `(N)
1 0 −∞ < ρ ≤ 3/ log 3 ≈ 2.73
3 3 3/ log 3 ≤ ρ ≤ 2/ log 2 ≈ 2.89
6 5 ρ = (22 − 21)/ log 2 ≈ 2.89

12 7 2/ log 2 ≤ ρ ≤ 5/ log 5 ≈ 3.11
60 12 5/ log 5 ≤ ρ ≤ 7/ log 7 ≈ 3.60

420 19 7/ log 7 ≤ ρ ≤ 11/ log 11 ≈ 4.59
4620 30 11/ log 11 ≤ ρ ≤ 13/ log 13 ≈ 5.07

60060 43 13/ log 13 ≤ ρ ≤ (32 − 31)/ log 3 ≈ 5.46

Figure 2. The first `-superchampion numbers.

is the case if and only if ρ ∈ Ep. Moreover, the sets Ep being disjoint, there
exists at most one p for which there is more than one choice for αp.

If p ≥ 3 we have p < (p2 − p) < (p3 − p2) < · · · and there is at most one
i such that F (pi+1)− F (pi) = 0, so there are at most two choices for αp.

For p = 2 we have 2 = 22−2 < 23−22 < · · · and for ρ = 2/ log 2 we have
F (1) = F (2) = F (22), so we can choose for α2 every one of the three values
0, 1, 2. With this value of ρ we have F (3) = 3 − (2/ log 2) log 3 < 0 and
F (p) > 0 for p ≥ 5. Thus there are 3 superchampion numbers associated to
ρ = 2/ log 2 which are 3, 6, 12. This proves 1., 2., 3. and 4.; for more details,
see [18].

�

Lemma 5. Let ρ satisfy ρ ≥ 5/ log 5 ≈ 3.11. There exists a unique decreas-
ing sequence (xj) = (xj(ρ)) such that x1 ≥ exp(1) and, for all j ≥ 2, xj

satisfies xj > 1 and

(28)
xj

j − xj−1
j

log xj
=

x1

log x1
= ρ.

We have also

(29) x1 ≥ 5 and x2 > 2.

Proof. The uniqueness of x1 results from ρ > exp(1) and the fact that
t 7→ t/ log t is an increasing bĳection of [exp(1),+∞[. The uniqueness of xj

for j ≥ 2 comes from the fact that t 7→ (tj − tj−1)/ log t = tj−1(t− 1)/ log t
is an increasing bĳection of ]1,+∞[. The inequality xj > xj+1 for j ≥ 2
comes from the increase of j 7→ (tj − tj−1)/ log t for each t > 1.
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Let us prove that x1 > x2. The definition (28) of x2 implies

x2
2 − x2

log x2
= ρ >

2
log 2

=
22 − 2
log 2

≈ 2.89 .

With the increase of t 7→ (t2−t)/ log t this proves x2 > 2. Thus x2
2−x2 > x2,

and therefore
x2

log x2
<

x2
2 − x2

log x2
= ρ =

x1

log x1

which, with the increase of t 7→ t/ log t on [exp(1),+∞[ yields x2 > x1 and
the decrease of (xn). Finally x1/ log x1 = ρ ≥ 5/ log 5 gives x1 ≥ 5. �

Proposition 1. Let ρ be a real number satisfying ρ ≥ 5/ log 5, Nρ the
smallest superchampion number associated to ρ and N+

ρ the largest super-
champion number associated to ρ (cf. Lemma 4). Then, with xj as intro-
duced in Lemma 5, we have

(30) Nρ =
∏
j≥1

∏
xj+1≤p<xj

pj and N+
ρ =

∏
j≥1

∏
xj+1<p≤xj

pj .

Proof. Due to (25), αp = 1 holds if and only we have

(31)
p

log p
< ρ ≤ p2 − p

log p
,

and by the definition (28) of x1 and x2, this is equivalent to

p

log p
<

x1

log x1
and

x2
2 − x2

log x2
≤ p2 − p

log p
·

By the increase of t 7→ t/ log t on [exp(1),+∞[ and t 7→ (t2 − t)/ log t
on [1,+∞[, this proves that for p ≥ exp(1), αp = 1 holds if and only if
x2 ≤ p < x1. It remains to prove that, when p = 2, this equivalence is still
true. In this case, 2/ log 2 = (4 − 2)/ log 2, and (31) is never satisfied. By
(29) we have x2 > 2, and x2 ≤ 2 < x1 is false. Thus, for every prime p, we
have αp = 1 if and only if x2 ≤ p < x1.

For i ≥ 2, αp = i if and only if
pi − pi−1

log p
< ρ ≤ pi+1 − pi

log p
, and, by the

definition (28) of xi and xi+1 this is equivalent to

pi − pi−1

log p
<

xi
i − xi−1

i

log xi
and

xi+1
i+1 − xi

i+1

log xi+1
≤ pi+1 − pi

log p

or xi+1 ≤ p < xi. This proves the first equality (30). The second one can
be proved by the same way. �
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i T [i].q T [i].j T [i].p T [i].`
1 2 2 3 7
2 3 2 13 49
3 2 3 13 53
4 2 4 43 301
5 5 2 47 368
6 3 3 67 626
7 7 2 97 1160
8 2 5 107 1487
9 11 2 251 6307

10 2 6 251 6339
11 3 4 271 7453

Figure 3. The first elements of table T associated to E2.

5. First step of the computation of g(n): getting ρ, N, N ′.

5.1. Fixing our notation. When ρ = 5/ log 5 we have Nρ = 12 and
`(Nρ) = 7 (see Fig. 2).

Definition 4. From now on, n ≥ 7 will be a fixed integer, and our purpose
is to compute g(n). We will denote by ρ the unique real number ρ ∈ E such
that ρ ≥ 5/ log 5 and

(32) `(Nρ) ≤ n < `(N+
ρ ).

We will also fix the following notation.
1. N = Nρ, N ′ = N+

ρ and N =
∏
p

pαp is the standard factorization

of N .
2. We define x1 = x1(ρ) ≥ 5 and x2 = x2(ρ) > 2 by (28).
3. Let pk be the largest prime factor of N = Nρ. It follows from (30)

that

(33) pk < x1 ≤ pk+1

and, actually, x1 = pk+1 unless ρ ∈ E ′′ (in this case pk < x1 <
pk+1).

4. Let us define B1 by

(34) B1 = min
(

x2
2 − 2x2,

x1

2
−
√

x1

)
> 0.

We have

(35) 2 < x2 <
√

x1 < ρ < x1.
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Let us prove (35). Inequalities (29) give 2 < x2. With Lemma 2, Point
2., it yields x2 <

√
x1. Since for all t > 1,

√
t/ log t > e/2 > 1 we have√

x1/ log x1 > 1 and thus ρ = x1/ log x1 >
√

x1.

5.2. The superchampion algorithm. Given n, as already said, the first
step in our computation of g(n) is to calculate ρ,N, N ′, x1, x2, pk, B1 as
introduced in Definition 4.

We begin by precomputing in increasing order the first elements of E ′′
and stop when we get the first r ∈ E ′′ such that `(N+

r ) > 1015. We get a
set E2 with 1360 elements,

E2 =

{
22 − 2
log 2

,
32 − 3
log 3

,
23 − 22

log 2
, · · ·

}
.

We construct a table T , indexed from 1 to card(E2) = 1360. Let r =
(qj+1−qj)/ log q the ith element of E2. Then T [i] = [q, j, p, l] where l = `(N+

r )
and p is the largest prime p such that p/ log p < r. The superchampions
following N+

r are obtained by multiplying it successively by the primes fol-
lowing p. Figure 3 gives the first values of T [i]. (In the Maple program the
T [i]’s are the elements of the table listesuperchE2).

The superchampions that are not of the form N+
r for an r ∈ E2 can easily

be obtained from this table. For instance, the successive values of `(N)
between 368 and 626 are 368 + 53 = 421, 421 + 59 = 480, 480 + 61 = 541
and 541 + 67 = 608.

Two elements of E can be close. For instance, the smallest difference
between two consecutive elements of E less than 8 · 109 is

43083996283
log 43083996283

− 1445892 − 144589
log 144589

= 1759505912.7146899772− 1759505912.7146800938 = 0.0000098834

and thus, working with 20 decimal digits is enough to distinguish the el-
ements of E . For any n up to 1015, Algorithm 2 below determines the
superchampion N = Nρ as in Definition 4.

6. Benefits

6.1. Definition and properties.

Definition 5. Let ρ ∈ E and N = Nρ (as defined in Definition 4). If M
is a positive integer, from (21), we have `(M)− ρ log M ≥ `(N)− ρ log N .
We call benefit of M the non-negative quantity

(36) ben (M) = `(M)− `(N)− ρ log
M

N
·

Let M =
∏

p pβp be the standard factorization of M . We define

(37) benp (M) = `(pβp)− `(pαp)− ρ(βp − αp) log p ≥ 0,
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Algorithm 2 : computes N = Nρ for a given n ≤ 1015.

Construct table T .
i := the largest index such that T [i].` ≤ n.
`′ := T [i + 1].`, q′ = T [i + 1].q, j′ = T [i + 1].j.
{r′ = (q′j

′
− q′(j

′−1))/ log q′ is the smallest element in E2 such that
`(Nr′) > n}
t := `′ − q′(j

′−1)(q′ − 1);
{This is the value `(N) of the superchampion N preceding N+

r }
if t ≤ n then

ρ := r′

else
n0:= T [i].` + nextprime(T [i].p);
while n0 ≤ n do

p := nextprime(p); n0 := n0 + p
end while
ρ := p/ log p

end if

which implies

(38) ben (M) =
∑
p

benp (M).

