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Computation of 2-groups of positive classes of
exceptional number fields

par JEAN-FRANGOIS JAULENT, SEBASTIAN PAULI, MICHAEL E.
POHST et FLORENCE SORIANO-GAFIUK

RESUME. Nous développons un algorithme pour déterminer le
2-groupe CL7”° des classes positives dans le cas ou le corps de
nombres considéré F' possede des places paires exceptionnelles.
Cela donne en particulier le 2-rang du noyau sauvage WK, (F).

ABSTRACT. We present an algorithm for computing the 2-group
CLp of the positive divisor classes in case the number field F'
has exceptional dyadic places. As an application, we compute the
2-rank of the wild kernel WK (F) in Ka(F).

1. Introduction

The logarithmic ¢-class group Clp was introduced in [10] by J.-F. Jaulent
who used it to study the ¢-part WKs(F) of the wild kernel in number fields:
if F' contains a primitive 2¢'-th root of unity (¢ > 0), there is a natural
isomorphism

pgr @7, Clp ~ WKy (F) /WKy (F)*,
so the f-rank of WK, (F') coincides with the ¢-rank of the logarithmic group
cl . An algorithm for computing ct r for Galois extensions I’ was developed
in [4] and later generalized and improved for arbitrary number fields in [3].

In case the prime ¢ is odd, the assumption uy C F' may be easily passed
if one considers the cyclotomic extension F(u) and gets back to F' via
the so-called transfer (see [12], [15] and [17]). However for ¢ = 2 the con-
nection between symbols and logarithmic classes is more intricate: in the
non-exceptional situation (i.e. when the cyclotomic Zs-extension F° con-
tains the fourth root of unity 7) the 2-rank of WKy (F') still coincides with
the 2-rank of C/ r. Even more if the number field F' has no exceptional
dyadic place (i.e. if one has i € Fy for any q|2), the same result holds if

one replaces the ordinary logarithmic class group C¢r by a narrow version

Clre°. The algorithmic aspect of this is treated in [11].

Manuscrit regu le 9 janvier 2008.
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Last in [13] the authors pass the difficulty in the remaining case by in-

troducing a new 2-class group C£2"°, the 2-group of positive divisor classes,

which satisfies the rank identity: rko C(1* = rko WK (F).
In this paper we develop an algorithm for computing both C¢5” and

cl £?% in case the number field F' does contain exceptional dyadic places.

We conclude with several examples. Combining our algorithm with the
work of Belabas and Gangl [1] on the computation of the tame kernel of
K5 we obtain the complete structure of the wild kernel in some cases.

2. Positive divisor classes of degree zero

2.1. The group of logarithmic divisor classes of degree zero.

Throughout this paper the prime number £ equals 2 and we let i be a
primitive fourth root of unity. Let F' be a number field of degree n = r+2c.
According to [9], for every place p of F' there exists a 2-adic valuation o,
which is related to the wild 2-symbol in case the cyclotomic Zs-extension of
F, contains i. The degree degp of p is a 2-adic integer such that the image
of the map Log | |, is the Zy-module deg(p) Z2 (see [10]). (By Log we mean
the usual 2-adic logarithm.) The construction of the 2-adic logarithmic
valuations vy yields

(1) Vo€ Rp:=Zo®z F* : > Tp(a)deg(p) =0,
pePl
where Pl denotes the set of finite places of the number field F. Setting
div(a) = Y2 Tpla)p
pePL
we obtain by Zsy-linearity:
2) deg(div(a)) = 0.

We define the 2-group of logarithmic divisors of degree 0 as the kernel of
the degree map deg in the direct sum Dlp = Zpeplg Zo p:

Dl = {Spepip asp € Dlp | Ypeprp apdeg(p) =0} ;

and the subgroup of principal logarithmic divisors as the image of the log-
arithmical map div:

Plp = {div(e) | a € Rp}.

Because of (2) Plp is clearly a subgroup of DI . Moreover by the so-called
generalised Gross conjecture, the factorgroup

Clp = Dlp/Ply
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is a finite 2-group, the 2-group of logarithmic divisor classes. So, under this
conjecture, C/r is just the torsion subgroup of the group

Clp = Dlp/Plp
of logarithmic classes (without any assumption of degree).

