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On Elkies subgroups of ¢-torsion points in elliptic
curves defined over a finite field

par REYNALD LERCIER et THOMAS SIRVENT

RESUME. En sous-résultat de 1’algorithme de Schoof-Elkies-Atkin
pour compter le nombre de points d’une courbe elliptique définie
sur un corps fini de caractéristique p, il existe un algorithme qui,
pour £ un nombre premier d’Elkies, calcule des points de ¢-torsion
dans une extension de degré £ — 1 & laide de O(¢ max(¢,log q)?)
opérations élémentaires & condition que £ < p/2.

Nous combinons ici un algorithme rapide du a Bostan, Morain,
Salvy et Schost avec ’approche p-adique suivie par Joux et Ler-
cier pour obtenir un algorithme valide sans limitation sur £ et p
et de complexité similaire. Par soucis de simplification, nous dé-
crivons précisément ici I’algorithme dans le cas des corps finis de
caractéristique p > 5. Nous l'illustrons aussi avec quelques expé-
rimentations.

ABSTRACT. As a subproduct of the Schoof-Elkies-Atkin algo-
rithm to count points on elliptic curves defined over finite fields
of characteristic p, there exists an algorithm that computes, for ¢
an Elkies prime, ¢-torsion points in an extension of degree ¢ —1 at
cost O(¢ max(¢, log q)?) bit operations in the favorable case where
< p/2.

We combine in this work a fast algorithm for computing iso-
genies due to Bostan, Morain, Salvy and Schost with the p-adic
approach followed by Joux and Lercier to get an algorithm valid
without any limitation on ¢ and p but of similar complexity. For
the sake of simplicity, we precisely state here the algorithm in the
case of finite fields with characteristic p > 5. We give experiment
results too.

1. Introduction

Let K be a finite field with ¢ elements and E be an elliptic curve over
K given by a plane equation of the form

(1.1) v+ a1y + asy = 3 + apx® + aux + ag
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where the coefficients aq, a9, ag, a4 and ag are elements of K. For any field
L such that K C L, we denote by E(L) the set of L-points of E, i.e. the set
of solutions in L of Equation (1.1), plus the additional point at infinity O
with homogeneous coordinates (0 : 1 : 0). The curve E/K has a structure
of commutative algebraic group with neutral element O, derived from the
secant and tangent rules. Its order is equal to ¢ + 1 — ¢ where the integer ¢
satisfies |t| < 2,/7.

We are interested in the determination of ¢-torsion points of E, that is
the set E[f] of points P of E(K) such that /P = O for prime integers /,
distinct from p. This group is isomorphic to Z/¢Z x Z/{Z (cf.[18, p. 89]),
its cardinality is thus ¢2. In fact, the multiplication by ¢ is given by a ra-
tional transformation of P?(K), of degree £2, of the form (z : y : 2)
(Xe(z,y,2) : Yo(z,y,2) : Ze(x,y,2)) where Xy, Yy and Z; are three homo-
geneous polynomials of degree 2 and (-torsion points are explicitly given
by Z¢(z,y, z) = 0. Excluding the point O, this equation can be easily trans-
formed into an equality of the form fy(x) = 0 where fy is a monic univariate
polynomial of degree (£2 —1)/2, called the ¢-th division polynomial.

The improvements by Atkin and Elkies to Schoof’s algorithm for count-
ing points on elliptic curves stem from the fact that when the principal
ideal (¢) splits in the imaginary quadratic field Q(1/t? — 4¢), in half the
cases thus, there exists two subgroups of degree ¢ in E[{] defined in a de-
gree ¢ — 1 extension of K. Such an integer ¢ is classically called an Elkies
prime, and similarly, we call these two subgroups ¢-th Elkies subgroups.