Geometrically, if we represent log M in abscissa and `(M) in ordinate, the
straight line of slope ρ going through the point (log M, `(M)) cuts the y axis
at the ordinate yM = `(M)− ρ log(M) and so, the benefit is the difference

yM − yN (see Fig. 4). Note that ρ =
`(N ′)− `(N)
log N ′ − log N

with N = Nρ and

N ′ = N+
ρ .

Lemma 6. Let p ∈ P, α = αp = vp(N) and γ a non-negative integer.
Then,

1. ben (pγN) = `(pγ+α)− `(pα)− ργ log p is non-decreasing for γ ≥ 0
and tends to infinity with γ.

2. ben (N/pγ) = ργ log p + `(pα−γ) − `(pα) is non-decreasing for
0 ≤ γ ≤ α.

Proof. 1. If γ + α ≥ 1, we have

ben (pγ+1N)− ben (pγN) = log p

(
pγ pα+1 − pα

log p
− ρ

)
which is non-negative from (25) and tends to infinity with γ.

If α = γ = 0, we have ben (pN) − ben (N) = log p(p/ log p − ρ)
which is also non-negative from (25).
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ben(M)

log(M)log(N)

l(N)

l(M)

A

B

Figure 4. A = (log N, `(N)) and B = (log M, `(M)).

2. If α ≥ 2 and 0 ≤ γ ≤ α− 2, we have

ben
(

N

pγ+1

)
− ben

(
N

pγ

)
= log p

(
ρ− 1

pγ

pα − pα−1

log p

)
which is non-negative from (25).

If α ≥ 1 and γ = α− 1,

ben
(

N

pγ+1

)
− ben

(
N

pγ

)
= log p

(
ρ− p

log p

)
yields the same conclusion.

�

Lemma 7. Let U/V be an irreducible fraction such that V divides N (as
fixed in Definition 4) and U = U1U2, V = V1V2 with (U1, U2) = (V1, V2) =
1. Then we have

1.

(39) `

(
UN

V

)
− `(N) = `

(
U1N

V1

)
− `(N) + `

(
U2N

V2

)
− `(N).

2.

(40) ben
(

UN

V

)
= ben

(
U1N

V1

)
+ ben

(
U2N

V2

)
·

Proof. Observing that a prime p divides at most one of the four numbers
U1, U2, V1, V2 we get (39). By the additivity of the logarithm, (40) follows.

�

The following proposition will be useful in the sequel.
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Proposition 2. Let M be a positive integer such that `(M) ≤ n (thus,
from (4), M ≤ g(n) holds). Then,

ben g(n) ≤ benM + `(g(n))− `(M)

and

(41) ben g(n) ≤ ben g(n) + n− `(g(n)) ≤ benM + n− `(M).

Proof. From (36), we have

ben g(n)− benM = `(g(n))− `(M)− ρ log
g(n)
M

≤ `(g(n))− `(M)

which implies the first inequality while the second one follows from (3). �

We shall use Proposition 2 to determine an upper bound B such that

(42) ben g(n) ≤ ben g(n) + n− `(g(n)) ≤ B.

It has been proved in [13] that B ≤ x1 and

(43) B = O
(

x1

log x1

)
= O(ρ),

and, by the method of [23], it is possible to show that B = o(ρ). The largest
quotient (ben g(n) + n − `(g(n)))/ρ that we have found up to n = 1012 is
1.60153 for n = 45055780.

6.2. The benefit of large primes.

Proposition 3. Let N,B1, x1 and x2 as in Definition 4. If M is an integer
satisfying ben (M) = `(M)− `(N)− ρ log(M/N) < B1, we have

1. if
√

x1 ≤ p then vp(M) ≤ 1

2. if x2 ≤ p <
√

x1 then vp(M) ≤ 2.

Proof.
1. Let us assume that the prime p satisfies p ≥

√
x1 and divides M

with exponent k ≥ 2. With (35), we have p > x2 and, from (30),
the exponent αp of p in N = Nρ is 0 or 1. If αp = 1, from (37) and
(25) we have

benp (M) = pk − p− ρ(k − 1) log p = log p
k∑

i=2

(pi − pi−1

log p
− ρ

)
≥ log p

(p2 − p

log p
− ρ

)
= p2 − p− ρ log p(44)
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while, if αp = 0,

benp M = pk − ρ k log p = log p

(
p

log p
− ρ +

k∑
i=2

(pi − pi−1

log p
− ρ

))

≥ log p
(p2 − p

log p
− ρ

)
= p2 − p− ρ log p.

So, in both cases, (38) and (37) yield benM ≥ benp M ≥ f(p)
with f(t) = t2 − t− ρ log t. We have f ′(t) = 2t− 1− ρ/t, f ′′(t) > 0
and, as x2 > 2 holds, (28) implies

f ′(x2) = 2x2 − 1− x2 − 1
log x2

≥ x2

(
2− 1

log x2

)
− 1 ≥ 2

(
2− 1

log 2

)
− 1 > 0

and f(t) is increasing for t ≥ x2. Thus, since p ≥ √
x1,

benM ≥ f(p) ≥ f(
√

x1) = x1 −
√

x1 −
x1

log x1
log

√
x1 =

x1

2
−
√

x1 ≥ B1

in contradiction with our hypothesis, and 1. is proved.
2. Let p satisfy 2 < x2 ≤ p <

√
x1 so that, from (30), αp = vp(N) = 1;

let us assume that k = vp(M) ≥ 3; one would have as in (44)

benM ≥ log p
k∑

i=2

(
pi − pi−1

log p
− ρ

)
≥ p3 − p2 − ρ log p.

The function f(t) = t3− t2− ρ log t is easily shown to be increasing
for t ≥ x2. From (28), f(x2) = x3

2 − x2
2 − (x2

2 − x2) and thus

benM ≥ x3
2 − x2

2 − (x2
2 − x2) = x2(x2

2 − 2x2 + 1) > x2
2 − 2x2.

From (34), it follows that benM > B1 holds, in contradiction with
our hypothesis, and 2. is proved.

�

7. Prefixes

7.1. Plain prefixes and suffixes.

Definition 6. Let j be a positive integer.
1. For every positive integer M let us define the fraction

(45) π(j)(M) =
∏

p≤pj

pvp(M)−vp(N) =
∏

p≤pj

pvp(M)−αp

and call π(j)(M) the j-prefix of M .
2. We note Tj, and call it the set of j-prefixes, the set of fractions

(46) Tj =

δ =
∏

p≤pj

pzp ; zp ≥ −αp

 .
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3. For B′ ≥ 0, we define

(47) Tj(B′) =
{
δ ∈ Tj ; ben (Nδ) ≤ B′} .

Definition 7. Le M be a positive integer. Let us define

(48) π(M) =
∏

p<
√

x1

pvp(M)−αp = π(j1)(M)

where pj1 is the largest prime less than
√

x1, and ξ(M) = M/(Nπ(M)).
Thus we have

(49) M = N π(M) ξ(M).

π(M) will be called the plain prefix of M , and ξ(M) the suffix of M .

Let us show that, for each j such that pj <
√

x1, we have
(50)
ben (Nπ(1)(M)) ≤ . . . ≤ ben (Nπ(j)(M)) ≤ . . . ≤ ben (Nπ(M)) ≤ benM.

Indeed, (38) yields ben (Nπ(j)) =
∑

i≤j ben piM and benM =∑
p benp M , which implies (50), since, by (37), benp M is non-negative.

Definition 8. From now on, we shall note

(51) π(j) = π(j)(g(n)), π = π(g(n)), ξ = ξ(g(n))

so that g(n) = Nπξ and our work is to compute π and ξ.

Note that π and ξ are coprime and (40) implies

(52) ben g(n) = ben (Nπξ) = ben (Nπ) + ben (Nξ).

Lemma 8. Let j be a positive integer and δ1 < δ2 be two elements of Tj

satisfying

(53) `
(
δ2N

)
≤ `

(
δ1N

)
.

Then, δ1 is not the j-prefix of g(n) ; in other words, π(j) 6= δ1.

Proof. If δ1 = π(j), equation g(n) = Nπξ may be written g(n) =

N

(
δ1

π

π(j)

)
ξ. Set M = N

(
δ2

π

π(j)

)
ξ = (δ2/δ1)g(n). From (39), (53) and

(3), we get

`(M) = `
(
δ2N

)
+ `

(
N

π

π(j)

)
+ `(Nξ)− 2`(N)

≤ `
(
δ1N

)
+ `

(
N

π

π(j)

)
+ `(Nξ)− 2`(N) = `(g(n)) ≤ n

which, from (4), implies M ≤ g(n) and therefore δ2 ≤ δ1, in contradic-
tion with our hypothesis. Note that our hypothesis implies ben (δ2N) <
ben (δ1N). �
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7.2. Computing plain prefixes. Let us suppose that we know an upper
bound B such that (42) holds. Then from (50) and (42), for every j such
that pj <

√
x1, ben (Nπ(j)) ≤ B holds. Let pj1 be the largest prime less

than
√

x1. Then π = π(j1)(g(n)) is an element of Tj1(B).
But, we are faced to 2 problems: first, for the moment, we do not know B.

Secondly, for a given value B′, the sets Tj(B′) are too large to be computed
efficiently.

What we can do is the following. Let B′ < B1. We shall construct two
non-decreasing sequences of sets Uj = Uj(B′) and Dj = Dj(B′) with Dj ⊂
Uj ⊂ Tj(B′) satisfying the following property: Dj contains the j-prefix π(j)

of g(n), provided that ben g(n) ≤ B′ holds.
These sequences are defined by the following induction rule. The only

element of T0 is 1. We set U0 = D0 = {1}. And, for j ≥ 1,

• We define Uj =
{
δpγ

j | δ ∈ Dj−1, γ ≥ −αpj and ben (Nδpγ
j ) ≤ B′

}
.