Remark 1. Let F* be the set of all totally positive elements of F* (i.e.
the subgroup F* :={z € F*|z, >0 for all real p}). For

Pl = {div(a) | a € Rf := Zy @y F*}
the factor group
Clp™ = Dﬁp/ﬂ} (resp. CUpes = mp/@;:)

is the 2-group of narrow logarithmic divisor classes of the number field F
(resp. the 2-group of narrow logarithmic divisor classes of degree 0) intro-
duced in [16] and computed in [11].

2.2. Signs and places. For a field F' we denote by F'¢, (respectively F[i])
the cyclotomic Zg-extension (resp. the maximal cyclotomic pro-2-extension)
of F.

We adopt the notations and definitions in this section from [13].

Definition 1 (signed places). Let F' be a number field. We say that a
non-complex place p of F'is signed if and only if F}, does not contain the
fourth root of unity i. These are the places which do not decompose in the
extension F'[i|/F.

We say that p is logarithmically signed if and only if the cyclotomic
Za-extension Fy does not contain i. These are the places which do not
decompose in F*[i|/F*.

Definition 2 (sets of signed places). By PS, respectively PLS, we denote
the sets of signed, respectively logarithmically signed, places:

PS:=A{pli¢g I},
PLS :={p|i & F;} .
A finite place p € PLS is called exceptional. The set of exceptional places is
denoted by PE. Exceptional places are even (i.e. finite places dividing 2).
These sets satisfy the following inclusions:
PS C PLS = PEU PR C PI(2) U Pl(c0)
where PI(2), Pl(c0), PR denote the sets of even, infinite and real places of

F, respectively. From this the finiteness of PLS is obvious.

We recall the canonical decomposition Q5 = 2% x (1 4 47Z5) x (—1) and
we denote by € the projection from Q5 onto (—1).
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Definition 3 (sign function). For all places p we define a sign function
via

1 for p complex
sign () for p real
sgy 1 [y = (=1) x> e(Np~ve (@) for p J2o00

e(NFp/QZ(x)Np_”P(z)) for p|2.
These sign functions satisfy the product formula:
Vo e FX II sep(z) =1
pEPIRF

In addition we have:

Proposition 1. The places p of F' satisfy the following properties:
(i) if p € PLS then (sg,,y) is surjective;
(ii) if p € PS\ PLS then sg,( ) = (—1)5'1'( ) and T, is surjective;
(ii) if p & PS then sg,(F,) =1 and vy is surjective.

Remark 2. The logarithmic valuation v, is surjective in all three cases.
Part 2 of the preceding result is often used for testing p € PLS.

2.3. The group of positive divisor classes. For the introduction of
that group we modify several notations from [13] in order to make them
suitable for actual computations.

Since PLS is finite we can fix the order of the logarithmically signed
places, say PLS = {p1,...,pm}, with PE = {p1,...,p.} and PR =
{Pet1,- - Pm} Accordingly we define vectors e = (eq,...,en,) € {£1}™.

For each divisor a = Zpeplg app, we form pairs (a,e) and put
m
(3) sg(a,e) == H (=1)% x Hei .
pePS\PLS i=1

Let DUp(PE) := {a € Dip ‘ 0=3 perE app} be the Zs-submodule of D{fp

generated by the exceptional dyadic places. And let Dﬁ?E be the factor
group DUp /Dlp(PE). Thus the group of positive divisors is the Zo-module:

(4) Dep = {(a,€) € D x {£1}™ | sg(a,e) =1} .

For a € Ry := Zy ®z F*, let div/(a) denote the image of div(a) in DIEE
and sg(a) the vector of signs (sgy, (@), ...,sg, (a)) in {£1}". Then
(5) PeE* = {(div'(a),seg(a)) € DI x {£1}™[a € Ry}

is obviously a submodule of D¢} which is called the principal submodule.
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Definition 4 (positive divisor classes). With the notations above:

(i) The group of positive logarithmic divisor classes is the factor group
ngos _ DE?OS/?SZ?OS )

(ii) The subgroup of positive logarithmic divisor classes of degree zero
is the kernel C£® of the degree map deg in C/E":

ClP** .= {(a,e) + Ply | deg(a) € deg(Dlp(PE))} .