In this work, we focus on algorithmic efficient ways to compute degree
(¢ — 1)/2 polynomials, defined over K, the roots of which are abscissas of
points contained in an ¢-th Elkies subgroup. We call these polynomials ¢-th
Elkies polynomials too. Our main result, where we classically denote by
o1(x1, - xp) = O(d2(x1, ..., zk)) functions ¢y and ¢ such that there ex-
ists an integer k with ¢y (z1, ..., z1) = O(¢a(z1, . ..,z )log® do(z1,. .., z1)),
is as follows.

Theorem 1. Let E be a generic elliptic curve defined over a finite field
K with q elements and characteristic p > 5 and £ be an FElkies prime,
distinct from the characteristic of K, then Algorithm 2 computes £-th Elkies
polynomials at cost O(¢ max(¢,log q)?) bit operations and space.

The “generic” condition for the elliptic curve £ in Theorem 1 means
that, if we pick at random a curve, the algorithm almost always returns
the correct result. Especially, it is very unlikely that the algorithm encoun-
ters issues on ordinary elliptic curves with a large discriminant (see the
beginning of Section 2 for a discussion on this topic).
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Furthermore, Algorithm 2 (cf. Section 4) takes in input curves defined
over finite fields of characteristic p > 5 by a Weierstrass equation of the
form y? = 23 4+ a4x + ag. For p = 2 (or p = 3), Weierstrass models of the
form y? +xy = 23 + agx? + ag (or y? = 2% + a2 + ag) must be considered.
This yields completely different equations (see for instance [11, 12] in the
case p = 2). Theorem 1 can be easily extended to these fields but for the
sake of simplicity we prefer to omit the details here.

This problem is closely related to the problem of computing separable
isogenies of degree ¢ between two elliptic curves since an application of
Velu’s formulas [20] with starting point such polynomials yields an isogeny.
Especially, counting points on elliptic curves first raised interest for such
computations. But isogenies now play a role in numerous other fields, for
instance to protect elliptic curve cryptographic devices against physical
side attacks [19], to improve Weil descent to calculate elliptic discrete log-
arithms [10], to decrease the complexity of computing discrete logarithms
in some family of finite fields [7], to exhibit normal basis in finite field
extensions [6], etc.

We first recall in Section 2 the complexity of the algorithms known to
solve this problem. In Section 3, we focus on the fastest algorithm in finite
fields of large characteristic published so far, due to Bostan, Morain, Salvy
and Schost [2]. We then show in Section 4 how we can combine this algo-
rithm with the p-adic approach introduced by Joux and Lercier in [11] to
get a fast algorithm in any finite field and we clarify that we need a p-adic
precision of only O(log®¢/logp). A detailed example is given in Section 5.

2. Related work

We restrict ourself to finite fields K of characteristic p > 5 and to prime
integers ¢ > 2. In this case, an elliptic curve F is simply given by a plane
equation of the form y?> = 2% + a4x + ag. Its discriminant, always non
zero, is equal to Ap = —16(4a4® + 27a6?) and its j-invariant is equal to
jg = —123 (4a4)3/Ap.

We moreover rely upon Schoof-Elkies-Atkin’s algorithm, and we thus
assume in the remaining of the paper that F is ordinary with j-invariant
Jjr # 0,1728 [16]. If we denote jgr, the j-invariant of an elliptic curve E’ that
is (-isogenous to E, we furthermore needs that (jg,jg/) is not a singular
point of the modular curve Xy(¢). We refer to [16, pages 248-249] for a
detailed discussion on this phenomenon. Especially, except elliptic curves
with very small discriminants, it is very unlikely that ordinary elliptic curves
behave badly.

2.1. Naive approach. ¢-th Elkies polynomials are factors of the ¢-th di-
vision polynomial f,. Therefore, a naive approach consists in computing f,
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which can be done at cost 0(62 log q) elementary operations thanks to a
“Square and Multiply” method [18], and then in factorizing it with cost
O(£1815%2 Jog? ¢) [17]. This algorithm needs a total of O(£>6% log?q) bit
operations.