• By Lemma 8, if δ1 ∈ Uj and if there is a δ2 in Uj such that δ1 < δ2

and `(Nδ1) ≥ `(Nδ2), then δ1 is not the j-prefix of g(n). The set
Dj is Uj from which these δ1’s are removed. In other words, Dj will
be the pruned set of Uj (see Section 2.2).

For each δ in Dj−1, δpγ
j belongs to Uj if γ ≥ −αpj and ben (Nδpγ

j ) ≤ B′

which, according to (40), can be rewritten as

(54) ben (Npγ
j ) ≤ B′ − ben (Nδ).

It results from Lemma 6 that ben (Npγ
j ) is non-increasing for −αpj ≤ γ ≤ 0,

non-decreasing for γ ≥ 0, vanishes for γ = 0 and tends to infinity with γ.
Therefore the solutions in γ of (54) form a finite interval containing 0.

Thanks to (50), by induction on j, it can be seen that if ben g(n) ≤ B′,
the j-prefix π(j) of g(n) belongs to Uj and also to Dj , by Lemma 8.

We set D(B′) = Dj1(B
′) and since π = πj1 , D(B′) contains the plain

prefix π of g(n), provided that ben g(n) ≤ B′ holds.
This construction solves our second problem: at each step of the induc-

tion, the pruning algorithm makes Dj(B′) smaller than Uj(B′), and as we
progress, Dj(B′) becomes much smaller than Tj(B′).

7.3. Computing B, an upper bound for the benefit. It remains to
find an upper bound B such that (42) holds. The key is Proposition 2. Every
M such that `(M) ≤ n gives an upper bound for ben g(n) + n− `(g(n)):

ben g(n) ≤ ben g(n) + n− `(g(n)) ≤ benM + n− `(M).
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We choose some B′, a provisional value of B satisfying1 B′ < B1 . Then
we compute the set D = D(B′), and by using the prefixes belonging to this
set we shall construct an integer M to which we apply Proposition 2.

Let us recall that pk denotes the greatest prime dividing N . To an element
δ ∈ D(B′) and to an integer ω, we associate

δω =


δpk+1pk+2 . . . pk+ω if ω > 0
δ if ω = 0
δ/(pkpk−1 . . . pk+ω+1) if ω < 0 and pk+ω+1 ≥

√
x1.

From the definition of prefixes, the prime factors of both the numerator
and the denominator of δ ∈ D(B′) are smaller than

√
x1, and thus smaller

than the primes dividing the numerator or the denominator of δω/δ.
First, to each δ ∈ D, let ω = ω(δ) be the greatest integer such that

`
(
Nδω

)
≤ n (if there is no such ω(δ), we just forget this δ). We call δ(0)

an element of D which minimizes ben
(
Nδ

(0)
ω
)
+ n− `

(
Nδ

(0)
ω
)

and set M =
Nδ

(0)
ω . From the construction of M , we have `(M) ≤ n. By Proposition 2,

inequality (42) is satisfied with B = ben M + n− `(M).
If B ≤ B′, we stop and keep B; otherwise we start again with B instead

of B′ to eventually obtain a better bound.
For n = 1000064448, the value of ρ defined by (32) is equal to ρ ≈

12661.7; the table below displays some values of B′/ρ and the corresponding
values of Card(D(B′)) and B/ρ given by the above method.

B′/ρ 0 0.2 0.4 0.6 0.7 0.8 0.9 1 1.1
|D(B′)| 1 11 34 76 109 139 165 194 224

B/ρ 7.5 1.15 1.13 1.104 1.098 1.082 1.074 1.055 1.055

In this example, if our first choice for B′ is 0.6ρ, we find B = 1.104ρ.
Starting again the algorithm with B′ = 1.104ρ, we get the slightly better
value B = 1.055ρ.

The value of B given by this method is reasonable and less than 10%
more than the best possible one: for n = 1000366, we find B ≈ 436.04 while
ben (g(n) + n − `(g(n)) ≈ 406.1; for n = 1000064448, these two numbers
are 13361.6 and 13285.7.

7.4. How many plain prefixes are there? Let us denote by B = B(n)
the upper bound satisfying (42) as computed in Section 7.3. Let us call ñ
the integer in the range `(N)..`(N ′)− 1 such that B(ñ) is maximal.

Let us denote by ν = ν(n) the number of possible plain prefixes as
obtained by the algorithm described in Section 7.2. Actually, this number

1In view of (43) and after some experiments, our choice is B′ = ρ for 2485 ≤ n ≤ 1010 while,
for greater n’s, we take B′ = ρ/2, and for smaller n’s, B′ = B1 − ε where ε is some very small
positive number.
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ν(ñ) = # of exponent =
n ñ B(ñ)/ρ plain prefixes log ν(ñ)/ log n
103 103 − 11 0.9289 14 0.3820
104 104 − 10 0.8453 19 0.3197
105 105 − 123 0.8095 22 0.2685
106 106 + 366 0.9186 51 0.2846
107 107 − 1269 0.7636 59 0.2530
108 108 + 639 1.180 85 0.2412
109 109 + 64448 1.055 212 0.2585
1010 1010 + 88835 0.6884 252 0.2401
1011 1011 + 1007566 0.9278 657 0.2561
1012 1012 + 2043578 1.118 2873 0.2882
1013 1013 + 5276948 0.8331 3805 0.2754
1014 1014 + 17212588 0.6669 7048 0.2749
1015 1015 − 44672895 0.6433 15148 0.2787
1016 1016 − 48912919 0.5077 25977 0.2759
1017 1017 − 426915678 0.6001 72341 0.2858
1018 1018 + 385838833 0.3027 144807 0.2867
1019 1019 − 9639993444 0.2963 170151 0.2753
1020 1020 + 12041967315 0.3218 412151 0.2808

Figure 5. The number of plain prefixes.

ν depends on B = B(n) and we may think that it is a non-decreasing
function on B so that the maximal number of prefixes used to compute
g(m) for `(N) ≤ m < `(N ′) should be equal to ν(ñ).

For the powers of 10, the table of Fig. 5 displays n, ñ, the quotient of
the maximal benefit B(ñ) by ρ, the maximal number of plain prefixes ν(ñ)
and the exponent log ν(ñ)/ log n. Note that replacing log n by log ñ will not
change very much this exponent, since with the notation of Definition 4,
we have |ñ− n| ≤ `(N ′)− `(N) ≤ pk+1 .

√
n log n.

The behaviour of ν(ñ) looks regular and allows to think that

(55) ν(ñ) = O(n0.3).

7.5. For ben (M) small, prime factors of ξ(M) are large. If the
number B computed as explained in Section 7.3 is greater than B1 our
algorithm fails. Fortunately, we have not yet found any n ≥ 166 for which
that bad event occurs.
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Proposition 4. If B is computed as explained in Section 7.3 (so that (42)
holds) and satisfies B < B1 (where B1 is defined in (34)) then, in view of
(35), there exists a unique real number t1 such that

(56) 2 < x2 <
√

x1 < ρ =
x1

log x1
< t1 < x1

and

(57) ρ log t1 − t1 = B.

Further, if benM ≤ B, we have
1. If x2 ≤ p < t1 then vp(M) ≥ 1 = vp(N).
2. If x2 ≤ p <

√
x1 then vp(M) ∈ {1, 2} and vp(N) = 1.

3. If
√

x1 ≤ p < t1 then vp(M) = vp(N) = 1.
4. If t1 ≤ p < x1 then vp(M) ∈ {0, 1} and vp(N) = 1.
5. If x1 ≤ p then vp(M) ∈ {0, 1} and vp(N) = 0.

Proof. The function f(t) = ρ log t− t is increasing on [x2, ρ] and decreasing
on [ρ, x1]. From (28) and (34) we have

f(ρ) > f(x2) =
x2

2 − x2

log x2
log x2 − x2 = x2

2 − 2x2 ≥ B1 > B > 0 = f(x1)

which gives the existence and unicity of t1, which belongs to (ρ, x1). Now
we prove points 1,2,3,4,5.

Let p be a prime number satisfying x2 ≤ p < t1. If p does not divide M ,
from (38) and (37) we have

benM ≥ benp M = ρ log p− p = f(p) > f(t1) = B.

Since benM ≤ B is supposed to hold, there is a contradiction and 1 is
proved.

Since we have assumed that B < B1 holds, Proposition 3 may be applied.
Point 2. follows from point 1. and from item 2. of Proposition 3, while point
3. follows from point 1. and from item 1. of Proposition 3. Finally, points
4. and 5. are implied by item 1. of Proposition 3. �

Corollary 1. Let us assume that B is such that (42) and B < B1 hold.
Then the suffix ξ = ξ(g(n)) from Definition 8 can be written as

(58) ξ = ξ(g(n)) =
pi1pi2 . . . piu

pj1pj2 . . . pjv

u ≥ 0, v ≥ 0

where (we recall that pk is the largest prime factor of N)

(59) 2 < x2 <
√

x1 < ρ < t1 ≤ pj1 < pj2 · · · < pjv ≤ pk < pi1 < · · · < piu .



Landau’s function for one million billions 649

7.6. Normalized prefix of g(n).

Definition 9. Let u and v be as defined in (58) and ω = u− v. We define
the normalized suffix σ of g(n) by

1. If ω ≥ 0

σ =
pi1 . . . piu

pj1 . . . pjvpk+1 . . . pk+ω
=

ξ

pk+1 . . . pk+ω
·

2. If ω < 0, we set ω′ = −ω and

σ =
pi1 . . . piupk . . . pk−ω′+1

pj1 . . . pjv

= ξpk . . . pk−ω′+1.

The normalized prefix Π of g(n) is defined by

(60) Π =
g(n)
Nσ

=


πpk+1pk+2 . . . pk+ω if ω ≥ 0

π

pk . . . pk−ω′+1
if ω < 0.