Remark 3. The group C/2” is infinite whenever the number field F has no
exceptional places, since in this case deg(Cﬁﬁos) is isomorphic to Zs. The
finiteness of C¢2’ in case PE # () follows from the so-called generalized
Gross conjecture.

For the computation of cl P? we need to introduce primitive divisors.

Definition 5. A divisor b of F' is called a primitive divisor if deg(b) gen-
erates the Zo-module deg(Dlr) = 4[F N Q° : Q|Zo.

We close this section by presenting a method for exhibiting such a divisor:

Let q1,...,qs be all dyadic primes and pi,...,ps be a finite set of non-
dyadic primes which generates the 2-group of 2-ideal-classes Cf} (i.e. the
quotient of the usual 2-class group by the subgroup generated by ideals
above 2).

Then every p € {q1,...,9s,P1, ..., P} with minimal 2-valuation v (degp)
is primitive.

2.4. Galois interpretations and applications to K-theory. Let F'¢
be the locally cyclototomic 2-extension of F (i.e. the maximal abelian pro-2-
extension of I’ which is completely split at every place over the cyclotomic
Zo-extension F'¢). Then by f-adic class field theory (cf. [9]), one has the
following interpretations of the logarithmic class groups:

Gal(F/F) ~Clp  and  Gal(F'°/F°) ~ Clp .

Remark 4. Let us assume i ¢ F°. Thus we may list the following special
cases:

(i) In case PLS = (), the group C{2° ~ Zy & CNE?S of positive divisor
classes has index 2 in the group Clp ~ Zy @ Clp of logarithmic
classes of arbitrary degree; as a consequence its torsion subgroup

CN€§OS has index 2 in the finite group C/p of logarithmic classes of
degree 0 which was already computed in [3].
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(i) In case PE = (), the group C{E”° ~ Zy @ Esz)s has index 2 in the

group CUp™° ~ 7o & @};es of narrow logarithmic classes of arbitrary

degree; and its torsion subgroup CNK?S has index 2 in the finite
group Cl;?° of narrow logarithmic classes of degree 0 which was

introduced in [16] and computed in [11].
Definition 6. We adopt the following conventions from [6, 7, 13, 14]:

(i) F' is exceptional whenever one has i ¢ F° (i.e. [F°[i] : F°] = 2);
(ii) F is logarithmically signed whenever one has i ¢ F'¢ (i.e. PLS # 0));
(7i1) F' is primitive whenever at least one of the exceptional places does
not split in (the first step of the cyclotomic Zg-extension) F¢/F.

The following theorem is a consequence of the results in [6, 7, 9, 10, 13,
14]:

Theorem 1. Let WKy (F) (resp. K§°(F) := Np>1K3" (F)) be the 2-part of
the wild kernel (resp. the 2-subgroup of infinite height elements) in Ko(F).

(i) In casei € F' (i.e. in case PLS = (), we have both:
rky WKy (F) = rky Clp = rky CLLES.

(i) In case i ¢ F' but F has no exceptional places (i.e. PE = (}), we
have:

rko WKy (F) = rko CL5ES.
(131) In case PE # (), then we have

I‘k2 WKQ(F) = rkg ngos.

And in this last situation there are two subcases:
(a) If F is primitive, i.e. if the set PE of exceptional dyadic places
contains a primitive place, we have:

K§(F) = WEs(F).

(b) If F is imprimitive and K$°(F) = @' | Z/2™Z, we get:
(i) W (F) = 2/2 717 & (21,7,/2"2)
if tko(CLE”) = rko(CLE™);

(it) WKo(F) = Z)2Z&(®1_ Z/2MZ) if tko(CLE”) < rko(CLE™).
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3. Computation of positive divisor classes

We assume in the following that the set PE of exceptional places is not
empty.

3.1. Computation of exceptional units. Classically the group of log-
arithmic units is the kernel in R of the logarithmic valuations (see [9]):

Er={reRp | b(z)=0}.