2.2. Schoof-Elkies-Atkin framework. Let mg be the Frobenius endo-
morphism of E. Its restriction to E[¢], seen as a Fy-vector space of dimension
two, is still an endomorphism. When ¢ is an Elkies prime, its eigenspaces
correspond to ¢-th Elkies subgroups C' of E[{] and from each C one can
construct a normalized isogeny of degree ¢ between E and an elliptic curve
K-isomorphic to £’ = E/C.

The following method takes advantage of these facts.

Step 1: Compute the modular polynomial of degree ¢, ®,(X,Y), equa-
tion of the modular curve X((¢). This is a bivariate symmetric poly-
nomial, of degree £+ 1 in X and Y, whose coefficients are integers
of O(¢) bits (cf. [4]). j-invariants of ¢-isogenous elliptic curves are
roots of ®,(X,Y).

Step 2: Compute roots jp and jpr of ®y(X, jg).

Step 3: Compute a normalized Weierstrass equation for elliptic curves
E’ and E” of j-invariants jgr and jg», and the sums of the abscissas
of points in the kernel of the isogenies E — E’' and E — E”, using
the polynomials ®,, 0®,/0X, 0®,/0Y, 0?®,/0X?, 0°®,/0X Y,
0%®,/0Y? (cf. [16]).

Step 4: Compute from each isogenous curve, a /-th Elkies polynomial
thanks to the kernel of the corresponding isogeny.

The complexity analysis comes now.

Step 1: The modular polynomial ®,(X,Y) has O(f?) coefficients,
each with about O(f) bits. There exists methods to compute this
polynomial at cost quasi-linear in its size, i.e. in 0(63) bit opera-
tions (cf. [9]). We need to reduce this polynomial modulo p, that is
O(£3) bit operations too. The result is then of size O(£2 logp) bits.

Step 2: With the help of Horner’s method, the evaluation of ®,(X,Y)
at jg costs O~(€2 log q) bit operations. In order to compute roots of
the resulting degree £ + 1 polynomial, we have first to compute its
ged with X9 — X, that is O(£ log? q) bit operations (cf. [13]). We
obtain a degree 2 polynomial whose roots can then be found with
negligible cost.

Step 3: The computations of the derivatives of ®, and their evalua-
tions can be done at cost O(¢2 log q) bit operations.

Step 4: Here, we have to distinguish several cases.
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e In finite fields of large characteristic, the best algorithm known
so far to compute isogenies is due to Bostan et al. [2] and takes
time O(£ log ¢) bit operations.

e In finite fields of small but fized characteristic, the best al-
gorithm known is due to Couveignes [5] and needs O(¢2log q)
bit operations (but the contribution of p in the O complexity
constant is exponential in log p).

e In between, that is finite fields of small but non-fired charac-
teristic, the best algorithm is due to Joux and Lercier [11] and
needs O((1 + £/p) £%log q) bit operations.

The best total complexity is thus equal to O(¢ max (¢, log ¢)?), achieved in
finite fields of large characteristic. But, in finite fields of small characteristic,
the complexity can be as large as O(£3log ¢) bit operations when £ > p.

This work yields an algorithm of same complexity as in the large char-
acteristic case without any limitation on the characteristic or the degree of
the base field K.

3. The large characteristic case

In order to get an algorithm with good complexity in finite fields of small
characteristic too, we first reformulate the algorithm of Bostan et al. in such
a way that its extension in the p-adics is more easily studiable. The general
strategy is the same except that we take into account some specificities of
the involved differential equation in the resolution. As a result, we obtain
a precise and compact algorithm (cf. Algorithm 1).

3.1. Differential equation. In a field K of characteristic larger than
three, an isogeny between two elliptic curves, E : y?> = 2% 4+ a4« + ag and
E':y? = 2% + a} x + af;, can be given by

N(z) N(z)\'
I —
(x,y) (D(x),cy (D(x)> :
where N and D are monic polynomials of degree ¢ and £ — 1. When c is
equal to one, the isogeny is said to be normalized. This is in particular the
case in the Schoof-Elkies-Atkin framework.