Proposition 5. Let σ be the normalized suffix of g(n). Then

σ =
Q1Q2 . . . Qs

q1q2 . . . qs

where s is a non-negative integer with
1. If ω ≥ 0 then u ≤ s ≤ v and

(61)

ben (NΠ) = ben (Nπ)+
ω∑

i=1

ben (Npk+i) = ben (Nπ)+
ω∑

i=1

(pk+i−ρ log pk+i),

(62)

`(σ) =
s∑

i=1

(Qi−qi) = pi1+. . .+piu−(pj1+. . .+pjv)−(pk+1+. . .+pk+ω) ≥ 0.

2. If ω < 0 then v ≤ s ≤ u and, with ω′ = −ω = v − u, we have

ben (NΠ) = ben (Nπ) +
ω′−1∑
i=0

ben
(

N

pk−i

)
(63)

= ben (Nπ) +
ω′−1∑
i=0

(ρ log pk−i − pk−i)

(64)

`(σ) =
s∑

i=1

(Qi−qi) = pi1+. . .+piu−(pj1+. . .+pjv)+(pk+. . .+pk−ω′+1) ≥ 0.

In both cases we have also

(65)
√

x1 < ρ < t1 < q1 < · · · < qs ≤ pk+ω < Q1 < · · · < Qs.
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Proof. If u ≥ v then ω = u− v ≥ 0,

(66) σ =
pi1 . . . piu

pj1 . . . pjvpk+1 . . . pk+ω
=

ξ

pk+1 . . . pk+ω
·

Since the prime factors pi1 . . . piu of the numerator are distinct of the prime
factors pj1 . . . pjv of the denominator, σ can be written after simplification

(67) σ =
Q1Q2 . . . Qs

q1q2 . . . qs

where v ≤ s ≤ u and, from (59), we have
√

x1 < ρ < t1 < q1 < q2 < . . . < qs ≤ pk+ω < Q1 < Q2 < . . . < Qs

which is (65). From (40) we get (61) while (62) follows from (66) and (67).

Similarly, if u < v holds, ω′ = v − u > 0. So, ω′ ≤ v, and from (59),
pk−ω′+1 ≥ pk−v+1 ≥ pj1 > t1; (66) and (67) become

(68) σ =
pi1 . . . piupk . . . pk−ω′+1

pj1 . . . pjv

=
Q1 . . . Qs

q1 . . . qs

where u ≤ s ≤ v and we have

(69)
√

x1 < ρ < t1 < q1 < . . . < qs ≤ pk−ω′ = pk+ω < Q1 < . . . < Qs

which is again (65).
By definition, any prime factor of π is smaller than

√
x1. Therefore, by

(69), pk−ω′+1 is greater than any prime factor of π, (40) can be applied and
(61) becomes (63) while (62) becomes (64). �

The value of the parameter ω can be computed from the following propo-
sition. It is convenient to set Sω =

∑ω
i=1 pk+i (for ω ≥ 0) and Sω =

−
∑−ω−1

i=0 pk−i (for ω < 0). In both cases, from (39), we have

(70) Sω = `(NΠ)− `(Nπ).

Proposition 6. The relative integer ω which determines the normalized
prefix Π of g(n) (cf. (60)) satisfies the following inequalities:

(71) n−`(Nπ)− B

1− ρ/t1
≤ n−`(Nπ)−B − ben (NΠ)

1− ρ/t1
≤ Sω ≤ n−`(Nπ)

where π is the prefix of g(n) and B and t1 satisfy (42) and (57).

Proof. Let us prove Proposition 6 for ω ≥ 0; the case ω < 0 is similar. From
(67), (65) and (62), Lemma 1 1. yields

(72) 1 ≤ σ ≤ exp
(

`(σ)
t1

)
.

From (58) and (62), we have

(73) `(Nξ)− `(N) = pi1 + . . . + piu − (pj1 + . . . + pjv) = `(σ) + Sω.
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So, we get successively

ben (Nξ) = `(Nξ)− `(N)− ρ log ξ by (36)

= `(σ) +
ω∑

i=1

(pk+i − ρ log pk+i)− ρ log σ by (66)

≥ `(σ) +
ω∑

i=1

(pk+i − ρ log pk+i)−
ρ`(σ)

t1
by (72)

= `(σ)
(

1− ρ

t1

)
+ ben (NΠ)− ben (Nπ) by (61).

From (62), we have `(σ) ≥ 0. Since, from (65), ρ < t1 holds, the above
result together with (52), (42) and (3) implies that

(74)

0 ≤ `(σ) ≤ ben (Nξ)− ben (NΠ) + ben (Nπ)
1− ρ/t1

=
ben g(n)− ben (NΠ)

1− ρ/t1

≤B − ben (NΠ)− n + `(g(n))
1− ρ/t1

≤ B − ben (NΠ)
1− ρ/t1

− (n− `(g(n))).

Now, from (39), and (73), we get

(75) `(g(n)) = `(Nπξ) = `(Nπ) + `(Nξ)− `(N) = `(Nπ) + `(σ) + Sω.

Further, since

(76) n− `(Nπ) = `(g(n))− `(Nπ)+n− `(g(n)) = `(σ)+Sω +n− `(g(n)),

we get from (74) and (3)

(77) n− `(Nπ)− B − ben (NΠ)
1− ρ/t1

≤ Sω ≤ n− `(Nπ)

and (71) follows, since ben (NΠ) ≥ 0. Note that (77) implies

(78) ben (NΠ) ≤ B.

�

7.7. Computing possible normalized prefixes. In Section 7.2, we have
computed B such that (42) holds and a set D = D(B) containing the plain
prefix π of g(n). By construction, we know that any prime factor of π ∈ D
is smaller than

√
x1 and thus, from (56), smaller than t1.

Definition 10. We call possible normalized prefix a positive rational num-
ber Π̂ = Π̂(π̂, ω) of the form Π̂ = π̂pk+1 . . . pk+ω (with ω ≥ 0) or Π̂ =
π̂/(pk . . . pk+ω+1) (with ω < 0), where π̂ ∈ D(B) is a plain prefix, and
satisfying

(79) pk+ω+1 ≥ t1
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and

(80) n−`(Nπ̂)− B

1− ρ/t1
≤ n−`(Nπ̂)−B − ben (NΠ̂)

1− ρ/t1
≤ Sω ≤ n−`(Nπ̂)

with Sω =
∑ω

i=1 pk+i (if ω ≥ 0) and Sω = −
∑−ω−1

i=0 pk−i (if ω < 0).

Let us denote by N the set of possible normalized prefixes; N has been
defined in such a way that the normalized prefix Π of g(n) belongs to N .
Indeed, from (60), Π has the suitable form, the plain prefix π of g(n) belongs
to D(B), (80) is satisfied by Proposition 6 and (79) by (65).

Let us observe that, if ω increases by 1, by (65), Sω increases by at least
t1. In practice, 1− ρ/t1 is close to 1 and B is much smaller than t1 so that
for most of the π̂’s there is no solution to (80) and there are few possible
normalized prefixes. For n in the range [998001, 1000000], the number of
possible normalized prefixes is 1 (resp. 2 or 3) for 1439 values (resp. 547
or 94). For instance, for n = 998555, the three possible normalized prefixes
are 1, 43/41, 11/10.

Finally, for a reason given in the next section, for every Π̂ ∈ N , we check
that the following inequality holds:

(81) pk+ω+1 − (n− `(NΠ̂)) ≥
√

x1.

This inequality seems reasonable, since, from (79), we have pk+ω+1 ≥ t1
with t1 close to x1, and, from (80), n− `(NΠ̂) = n− `(Nπ̂)−Sω ≤ B/(1−
ρ/t1) which is much smaller than x1. We have not found any counterexample
to (81).

7.8. The heart of the algorithm. We have now a list N of possible
normalized prefixes containing the normalized prefix Π of g(n). For Π̂ =
Π̂(π̂, ω) ∈ N let us introduce

(82) g(Π̂, n) = NΠ̂G(pk+ω, n− `(NΠ̂)) = NΠ̂
Q1Q2 . . . Qs

q1q2 . . . qs

where G(pk+ω, n− `(NΠ̂)) =
Q1Q2 . . . Qs

q1q2 . . . qs
is defined by (12). We shall use

the following proposition to compute g(n).

Proposition 7. The following formula gives the value of g(n):

(83) g(n) = max
Π̂∈N

g(Π̂, n) = max
Π̂∈N

NΠ̂G(pk+ω, n− `(NΠ̂)).

Proof. Note that (13) and (14) imply either s = 0 or the smallest prime
factor qs of G(pk+ω, n− `(NΠ̂)) satisfies pk+ω+1 − qs ≤ n− `(NΠ̂) which,
from (81), implies qs ≥

√
x1 and thus, the prime factors of π and those of
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G(pk+ω, n− `(NΠ̂)) are distinct. Therefore, for any Π̂ = Π̂(π̂, ω) ∈ N with
ω ≥ 0, we get from (82), (39) and (15)

`(g(Π̂, n)) = `(Nπ̂) + `

(
N

pk+1 . . . pk+ωQ1 . . . Qs

q1 . . . qs

)
− `(N)

= `(Nπ̂) +
ω∑

i=1

pk+i +
s∑

i=1

(Qi − qi)

= `(NΠ̂) + `(G(pk+ω, n− `(NΠ̂)))

≤ `(NΠ̂) + n− `(NΠ̂) = n.

Inequality `(g(Π̂, n)) ≤ n can be proved similarly in the case ω < 0.

Since `(g(Π̂, n)) ≤ n holds, (4) implies for all Π̂ ∈ N

(84) g(Π̂, n) ≤ g(n).