In order to compute positive divisor classes in case PFE is not empty, we
introduce a new group of units:

Definition 7. We define the group of logarithmic exceptional units as the
kernel of the non-exceptional logarithmic valuations:

(6) E¥x ={r € Rp|Vp ¢ PE Dy(z)=0}.

We only know that the group of logarithmic exceptional units is a sub-
group of the 2-group of 2-units £ = Zs @ E. If we assume that there are
exactly s places in F' containing 2 we have, say:

5}’ = MHF X <517 E 7€T+cfl+s> .

For the calculation of gfﬁn we use the same precision 7 as for our 2-adic

approximations used in the course of the calculation of cl . We obtain a
system of generators of £4° by computing the nullspace of the matrix

| 27 ... 0
B={ W) | - ..
| 0 ... 27
with r +c¢— 1+ s+ e columns and e rows, where e is the cardinality of PE
and the precision 7 is determined as explained in [3].

We assume that the nullspace of B is generated by the columns of the
matrix
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where C has 7 + ¢ — 1+ s and D exactly e rows. It suffices to consider C.

Each column (ng,...,np1c_145)"" of C corresponds to a unit
r+c—1+s _
Il <« EZRE
i=1
so that we can choose
r4+c—1+s
g:= H et
i=1
as an approximation for an exceptional unit. This procedure yields k >
r + ¢ + e exceptional units, say £1,...,€;. By the so-called generalized

conjecture of Gross we would have exactly r+c+e such units. So we assume
in the following that the procedure does give k = r + ¢ + e (otherwise we
would refute the conjecture). Hence, from now on we may assume that we
have determined exactly r 4+ ¢ + e generators €1, ..., Epycre Of gf‘}’c, and we
write:

%m = <—1> X <€~1, . 75~r+c—1+e> .

Definition 8. The kernel of the canonical map Rp — DI}’ is the sub-
group of positive logarithmic units:
EP® ={ee & |VpePLS sg,(&)=+1}.
The subgroup & P?% has finite index in the group £4r of exceptional units.

3.2. The algorithm for computing C££°°. We assume PE # () and
that the logarithmic 2-class group C{f is isomorphic to the direct sum

Clp = &Y, Z)2%7

subject to 1 <ny <...<n,. Let a; (1 <i <) be fixed representatives of
the v generating divisor classes. Then any divisor a of Dl can be written
as

a= Z a;a; + Ab + HE(a)
i=1

deg(a)
deg(b)
appropriate element a of Rp. With each divisor a; we associate a vector

e = (sg(a;,1),1,...,1) € {£1}",

where m again denotes the number of divisors in PLS. Clearly, that repre-
sentation then satisfies sg(a;,e;) = 1, hence the element (a;, ;) belongs to
DeP”. Setting e, = (sg(b,1),1,...,1) as above and writing

with suitable integers a; € Zs, a primitive divisor b, A = and an

v
e :=sg(a) x [ el xex e
i=1
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for abbreviation, any element (a,e) of D¢E’ can then be written in the
form

(a,e) = ( a;a; + Ab 4 div(a), € x [Te xsgla) x eé‘)
i=1 i=1

= ai(a;,e;) + A(b,ep) + (0,€') + (div(a),sg()) .
i=1

The multiplications are carried out coordinatewise. The vector € is there-
fore contained in the Zo-module generated by g; € Z™ (1 < i < m)
with g1 = (1,...,1), whereas g; has first and i-th coordinate -1, all other
coordinates 1 for ¢ > 1.

As a consequence, the set

{(aj,e;) [1 <7 <v}uU{(0,g)]2<i<m}uU{(b,e}

contains a system of generators of C/2”° ( note that (0,g;) is trivial in
Cere).
We still need to expose the relations among those. But the latter are easy

to characterize. We must have
14

Z aj(aj,ej) + Zbi(o,gi) + )\(b,eb) =0 mod 73%505 ,

j=1 i=2
> aj(ag.e)) + > bi(0,g) + A(b,ep) = (div(a )+ > (dpp,1)
j=1 i=2 pePE

with indeterminates a;, b;,d, from Z,. Considering the two components
separately, we obtain the conditions