If we now state that the image of a point of E by I is on E’, we get the
following differential equation

(3.1) (2% 4+ ag z + ap) <Jl\;g§>/2 = <]l\?[g;>3 +a} <Jl\)[g§> + ag.

This equation can be solved with a Taylor series expansion of N(z)/D(x)—x
in 1/x for 1/x close to 0. The relations obtained thanks to Equation (3.1
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enable to compute by recurrence each coefficient in turn, if the first coeffi-
cients are known. It is then possible to recover N and D with the help of
Berlekamp-Massey’s algorithm, or one of its optimized variant. In [2], one
takes advantage of a Newton algorithm so that the number of coefficients
computed at each iteration doubles.
More precisely, let S be defined by
D(1/x?)

S(z) =4/ —=——-—=5, or equivalently

N (1/22)

N(z) 1
D(x)  §(1/yz)*
The square root is chosen such that S(x) = x + O(x3) at infinity, which is

possible because N(x)/D(x) has a series expansion of the form x + O(1).
Equation (3.1) becomes then

(ag 2% + agz* +1)8"(2)* =1+ ay S(z)* + a S(z)S.
This is enough to determine S(x), and finally recover N(z)/D(x).

3.2. Resolution. We consider more generally equations of the form S"? =
G- (HoS). In Equation (3.1), we have for instance H(z) = aj 2° +a/, 2* +1
and G(z) = 1/(ag 2% + as 2* + 1). We now look for a solution modulo z*,
where p is an integer given in input. The way to solve this equation is
first to assume that we know the solution modulo z¢ and then, thanks to
a Newton iteration, to obtain a solution modulo z2?. After roughly log st
such iterations, one gets the full solution.

We now present Algorithm 1, a compact algorithm for this task (where
[ denotes an integral operation with integration constant equal to zero).
Its complexity can be easily established, it is equal to O(u log q) bit oper-
ations. Its correctness is slightly more difficult to prove and we delay it to
Appendix A.

Algorithm 1 Solving equation §”2 = G- (H 0 S), S(0) = o and S'(0) = 3.
Input: pe{1,...,p}, (o,0) €e KxK* H € K[z], G € K[[z]]
Output: S € K[z], a solution of the differential equation modulo z*
de—2, U«—1/3, J—1, V—1
S a+Bz+ [(G'0)+ H' (o) 33)/(48)] 2*
while (d < p—1) do
U«—U-(2-5U)mod x4
Ve (V+J - (HoS) (2—=V-J))/2mod ¢
Je—J-(2-V-J)mod z¢
Se—S+V-[(G-(HoS)—S?) (U-J/2)dr mod g™nZd+1n)
d+«—2d
end while
return S
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Proposition 3.1. Let (a,3) € K x K* where K is a finite field of char-
acteristic p, let G be a formal series defined over K, let H be a polynomial
defined over K such that H(a) = 1 and G(0) = 2. Let u € {1,...,p},
then Algorithm 1 computes a Taylor series (modulo x*) of the solution S
of the differential equation

(3.2) S'(z)? = G(z) H(S(z)), S(0) = a, S'(0) = 3.

3.3. Full algorithm. We first compute G(z) = 1/(ag 2% +a4 x* +1) mod-
ulo 741 thanks to the classical iterative following formula, Gy(z) = 1,
Goa(z) = Ga() (2 — Ga(w) - (a6 25 + asz* + 1)) mod 2°?. We then apply
Algorithm 1 to G(x) and H(z) = af 25 + a}, 2* + 1 with u = 4¢, a = 0 and
g =1.
The obtained solution S is odd, we define from it
201
T(x) = Z t; z', where Vi € {0,...,20 =1}, t; = s2i41.
i=0

We denote by R(z) the inverse of the square of T'(x), modulo z¢, with
the same inverse formulas as those used for G. We then have

N(z) 1 e R(z) = z N(1/x)
D(x) _:”R(x) e R@) = S pay

Applying Berlekamp-Massey algorithm [1, 14, 8] or one of its optimized
variant [3, 15] to R yields D and the searched ¢-th Elkies polynomial is
equal to the monic square root of D.