From (60), we get g(n) = NΠσ where Π is the normalized prefix of g(n).
Now, if ω ≥ 0, from (62), (75), (60) and (3), we have

`(σ) =
s∑

i=1

(Qi − qi) = `(g(n))− `(Nπ)−
ω∑

i=1

pk+i

= `(g(n))− `(NΠ) ≤ n− `(NΠ)(85)

(`(σ) ≤ n− `(NΠ) still holds for ω < 0). Therefore, in view of (65) and of
Definition (12) of function G, we have

(86) g(n) = NΠσ ≤ NΠG(pk+ω, n− `(NΠ)) = g(Π, n).

Since Π ∈ N , (86) and (84) prove (83). �

7.9. The fight of normalized prefixes. Let Π̂1 and Π̂2 be two normal-
ized prefixes. By using Inequalities (90) below, it is sometimes possible to
eliminate Π̂1 or Π̂2.

Indeed, from (90), we deduce a lower and an upper bound for g(Π̂, n)
(defined in (82)):

g′(Π̂, n) ≤ g(Π̂, n) ≤ g′′(Π̂, n).

If, for instance, g′′(Π̂1, n) < g′(Π̂2, n) holds, then clearly Π̂1 cannot compete
in (83) to be the maximum.

By this simple trick, it is possible to shorten the list N of normalized
prefixes. For instance, for n = 1015, the number of normalized prefixes is
reduced from 9 to 1, while, for n = 1015 + 123850000, it is reduced from 37
to 2.
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8. A first way to compute G(pk, m)

8.1. Function G. In this section, we study the function G introduced in
(12). First, for k ≥ 3 and 0 ≤ m ≤ pk+1 − 3, we consider the set

(87) G(pk,m) =

{
F =

Q1Q2 . . . Qs

q1q2 . . . qs
; `(F ) =

s∑
i=1

(Qi − qi) ≤ m, s ≥ 0

}

where the primes Q1, Q2, . . . , Qs, q1, q2, . . . , qs satisfy (13).
The parameter s = s(F ) in (87) is called the number of factors of the

fraction F . If s = 0, we set F = 1 and `(F ) = 0 so that G(pk,m) contains
1 and is never empty. The definition (12) can be rewritten as

(88) G(pk,m) = max
F∈G(pk,m)

F.

Obviously, G(pk,m) is non-decreasing on m and G(pk, 2m+1) = G(pk, 2m).
Note that the maximum in (88) is unique (from the unicity of the standard
factorization into primes). It follows from (13) that, if 0 ≤ m < pk+1 − pk,
the set G(pk,m) contains only 1, and therefore,

(89) 0 ≤ m < pk+1 − pk =⇒ G(pk,m) = 1.

Proposition 8. 1. Let q be the smallest prime satisfying q ≥ pk+1 −
m. The following inequality holds

(90)
pk+1

q
≤ G(pk,m) ≤ pk+1

pk+1 −m
.

Note that if q = pk+1−m is prime, then (90) yields the exact value
of G(pk,m).

2. Now, let F =
Q1Q2 . . . Qs

q1q2 . . . qs
be any element of G(pk,m); we have

(91) G(pk,m) ≥ F ≥ 1 +
`(F )
pk

·

Proof. The lower bound in (90) is obvious. Let us prove the upper bound.
If 0 ≤ m < pk+1 − pk, the upper bound of (90) follows by (89). If m ≥
pk+1 − pk,

pk+1

pk
∈ G(pk,m) and thus G(pk,m) ≥ pk+1

pk
> 1. Moreover,

with the notation (87), if G(pk,m) = F =
Q1Q2 . . . Qs

q1q2 . . . qs
, we have s ≥ 1 and

Lemma 1 2. implies

(92) G(pk,m) ≤ Qs

Qs − `(F )
≤ Qs

Qs −m
≤ pk+1

pk+1 −m

where the last inequality follows from (13) and the decrease of t 7→ t/(t−m).
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Let us now prove (91). This inequality holds if `(F ) = 0 (i.e., F = 1 and
s = 0). If s > 0, from (13), we get

Qi

qi
= 1 +

Qi − qi

qi
≥ 1 +

Qi − qi

pk
, i = 1, 2, . . . , s

and

F =
s∏

i=1

Qi

qi
≥

s∏
i=1

(
1 +

Qi − qi

pk

)
≥ 1 +

∑s
i=1(Qi − qi)

pk
= 1 +

`(F )
pk

·

�

8.2. Function H. Let M ≤ pk+1 − 3; we want to calculate G(pk,m) for
0 ≤ m ≤ M . Let us introduce a family of consecutive primes P0 < P1 <
. . . < PK = pk < PK+1 < . . . < PR < PR+1 (so that Pi = pk+i−K for
0 ≤ i ≤ R + 1) with the properties

(93) PR+1 − PK > M, R ≥ K + 1, PK+1 − P0 > M, P1 ≥ 3.

It follows from (87) and (13) that the prime factors Q1, . . . , Qs, q1, . . . , qs

of any element of G(pk,m) = G(PK ,m) should satisfy

(94) P1 ≤ qs < . . . < q1 ≤ PK = pk < PK+1 ≤ Q1 < . . . < Qs ≤ PR.

Of course, in (93) we may choose PR (resp. P1) as small (resp. large) as
possible, but it is not an obligation.

Let us denote by Q′
1, Q

′
2, . . . , Q

′
R−K−s the primes among PK+1, . . . , PR

which are different from Q1, . . . , Qs; we have

(95) Q′
1 + Q′

2 + . . . + Q′
R−K−s = PK+1 + . . . + PR − (Q1 + . . . + Qs)

and (88) becomes

(96) G(PK ,m) = max
PK+1PK+2 . . . PR

Q′
1 . . . Q′

R−K−sq1 . . . qs
=

PK+1PK+2 . . . PR

min(q′1 . . . q′R−K)

where the minimum is taken over all the subsets {q′1, q′2, . . . , q′R−K} of R−K
elements of {P1, . . . , PR} satisfying from (14) and (95)

q′1 + q′2 + . . . + q′R−K = Q′
1 + Q′

2 + . . . + Q′
R−K−s + q1 + q2 + . . . + qs

= PK+1 + PK+2 + . . . + PR −
s∑

i=1

(Qi − qi)

≥ PK+1 + PK+2 + . . . + PR −m.(97)

(Note that, from (93), R−K ≥ 1 holds).

Definition 11. For 1 ≤ r ≤ R, 1 ≤ j ≤ min(r, R −K) ≤ R and m ≥ 0,
we define

(98) H(j, Pr;m) = min(q′1q
′
2 . . . q′j)



656 Marc Deléglise, Jean-Louis Nicolas, Paul Zimmermann

where the minimum is taken over the j-uples of primes (q′1, q
′
2, . . . , q

′
j) sat-

isfying

(99) P1 ≤ q′1 < q′2 < . . . < q′j ≤ Pr

and

(100) q′1 + q′2 + . . . + q′j ≥ PK+1 + PK+2 + . . . + PK+j −m.

If there is no (q′1, q
′
2, . . . , q

′
j) such that (99) and (100) hold, we set

(101) H(j, Pr;m) = +∞.

By the unicity of the standard factorization into primes, the minimum
in (98) is unique and (96) and (98) yield

(102) G(pk,m) = G(PK ,m) =
PK+1PK+2 . . . PR

H(R−K, PR;m)
·

For j = R − K and r = R, the j-uple q′1, q
′
2, . . . , q

′
j defined by q′i = PK+i

satisfies (99) and (100) for all m ≥ 0; so, H(R − K, PR;m) is at most
PK+1PK+2 . . . PR and is finite.

8.3. A combinatorial algorithm to compute H and G.

Definition 12. For every integers (r, j), 1 ≤ r ≤ R and 1 ≤ j ≤ R −K,
we define

(103) mj(Pr) ={
PK+1 + PK+2 + . . . + PK+j − (Pr + Pr−1 + . . . + Pr−j+1) if j ≤ r

+∞ if j > r.

Remark: If j ≥ r+1, (99) cannot be satisfied and, from (101), H(j, Pr;m)
= +∞ for all m ≥ 0. If j ≤ r, from (100), it follows that, if m ≥
mj(Pr), H(j, Pr;m) ≤ PrPr−1 . . . Pr−j+1 while, by (101), if m < mj(Pr),
H(j, Pr;m) = +∞. So that, in all cases, if m < mj(Pr), H(j, Pr;m) = +∞.

Note that, for j fixed, mj(Pr) is non-increasing on r since, for j ≤ r,

(104) mj(Pr−1)−mj(Pr) =

{
+∞ if j = r

Pr − Pr−j > 0 if 1 ≤ j ≤ r − 1,

and, for j ≥ r +1, mj(Pr−1) and mj(Pr) are both +∞. On the other hand,
if j ≤ min(r, R−K) for every m such that

m ≥ Mj(Pr) = PK+1 + PK+2 + . . . + PK+j − (P1 + P2 + . . . + Pj),

H(j, Pr;m) is equal to P1P2 . . . Pj .
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Proposition 9. For j = 1, from (98), (99) and (100), we have
(105)

H(1, Pr;m) =



P1 if m ≥ M1(Pr) = PK+1 − P1

. . .

Pi if 1 < i < r and PK+1 − Pi ≤ m < PK+1 − Pi−1

. . .

Pr if m1(Pr) = PK+1 − Pr ≤ m < PK+1 − Pr−1

∞ if m < m1(Pr) = PK+1 − Pr.

Further, we have the induction formula:
(106)

H(j, Pr;m) = min (H(j, Pr−1;m), PrH(j − 1, Pr−1;m− PK+j + Pr)) .