(7) Z a;a; + Ab = Z dpp mod Ply
=1 pEPE
and
(8) H e’ x [T &) x ef =sg(a) .
= =2

Let us recall that we have already ordered PLS so that exactly the first e
elements p1, ..., pe belong to PE. Then the first one of the conditions above
is tantamount to

v d i .
S aja; = Z dy, ( p; degi b) mod Pl .
j=1

The divisors
deg Pig

Pi— deg b
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on the right-hand side can again be expressed by the a;. For 1 <1i < e we
let

T degp; -
le(Oéi) + p; — degpb b= Z CijQj .
7=1

The calculation of the «;, ¢;; is described in [15].
Consequently, the coefficient vectors (a1, ..., a,,A) can be chosen as Zo-

linear combinations of the rows of the following matrix A € Zg/+e)x(u+1):

om0 0o 0 | o0
0 on o 0 | o0
|
0 0 w1 0 | 0
A=| 0 0 0o 2w | 0
| deg(p1)
deg(b)
Cij ’
| deg(pe)
deg(b)
Each row (aq,...,a,,\) of A corresponds to a linear combination satis-
fying
v —_—
9) Z a;a; + Ab = div(e) mod Dlp(PE) .
j=1

Condition (8) gives

m
(10) H gi-’i = sg(a) x H e?j X ep .
=2 j=1

Obviously, the family (g;)2<i<m is free over Fy implying that the exponents
b; are uniquely defined. Consequently, if the k-th coordinate of the product
sg(a) x 172y e?j x ep is —1 we must have by = 1, otherwise by = 0 for
2 < k < m. (We note that the product over all coordinates is always 1.)
Therefore, we denote by by ;, ..., by, ; the exponents of the relation belong-
ing to the j-th column of A for j =1,...,v +e.

Unfortunately, the elements « are only given up to exceptional units.
Hence, we must additionally consider the signs of the exceptional units of
F'. For

(11) S — (—1) X (€1, ..., Erte_1te)
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we put:
m
(12) sa(z) = [[ &
i=1
Using the notations of (11) and (12) the rows of the following matrix A’ €

Zgy+2e+71+cfl)x(y+m) generate all relations for the (aj,e;), (b,ep), (0,8;).

‘ b271 . bm71
‘ . .
A \
\
‘ b2 v+e o bm,u+e
A=| - ——— — | - S -
‘ b2 v+e+1 bm,u+e+1
‘ .
O \
\
‘ b2,u+26+r+c—l e bm,u+2€+r+c—l

3.3. The algorithm for computing EE;:"S. We assume that PE =
{p1,...,pe} # 0 is ordered by increasing 2-valuations vs(degp;); that the
group C¢E” of positive divisor classes is isomorphic to the direct sum

CoP = @ 7,/9™7

and that we know a full set of representatives (b;,f;) (1 <i < w) for all
classes.

Then each (b, f) € DIE satisfies deg(b) € deg(Dlr(PE)) and
b=>" bb; mod (Dlp(PE) + Plp) .
i=1

Obviously, we obtain
0 = deg(b) = Z b; deg(b;) mod deg(Dlp(PE)) .
i=1

We reorder the b; if necessary so that
v2(deg(b1)) < wva(deg(b;)) (2<i<w)
is fulfilled. We put
t := max(min({vz(deg(p)) | p € Dlp(PE)}) — va(deg(b1)),0)
= max(vz(deg(p1)) — va(deg(b1),0)
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and
“. deg(b;)
0:=b + b; .
! ; deg(by)
Then we get:
W deg(b;) ) —~
= b; | b; — 1) d (Dip(PE 14
b Z:Z2 ([l deg([n)bl + 0b; mo ( F( )-l—P F)
and so

degb=0= Zbi x 0+ d deg by mod deg Dlp(PE).

From this it is immediate that a full set of representatives of the elements
of C¢%” is given by

deg(b;) deg(b')/deg(bl)) :
b — by, £ x f; 5 for 2 <i <
( deg(bl) 1 X 1 or 1 w

and

deg b
(b} == 2, —Qtde 1131, 2

Let us denote the class of (c, ) in C£2 by [c, f].

Now we establish a matrix of relations for the generating classes. For this
we consider relations:

- deg(b;) icﬂicg«(:i)) tr g2t
i 16— by, f; x £, 1 2'07,ff | =0,
;a [ deg(by) ' *h +a1[ ' 1}

hence

> aifb, £i] + <2ta1 - jigg:i;%) [b1,f1]=0.