Proof. The calculation of H(1, Pr;m) is easy. Let us show the induction
formula (106). Either Pr does not divide H(j, Pr;m) and H(j, Pr;m) =
H(j, Pr−1;m) or Pr = q′j is the greatest prime factor of H(j, Pr;m) =
q′1q

′
2 . . . q′j and from (100), we get q′1 + . . . + q′j−1 ≥ PK+1 + . . . + PK+j−1 −

(m− PK+j + Pr). �

Note that if m ≥ mj(Pr), m− PK+j + Pr ≥ mj−1(Pr−1) since mj(Pr) =
mj−1(Pr−1)+PK+j−Pr so that H(j, Pr;m) and H(j−1, Pr−1;m−PK+j +
Pr) are simultaneously finite or infinite. (104) implies that mj(Pr) and
mj(Pr−1) are both infinite or mj(Pr−1) > mj(Pr). For mj(Pr) ≤ m <
mj(Pr−1), (106) reduces to

(107) H(j, Pr;m) = PrH(j − 1, Pr−1;m− PK+j + Pr)

while, for m ≥ mj(Pr−1), the three values of the function H in (106) are
finite.

From (105), we may remark that, if we set

(108) H(0, Pr;m) = 1 for all r ≥ 1 and m ≥ 0,

the induction formula (106) still holds for j = 1.
In view of (102), for 1 ≤ r ≤ R, 1 ≤ j ≤ min(r, R −K) and mj(Pr) ≤

m ≤ M , we calculate H(j, Pr;m) by induction, using for that (108), (106)
and (107). If K + 2 ≤ r ≤ R, it is useless to calculate H(j, Pr;m) for
j < r −K.

Finally, after getting the value of H(R−K, PR;m) for mR−K(PR) = 0 ≤
m ≤ M , we compute G(pk,m) by (102).

8.4. Bounding the largest prime. It turns out that the largest prime
used in the computation of G(pk,m) for 0 ≤ m ≤ M is much smaller than
PR defined in (93). For instance, for pk = PK = 150989 and M = 5000, R
defined by (93) is at least equal to K + 425 while only the primes up to
pk+5 = PK+5 = 151027 are used.
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So, the idea is to replace R by a smaller number R̂, K +1 ≤ R̂ < R, and
to calculate by induction H(R̂−K, P

R̂
;m) instead of H(R−K, PR;m). We

get the fraction F̂ =
PK+1PK+2 . . . P

R̂

H(R̂−K, P
R̂
;m)

which satisfies F̂ ≤ G(pk,m). Now

we have the following lemma.

Lemma 9. Let F be a real number satisfying 1 < F ≤ G(pk,m) =
Q1Q2 . . . Qs

q1q2 . . . qs
. Then, the largest prime factor Qs of the numerator of

G(pk,m) is bounded above by

(109) Qs ≤ min
(

pk + m,
mF

F − 1

)
·

Proof. Using Lemma 1 and (15), we write

F ≤ G(pk,m) =
Q1Q2 . . . Qs

q1q2 . . . qs
≤ Qs

Qs − `(G(pk,m))
≤ Qs

Qs −m

which yields Qs ≤
mF

F − 1
. On the other hand, Inequality (13) together with

(14) implies Qs−pk ≤ Qs−qs ≤ m which completes the proof of (109). �

If F̂ =
PK+1PK+2 . . . P

R̂

H(R̂−K, P
R̂
;m)

> 1 and if P
R̂

> min

(
PK + m,

mF̂

F̂ − 1

)
, it

follows from Lemma 9 that G(pk,m) = F̂ . If not, we start again by choosing

a new value of P
R̂

greater than min

(
PK + m,

mF̂

F̂ − 1

)
. Actually, Inequality

(109) gives a reasonably good upper bound for Qs. In the program, our first
choice is R̂ = K + 10.

8.5. Conclusion. The running time of the algorithm described in Sections
8.3 and 8.4 to calculate G(p, m) for m ≤ M grows about quadratically in
M , so, it is rather slow when M is large.

For instance, the computation of g(1015−741281) leads to the evaluation
of G(p, 688930) for p = 192678883, and this is not doable by the above
combinatorial algorithm.

In the next section, we present a faster algorithm to compute G(pk,m)
when m is large, but which does not work for small m’s so that the two
algorithms are complementary.

9. Computation of G(pk, m) for m large

The algorithm described in this section starts from the following two
facts:
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• if G(pk,m) =
Q1Q2 . . . Qs

q1q2 . . . qs
and m is large, the least prime factor qs

of the denominator is close to pk+1 −m while all the other primes
Q1, . . . , Qs, q1, . . . , qs−1 are close to pk. More precisely, G(pk,m) is
equal to

pk+1

qs
G(pk+1, d) where d = m− pk+1 + qs is small.

Note that when m is small G(pk,m) is not always equal to
pk+1

qs
G(pk+1,m− pk+1 + qs). For instance, G(103, 22) =

107× 113
97× 101

while G(107, 12) =
109
97

<
113
101

·
• In (91), we have seen that `(G(p, m)) = m implies G(p, m) ≥ 1+ m

pk
,

and it turns out that this last inequality seems to hold for m large
enough.

9.1. A second way to compute G(pk, m). We want to compute
G(pk,m) for a large m. The following proposition says that if, for some
small δ, pk−m+ δ is prime and such that G(pk+1, δ) is not too small, then
the computation of G(pk,m) is reduced to the computation of G(pk+1,m

′)
for few small values of m′.

Proposition 10. We want to compute G(pk,m) as defined in (12) or (88)
with pk odd and pk+1− pk ≤ m ≤ pk+1− 3. We assume that we know some
even non-negative integer δ satisfying

(110) pk+1 + δ −m is prime,

(111) G(pk+1, δ) ≥ 1 +
δ

pk+1

and

(112) δ <
2m

9
<

2pk+1

9
·

If δ = 0, we know from Proposition 8 that G(pk,m) =
pk+1

pk+1 −m
· If δ > 0,

we have

(113) G(pk,m) = max
q prime

pk+1−m ≤ q ≤ q̂

pk+1

q
G(pk+1,m− pk+1 + q),

where q̂ is defined by

(114) q̂ =
pk+1pk+2(pk+1 −m + δ)
(pk+1 + δ)(pk+1 − 3δ/2)

≤ pk+2 −m +
3δ

2
·

Before proving Proposition 10 in Section 9.3, we shall first think to the
possibility of applying it to compute G(pk,m).
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9.2. Large differences between consecutive primes. For x ≥ 3, let
us define

(115) ∆(x) = max
pj≤x

(pj − pj−1).

Below, we give some values of ∆(x):

x 102 103 104 105 106 107 108 109 1010 1011 1012

∆(x) 8 20 36 72 114 154 220 282 354 464 540
(log x)2 21 48 85 133 191 260 339 429 530 642 763

A table of ∆(x) up to 4 · 1012 calculated by D. Shanks, L.J. Lander, T.R.
Parkin and R. Brent can be found in [26], p. 85. There is a longer table
(up to 8 · 1016) on the web site [16]. H. Cramér conjectured in [4] that
limx→∞

∆(x)
(log x)2

= 1. For x ≤ 8 · 1016, ∆(x) ≤ 0.93(log x)2 holds.

Let us set ∆ = ∆(pk+1); let us denote by δ1 = δ1(pk) the smallest even
integer such that δ1 ≥ ∆ and

(116) G(pk+1, d) ≥ 1 +
d

pk+1
, d = δ1 −∆ + 2, δ1 −∆ + 4, . . . , δ1.

By using the combinatorial algorithm described in 8.3, we have computed
that for all primes pk ≤ 3 · 108, we have δ1(pk) ≤ 900 = δ1(252314747) and

(117) δ1(pk) ≤ 2.55(log pk)2.

To compute the suffix of g(n) for n ≤ 1015, we do not have to deal with
larger values of pk. However, for larger pk’s, we conjecture that δ1(pk) exists
and is not too large.

Lemma 10. Let pk satisfy 5 ≤ pk ≤ 3 ·108, m be an even integer such that
pk+1−pk ≤ m ≤ pk+1−3, and δ1 = δ1(pk) defined by (116). If m ≥ 9

2δ1(pk),
then there exists an even non-negative integer

(118) δ = δ(pk,m) ≤ δ1(pk) ≤ 2.55(log pk)2

such that (110), (111) and (112) hold. Therefore, Proposition 10 can be
applied to compute G(pk,m).

Proof. Let us set a = pk+1 + δ1(pk)−m. We have

a = pk+1 + δ1(pk)−m ≤ pk+1 −
7
2
δ1(pk) ≤ pk+1 −

7
2
∆ < pk+1.

Since δ1 ≥ ∆ and m ≤ pk+1 − 3, a ≥ ∆ + 3 holds. From the definition
of ∆ = ∆(pk+1), there exists an even number b, 0 ≤ b ≤ ∆ − 2 such that
a − b = pk+1 − m + (δ1 − b) is prime. From the definition of δ1(pk), we
know that G(pk+1, δ1 − b) ≥ 1 + δ1−b

pk+1
. Therefore, δ = δ1 − b satisfies (110),

(111), (112) and 0 ≤ δ ≤ δ1(pk). The last upper bound of (118) follows
from (117). �



Landau’s function for one million billions 661

9.3. Proof of Proposition 10.

A polynomial equation of degree 2.

Lemma 11. Let us consider real numbers T1, T2, δ satisfying

(119) 0 < T1 < T2

and

(120) (δ = 0 or δ ≥ T2 − T1) and δ <
2T1

9
·

Note that (119) and (120) imply

(121) T1 + δ ≤ T1T2

T2 − δ
·

Let m be a parameter satisfying

(122) 0 ≤ 9δ

2
≤ m < T1.

We set

(123) E(X) = X2 − (T1 + T2 −m)X +
T1T2(T1 + δ −m)

T1 + δ
·

1. The equation E(X) = 0 has two roots X1 and X2 satisfying

(124) 0 < X1 <
T1 + T2 −m

2
< X2 ≤ T2 − δ.

2. For T1, T2 and δ fixed and m in the range (122), X2 is a non-
decreasing function of m.

3. We have

(125) T1 −
3δ

2
<

T1 + 2T2

3
− 3δ

2
≤ X2 ≤ T2 − δ.

4. Let Y1 and Y2 be two positive real numbers satisfying

(126) Y1 < Y2, Y1 + Y2 = T1 + T2 −m and
T1T2

Y1Y2
≥ T1 + δ

T1 + δ −m
·

We have

(127) Y2 ≥ X2 ≥ T1 −
3δ

2
and Y1 ≤ X1 ≤ T2 −m +

3δ

2
.

Proof. 1. The discriminant D of (123) can be written as

D = (T1 + T2 −m)2 − 4
T1T2(T1 + δ −m)

T1 + δ

= (m + T2 − T1)2
[
1− 4δ

m

m2T2

(m + T2 − T1)2(T1 + δ)

]
,(128)
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since, from (119) and (122), m + T2 − T1 does not vanish. If δ = 0,

the above bracket is 1 while if δ ≥ T2−T1 > 0, the fractions
T2

T1 + δ

and
m

m + T2 − T1
are at most 1, so that in both cases (128) yields

(129) D ≥ (m + T2 − T1)2
[
1− 4δ

m

]
.

Therefore, from (122) and (119), D ≥ (m + T2 − T1)2

9
> 0 holds.

The sum X1 + X2 of the two roots is T1 + T2−m which explains
the second and the third inequality of (124). Further, since T1 < T2

and m ≥ 2δ,
T1 + T2 −m

2
≤ T2 − δ holds. By (123), (122) and

(121),

E(T2 − δ) = (T1 + δ −m)
(

T1T2

T1 + δ
− (T2 − δ)

)
≥ 0

which proves the last inequality of (124).
Remark: If δ = 0, the roots of (123) are X1 = T1−m and X2 = T2.
If δ = T2 − T1, they are X1 = T2 −m and X2 = T1.

2. By (123), X2 is implicitely defined in terms of m and, through (121),
we have

d X2

d m
=
− ∂E

∂m
∂E
∂X

=
T1T2
T1+δ −X2

2X2 − (T1 + T2 −m)
≥ T2 − δ −X2

2X2 − (T1 + T2 −m)

which is non-negative from (124).
3. For m = 9δ

2 , (129) yields
√

D ≥ m+T2−T1
3 = 3δ

2 + T2−T1
3 and

X2 =
T1 + T2 −m +

√
D

2
≥ T1 + 2T2

3
− 3δ

2
≥ T1 −

3δ

2
·

Further, for m ≥ 9δ
2 , the lower bound in (125) follows from 2.

4. Conditions (126) imply E(Y1) = E(Y2) = −Y1Y2+
T1T2(T1 + δ −m)

T1 + δ
≥ 0 so that Y1 ≤ X1 and Y2 ≥ X2; (127) follows from (125) and
from X1 = T1 + T2 −m−X2.

�

Structure of the fraction G(pk, m).

Lemma 12. Let k and m be integers such that k ≥ 3 and pk+1−pk ≤ m ≤
pk+1 − 3. We write

(130) G(pk,m) = F =
Q1Q2 . . . Qs

q1q2 . . . qs
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with s ≥ 1 and Q1, . . . , Qs, q1, . . . , qs primes satisfying

(131) 3 ≤ qs < qs−1 < . . . < q1 ≤ pk < pk+1 ≤ Q1 < . . . Qs−1 < Qs,

(132) pk+1 − pk ≤ `(F ) =
s∑

i=1

(Qi − qi) ≤ m ≤ pk+1 − 3 < pk+1

and we assume that there exists an integer δ such that

(133) 0 ≤ δ <
2m

9
, and (δ = 0 or δ ≥ pk+2 − pk+1)

and

(134) F ≥ pk+1 + δ

pk+1 −m + δ
·

We apply Lemma 11 with T1 = pk+1 and T2 = pk+2, δ and m, and we
denote by X1 and X2 the two roots of equation (123), E(X) = 0. Then we
have

1. Qs ≤ pk+1 + δ,

2. for s ≥ 2 and 1 ≤ i ≤ s− 1, λi
def
== Qi − qi ≤ pk+2 −X2,

3. for s ≥ 2 and 1 ≤ j ≤ s− 1, Λj
def
==

j∑
i=1

λi ≤ pk+2 −X2.

Moreover, if we write F = UV with

(135) U =
Q1Q2 . . . Qs−1Qs

q1q2 . . . qs−1pk+1
and V =

pk+1

qs
,

we have, for s ≥ 1

4. `(U) = Λs−1 + Qs − pk+1 ≤ pk+2 −X2 ≤ pk+2 − pk+1 +
3δ

2
and

5. pk+1 −m ≤ qs ≤ q̂ =
pk+1pk+2(pk+1 −m + δ)
(pk+1 + δ)(pk+1 − 3δ/2)

·

Proof. 1. First, we observe that (131) implies

(136) Qi ≥ pk+i ≥ pk+1, 1 ≤ i ≤ s.

Lemma 1 and (132) yield respectively F ≤ Qs

Qs−`(F ) and `(F ) ≤
m, so that, together with (134), we get

pk+1 + δ

pk+1 + δ −m
≤ F ≤ Qs

Qs − `(F )
≤ Qs

Qs −m

which, with the decrease of t 7→ t
t−m , gives Qs ≤ pk+1 + δ.
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2. From the definition of λi and (131), λi is positive and increasing on
i, and it suffices to show λs−1 ≤ pk+2 − X2. We write F = F1F2

with F1 = Qs−1

qs−1
and F2 =

∏
i6=s−1

Qi
qi

. From (132) and (131), we
have

pk+1 > m > m− λs−1 ≥ `(F )− λs−1 = λ1 + . . . + λs−2 + λs ≥ λs > λs−1

which implies

(137) pk+2 − λs−1 > pk+1 − λs−1 > pk+1 − (m− λs−1).

Further, Lemma 1, (132) and the increase of t 7→ Qs

Qs−t , (136) and
the decrease of t 7→ t

t−(m−λs−1) , imply

F2 ≤
Qs

Qs − `(F2)
=

Qs

Qs − (`(F )− λs−1)

≤ Qs

Qs − (m− λs−1)
≤ pk+1

pk+1 − (m− λs−1)
·(138)

If s ≥ 3 or Q1 ≥ pk+2, (131) implies Qs−1 ≥ pk+2 which yields
F1 = Qs−1

Qs−1−λs−1
≤ pk+2

pk+2−λs−1
so that, from (134) and (138), we get

(139)
pk+1 + δ

pk+1 + δ −m
≤ F = F1F2 ≤

pk+2

pk+2 − λs−1

pk+1

pk+1 − (m− λs−1)
·

Let us set Y2 = pk+2 − λs−1, Y1 = pk+1 − (m − λs−1); from (137),
Y2 > Y1 holds and, in view of (139), we may apply Lemma 11, Point
4. to get Y2 = pk+2 − λs−1 ≥ X2 which implies 2.

If s = 2 and Q1 = pk+1, F = pk+1

q1

Q2

q2
= pk+1

q1

Q2

Q2−(Q2−q2) · From (136)
we have Q2 ≥ pk+2 and F ≤ pk+1

q1

pk+2

pk+2−(Q2−q2) . Here we set Y2 = q1

and Y1 = pk+2 − (Q2 − q2) = q2 − (Q2 − pk+2); by (131) and (132),
we get

Y2 = q1 > q2 ≥ Y1 = q2 − (Q2 − pk+2) = pk+2 − λ2

≥ pk+2 −
2∑

i=1

λi = pk+2 − `(F ) ≥ pk+2 −m > 0;

we may still apply Lemma 11 Point 4. to get Y2 = q1 = pk+1−λ1 ≥
X2, which implies 2.

3. This time, we write F = F1F2 with F1 =
∏j

i=1
Qi
qi

and F2 =∏s
i=j+1

Qi
qi

so that `(F1) = Λj and `(F2) = `(F ) − Λj ≤ m − Λj .
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For 2 ≤ j ≤ s− 1, from (134), Lemma 1, (136), and (132) we get

pk+1 + δ

pk+1 + δ −m
≤ F = F1F2 ≤

Qj

Qj − `(F1)
Qs

Qs − `(F2)

≤ pk+2

pk+2 − Λj

pk+1

pk+1 − (m− Λj)
·

Therefore, we apply Lemma 11 Point 4., but we do not know whether
pk+2 − Λj is greater than pk+1 − (m− Λj), so that, either

(140) pk+2 − Λj ≥ X2

or

(141) pk+2 − Λj ≤ X1.

For j = 1, as Λ1 = λ1, (140) holds, from 2. Since Λj is increasing
on j, if (140) holds for some j = j0, it also holds for j ≤ j0. If (140)
holds for j = s− 1, 3. is proved; so, let us assume that the greatest
value j0 for which (140) holds satisfies 1 ≤ j0 < s − 1; we should
have

(142) pk+2 − Λj0 ≥ X2 and pk+2 − Λj0+1 ≤ X1.

From 2., (142) and because X1, X2 are solutions of (123), we should
get

pk+2 −X2 ≥ λj0+1 = Λj0+1 − Λj0 ≥ X2 −X1 = 2X2 + m− pk+1 − pk+2

which, would imply m ≤ 2pk+2 + pk+1 − 3X2 and, through the
second inequality of (125), m ≤ 9δ

2 , in contradiction with (133).
Therefore, j0 ≥ s− 1 and 3. is proved.

4. If s = 1 we have to show `(U) = Q1 − pk+1 ≤ pk+2 −X2 which is
true since, from 1., Q1 − pk+1 ≤ δ and from (125), with T2 = pk+2,
δ ≤ pk+2 −X2.