=2 =2

A system of generators for all relations can then be computed analogously
to the previous section. We calculate a basis of the nullspace of the matrix
A" = (af;) € Z¥**% with first row

(2’2 _deg(by) - _degbu) gy ,0)
deg(by) deg(by)
and in rows 4 = 2,...,w all entries are zero except for a; = 1 and af,,; =

2™i. We note that we are only interested in the first w coordinates of the
obtained vectors of that nullspace.



Computation of 2-groups of positive classes of exceptional number fields 727

4. Examples

The methods described here are implemented in the computer algebra
system Magma [2]. Many of the fields used in the examples were results of
queries to the QaoS number field database [5, section 6]. More extensive
tables of examples can be found at:

http://www.math.tu-berlin.de/ pauli/K

In the tables abelian groups are given as a list of the orders of their cyclic
factors.
[:] denotes the index (K2(OF) : WK (F)) (see [1, equation (6)]);
dp denotes the discriminant for a number field F;
Clr denotes the class group, P the set of dyadic places;
Cl} denotes the 2-part of C4/(P);

cl r denotes the logarithmic classgroup;
CLP” denotes the group of positive divisor classes;

CLP” denotes the group of positive divisor classes of degree 0;
rks denotes the 2-rank of the wild kernel WK,.

K. Belabas and H. Gangl have developed an algorithm for the computa-
tion of the tame kernel KoOp [1]. The following table contains the structure
of KoOF as computed by Belabas and Gangl and the 2-rank of the wild ker-
nel WKj calculated with our methods for some imaginary quadratic fields.
We also give the structure of the wild kernel if it can be deduced from the
structure of KoOp and of the rank of the wild kernel computed here or in
[15].



728 J.-F. JAULENT, S. PauLl, M. E. PoHST, F. SORIANO—GAFIUK

4.1. Imaginary quadratic fields.

dp | Clr  KyOp []||P|PE| Cly Clp CUE® CEP* | rky WK,
-184 | [4]  [2] 1|1 1 [2] [1] [2] [] |1 [2]
248 | [8]  [2] 1)1 1 \[4] [2] [4] [2] |1 [2]
399 | [2,8] [2,12] 212 2 |[2] [4] [2] [2]]1 [4]
632 [8] [2] 1|1 1 |[4] [2] [4] [2] |1 [2]
759 [ [2,12] [2,18] 62 2 |[2] [2] [2] [2]|1 [6]
799 | [16] [24] 22 2 |[2] [24] [2] [2] |1 2
959 | [36] [24] 2|2 2 |[4] 48 [4] [4]]1 [4]
4.2. Real quadratic fields.
drp | Ctr  []||P| |PE|| CI' Clp  COE®  CIP* | rky
76| [2] 4|1 1| [2] [] [22] [2] | 2
904 | [8] 4|1 1 |[4] [2] [4] [2] 1
29665 | [2,16] 8 [ 2 2 | [2] [2] [22] [22] | 2
34689 | [32] 8|2 2 | [] [] [2] (2] | 1
69064 | [48] 4|1 1 |[28 [8] [28] [8] | 2
90321 | [2,28] 24| 2 2 | [22] [24] [2222 [2.2272]| 4
104584 | [4,8] 4 |1 1 | [28 [24 [28] [24] | 2
248584 | [4,8] 4|1 1 | [28 [24] [228 [224] | 3
300040 | [22,8] 4|1 1 | [28 [8] [28] [8] | 2
374105 | [32] 8|2 2| [] [] [2] (2] |1
171865 | [2,32] 8 |2 2 | [4] [4] [24] [24] | 2
285160 | [2,32] 4|1 1 [[32] [32] [32] [32] | 1
318097 | [64] 8|2 2| [] [] [2] (2] |1
469221 | [64] 12| 1 1 |[64] [64] [264] [264]] 2
651784 [ [2,32] 4 |1 1 [[2,16] [2.8] [2,2,16] [2.2,8 | 3
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dr

22+ 2% — 10z — 8
224t —6r—1
22+ 2% — 14z — 23
22 4a? -9z +1
22— 9z +2
24 a? =9z -7

961
985
2777
2804
2808
2836

W Wwwwww

32

oo

16

x> — 40z + 1349
% — 25z + 198

2% + 22 — 47Tz — 1365
4+ 2% 4+ 126z + 234

%+ 2% + 39z — 155
z® + 22 4+ 59z — 63

23 + 2% — 108z + 2304

-997523
-996008
-994476
-992696
-992620
-991852
-991516

el el el e

00NN R O

23 + 2 — 497 — 48
2 — 148z + 673
z® — 203z + 548

23 + 2% — 164z + 64

453317
738085
1014140
1085681

W w ww

16
16
32
32

4.3. Examples of degree 3. The studied fields are given by a generating
polynomial f and have Galois group of their normal closure isomorphic to

C3 (cyclic) or 63 (dihedral); r denotes the number of real places.

x> 4 2% — 2322 — 1840

23 + 70z + 236
3+ 2% + 45z + 154

-526836
-718948
-878683

[y

12

—= N == =W
—_ = =W
= O N+~ O

WHE N~ NN
W = NN N
o= NN = =

W N NN
W= NN
N = W

\]
[\]

[\
—_
_
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4.4. Examples of higher degree.

1| [e] (2] [] [] ¢ T | ¥9 | [g] 9 G SPATLELT | T+ 20T — ,TLT — (21T — ;2T + o
| [e] (2] [] [] ¢ ¢ | ¥ | [v] 9 ¢ LESVO9ET | T+ TL+ A — I8 — ,TT+ T
0 [] [] [] [] T e |s8se| [T1] °d 1T 9€65G8¢ | ST — T9¢+ G + @€ — T+ &
0 (] (] [] [] € e | 8 | [0T] 99 T €I9LT | VT — TOT+ L€+ ¢T6 + T+ o
| [e] (2] [] (] ¢ ¢ |9t | [v] <9 ¢ ego9gee- T — 2T — T9C + (ZFT — @
1| (7] (vl [v] [v] T 1] 8 [v] 99 € T1L0TVE- | 6— 2T — ZTT 4 ¢29+ 2T+ (&
0 (] (] [] [] ¢ ¢ |9t | [v] <9 € svoLLye- T — %L+ 26+ (20T — &
T ¢ ] ¢ ] [] [] ¢ ¢ | 91| [¥] 9 € 8ITR0SE- | T— T8 — ,TYT — TET — T+ T
1| [2] (2] [] [] ¢ e | v | [¥] <9 ¢ ormverh- | 9T +aTl — 28— T+ T+
| [ve  [v] [ve]l [7] ¢ T | e [ze] *a o0 ¢<2o016 03€C + T08 — ;166 + ¢T — ;&
¢ | v'e'el ['eel [eel ee | v 1| 1 | e 'O o0 gers TOBT + % % 96 — ;796 + T — T
T ¢ ] (v1 el [¥] ¢ ¢ | ¢ |[s¥] ™ o o009c0L T+ 286 + @
0 (] (] [] (] ¢ ¢ og |lore] "9 o0 ger99L 0g + g — @
¢ | lee] [ze] [v] (] ¢ T | 9 | [8¥] ra o 08006L 02T + Z1¢ + @
1| [2] (2] (7] (2] ¢ ¢ | ¢ | leel ra o scisel 8EL + TV — ,T6G + (TG — T
| le] [7] (2] [7] ¢ T | ¢ | [8Y] va 0 009c0L [+ 286 + &
1 (2] (7] (2] (7] T 1| 1 | [¥F] @ o ¥9¥c0L VT 4,2
¢ | [8c] [s8¢] [s8e] [8el| 1 1| 1 | [8e] ra o gerioL I6L1 + 99 — ,T98 + T — @
| [e] (2] [] [] ¢ ¢ | 8 [] 9 T L96E- T+ 2¢+ 207 — (& — @
] le] (] [] [] ¢ ¢ | 8 | [ot] ra ¢ 007098 9TF — TOGT — ;T6G — T

Wl | ddD  seadd 70 0 | ladl lal| [ 490 ®DH 4 dp /
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