So, we assume s ≥ 2. If Q1 = pk+1, U simplifies itself; and,
in all cases, from (131), the prime factors of the numerator of U
are at least pk+2 and those of the denominator are at most pk+1.
So, we may apply Lemma 1 which, with (136) and the decrease of
t 7→ t/(t− `(U), yields

(143) U ≤ Qs

Qs − `(U)
≤ pk+2

pk+2 − `(U)
, V =

pk+1

pk+1 − `(V )
·

It follows from (132) that `(U)+ `(V ) = `(F ) ≤ m and, from (134),
we get

pk+1 + δ

pk+1 + δ −m
≤ F = UV ≤ pk+2pk+1

(pk+2 − `(U))(pk+1 − (m− `(U)))
·
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Applying Lemma 11 Point 4. with (Y1, Y2) = (pk+2 − `(U), pk+1 −
(m− `(U))) yields

(144) pk+2 − `(U) ≥ X2 or pk+2 − `(U) ≤ X1.

But, from 1. and 3., we have `(U) = Λs−1 + Qs − pk+1 ≤ pk+2 −
X2 + δ which, together with (X1, X2) solutions of (123), the second
inequality in (125) and (133), give

X1 + `(U)− pk+2 ≤ X1 −X2 + δ = δ + pk+1 + pk+2 −m− 2X2

≤ δ + pk+1 + pk+2 −m− 2
3
(pk+1 + 2pk+2) + 3δ

= 4δ +
pk+1 − pk+2

3
−m < 0.

Therefore, pk+2 − `(U) ≤ X1 does not hold, and, from (144), we
have pk+2 − `(U) ≥ X2 which shows the first inequality in 4. The
second inequality comes from (125).

5. From (131) and (132), we have `(V ) = pk+1−qs ≤ Qs−qs ≤ `(F ) ≤
m which proves the lower bound of 5.

If s = 1 and Q1 = pk+1, U = 1 and F = V so that, from (134),

qs =
pk+1

F
≤ pk+1(pk+1 −m + δ)

pk+1 + δ
≤ q̂ =

pk+1pk+2(pk+1 −m + δ)
(pk+1 + δ)(pk+1 − 3δ/2)

·

If s ≥ 2 or Q1 ≥ pk+2, (143) holds and gives with (134) and 4.

qs =
pk+1

V
=

pk+1U

F
≤ pk+1pk+2(pk+1 −m + δ)

(pk+1 + δ)(pk+2 − `(U))
≤ q̂.

�

Proof of Proposition 10. Let us assume δ > 0. (111) and (89) imply

(145) δ ≥ pk+2 − pk+1.

First, we prove the upper bound (114). We have to show that the quantity
below is positive:

(pk+2 −m + δ)(pk+1 + δ)
(
pk+1 −

3δ

2

)
− pk+1pk+2(pk+1 −m + δ).

But this quantity is equal to

(pk+2 − pk+1)
(
(pk+1 − δ)(m− 3δ

2
) + δ(m− 3δ)

)
+ pk+1

δ

2

(
m− 9δ

2

)
+

3δ2

4

(
m− 3δ

2

)
which is clearly positive since, from (112), pk+1 > m > 9δ

2 holds and (114)
is proved.
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Let q be a prime satisfying pk+1 −m ≤ q ≤ q̂. In view of proving (113),
let us show that

(146)
pk+1

q
G(pk+1,m− pk+1 + q) ≤ G(pk,m)

holds. Let q′ be any prime dividing the denominator of G(pk+1,m−pk+1+q);
we should have pk+2 − q′ ≤ m − pk+1 + q i.e., q′ ≥ pk+1 + pk+2 − m − q
which yields from (114), (145) and (112)

q′ − q ≥ pk+1 + pk+2 −m− 2q ≥ pk+1 + pk+2 −m− 2q̂

≥ pk+1 + pk+2 −m− 2
(

pk+2 −m +
3δ

2

)
= pk+1 − pk+2 + m− 3δ

≥ pk+1 − (δ + pk+1) + m− 3δ = m− 4δ > 0.

Therefore, q′ 6= q, and after a possible simplification by pk+1, pk+1

q G(pk+1,

m−pk+1 + q) ∈ G(pk,m) (defined in (87)), which, from (88), implies (146).
From (145) and (112), we have 0 < 2δ < m, and the prime p = pk+1+δ−

m satisfies p < pk+2 − δ, and thus is smaller than any prime factor of the
denominator of G(pk+1, δ). Therefore, after possibly simplifying by pk+1,
the fraction Φ = pk+1

p G(pk+1, δ) belongs to G(pk,m) and we have from (88)
and (111)

G(pk,m) ≥ Φ ≥ pk+1

pk+1 + δ −m

(
1 +

δ

pk+1

)
=

pk+1 + δ

pk+1 + δ −m
·

So, hypotheses (133) and (134) being fullfilled, we may apply Lemma 12 5.
which, under the notation (135), asserts that

(147) G(pk,m) = UV = U
pk+1

qs

with qs ∈ [ pk+1 −m, q̂ ] and `(U) + `(V ) = `(G(pk,m)) which, from (15),
implies `(U) ≤ m− `(V ) = m−pk+1 +qs. After a possible simplification by
pk+1, U belongs to G(pk+1, `(U)) ⊂ G(pk+1,m− pk+1 + qs). So, from (88),
U ≤ G(pk+1,m− pk+1 + qs), and (147) gives

G(pk,m) ≤ pk+1

qs
G(pk+1,m− pk+1 + qs)

which, with (146), completes the proof of (113) and of Proposition 10. �

10. Some results

With the maple program available on the web-site of J.-L. Nicolas, the
factorization of g(n) has been computed for some values of n. The results
for n = 106, 109, 1012, 1015 are displayed in Fig. 6. For primes q1 < q2 let
us denote by [q1−q2] the product

∏
q1≤p≤q2

p. The bold factors in the values
of g(n) are the factors of the plain prefix π of g(n), defined in (8).
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n = 106, N = 29365473[11−41]2[43−3923],

`(N) = 998093, g(106) = g(106 − 1) =
43 · 3947

3847
N.

n = 109, N = 214395675114134[17−31]3[37−263]2[269−150989],

`(N) = 999969437, g(109) = g(109 − 1) =
37 · 150991
2 · 3 · 148399

N.

n = 1012, N = 2183125876115135[17−31]4[37−113]3

×[127−1613]2[1619−5476469],

`(N) = 999997526071, g(1012) =
1621 · 1627 · 1637 · 5476483

5475739 · 5476469
N.

n = 1015, N = 22331551078117136176[19−31]5[37−79]4[83−389]3

×[397−9623]2[9629−192678817],

`(N) = 999999940824564,

g(1015) = g(1015 − 1)

=
192678823 · 192678853 · 192678883 · 192678917

389 · 9539 · 9587 · 9601 · 9619 · 9623 · 192665881
N.

Figure 6. The values g(n) for n = 106, 109, 1012, 1015.

On a 3GHz Pentium 4, the time of computation of g(n) is about 0.02
second for an integer n of 6 decimal digits and 10 seconds for 15 digits.

11. Open problems

11.1. An effective bound for the benefit. Let us define ben g(n) by
(36) with N and ρ defined by (32) and (30). Is it possible to get an effective
form of (42), i.e.,

ben g(n) + n− `(g(n)) ≤ Cρ

for some absolute constant C to determine?
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A hint is to apply Proposition 2 with M = P1P2...Pr
q1q2...q2r

for some r, where
the Pi’s are the r smallest primes not dividing N and the qi’s are the 2r
largest primes such that vqi(N) = 2, and, further, to apply effective results
on the Prime Number Theorem like those of [28] or [5].

11.2. Increasing subsequences of g(n). An increasing subsequence of
g is a set of k consecutive integers {n, n + 1, . . . , n + k − 1} such that

(148) g(n− 1) = g(n) < g(n + 1) < . . . < g(n + k − 1) = g(n + k).

Due to a parity phenomenom, these maximal sequences are rare. For n ≤
106, there are only 9 values on n with k ≥ 7. The record is n = 35464 with
k = 20.

Are there arbitrarily long maximal sequences? It seems to be a very
difficult question. In [21], (1.7), it is conjectured that there are infinitely
many maximal sequences with k ≥ 2.

11.3. The second minimum. Let us write g1(n) = g(n) > g2(n) >
. . . > gI(n) = 1 all the integers such that, if σ ∈ Sn, the order of σ is equal
to gi(n) for some i ∈ {1, 2, . . . , I}. From (5), I is equal to the number of
positive integers M satisfying `(M) ≤ n.

We might be interested in the computation of g2(n) or more generally,
in the computation of gi(n) for 1 ≤ i ≤ i0 where i0 is some (small) fixed
constant.

The basic algorithm (see Section 2) can be easily adapted for this pur-
pose. It seems reasonable to think that our algorithm, as sketched in 1.3,
can also be extended to get gi(n).

11.4. Computing h(n). Let h(n) be the maximal product of primes
pi1 , pi2 , . . . , pir under the condition pi1 + pi2 + . . . + pir ≤ n (r is not fixed);
h(n) can be interpreted as the maximal order of a permutation of the sym-
metric group Sn such that the lengths of its cycles are all primes.

A formula similar to (2) can be written:

h(n) = max
M squarefree

`(M)≤n

M.

The superchampion numbers are the product of the first primes.
A related problem is to find an algorithm to compute h(n) for n up to

1015.

11.5. Maximum order in GL(n, Z). Let G(n) be the maximum order
of torsion elements in GL(n, Z). It has been shown in [10] that

(149) G(n) = max
L(M)≤n

M

where L is the additive function defined by L(1) = L(2) = 0 and L(pα) =
ϕ(pα) = pα − pα−1 if pα ≥ 3.
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From (149) and (2), it follows that g(n) ≤ G(n) holds for all n’s and it
has been shown in [22] that limn→∞G(n)/g(n) = ∞.

Is it possible to adapt the algorithm described in this paper to compute
G(n) up to 1015?
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