4. Extension to any finite field

To extend the Schoof-Elkies-Atkin framework in any characteristic, the
techniques developed in [11] give the general idea: to use the p-adics to au-
thorize divisions by the characteristic p of the field. These divisions make
it possible to use in any finite field algorithms primarily designed in large
characteristic. There exists one main obstacle with this approach. Calcula-
tions in the p-adics imply losses of precision at the time of divisions by p.
It is thus necessary to anticipate a sufficient precision, which results in an
increase in the size of the handled objects.

One could hope to perform this lift in the p-adics only at Step 4 of the
Schoof-Elkies-Atkin method, i.e. for the calculation of the isogeny with a
p-adic extension of Algorithm 1. It is actually not possible because fast al-
gorithms for computing isogenies need normalized models for the isogenous
curves.

It is thus necessary to lift in the p-adics from the very beginning of the
algorithm. It is exactly what is done in [11], with a p-adic precision linear
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in £. Instead, we consider here the techniques of [2], and one shows that the
necessary p-adic precision can be brought back to only O(log® ¢/ log p).

This yields Algorithm 2. The total complexity of this algorithm is similar
to the one of the large characteristic case, that is O(¢ max(Z, log q)?).

Algorithm 2 Computing ¢-th Elkies polynomials (p-adic Schoof-Elkies-
Atkin framework)

Input: E/F, : y*> = 2 + a4z + ag a generic elliptic curve and £ an odd
prime integer.
Output: An /-th Elkies polynomial if there exists one.

Step 1. Compute over Z the bivariate modular polynomial of degree £,
D)(X,Y).

Step 2. Compute at precision £ =1+ [(logy(4¢ — 1) + 1)2/log, p|, if it
exists, roots j B and ] E“ of ®y(X, E) where jg is the j-invariant of the

elliptic curve E : y? = 2%+ a4z +ag with a4 and ag any lifts in the p-adics
of a4 and ag. Otherwise, return FAIL and STOP.

Step 3 Compute normalized Weierstrass equations 3% = 2 + 5143: + ag
and y? = 23 + ajjz + af for elliptic curves of j-invariant Jgr and jpr, and
the sum of the absmssas of points in the kernel of the isogenies F — FE’
and £ — E”, using the polynomials ®,, 0®,/0X, 0®,/0Y, 9*®,/0X?,
0?®,/0X0Y, 9*®,/0Y 2.
Step 4. For the curve E’ (resp. E”):
(1) Compute G(z) = 1/ (g 2% + a4 z* + 1) mod 241, p~ .
(2) Apply Algorithm 1 to G(z) and H(z) = ag 25 + @y 2* + 1 with
u=4¢ a=0and § =1 to obtain a Taylor expansion > §;z" of
the solution of the differential equation (3.2).
(3) Compute T'(x) = Z?eoltl , where Vi € {0,...,2¢ — 1}, t; =
S2i41 mod p.
(4) Compute R(z) = 1/T(x)? mod z*, p.
(5) Apply a fast version of Berlekamp-Massey algorithm to find N
and R, two polynomials such that N(z)/D(x) = x R (1/x) mod p.
(6) Return the monic square root of D(x) mod p.

4.1. Lifting curves and isogenies. One starts by lifting arbitrarily the
curve F in the p-adics. Any coefficient a4 and ag such that a4 = a4 mod p
and ag = ag mod p is appropriate and one works on an elliptic curve E
with model y? = 23 + a4 x + ds.

_ The computation of the j-invariant jE of the curve E, of the solutions

jrr and jgr of the equation <I>g(33 jE) = 0, as well as Weierstrass models
of the corresponding curves E’ and E”, proceeds exactly as in the SEA
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framework. The curves E’ and E” are (-isogenous with the curve E, and
the isogenies can be calculated as in the large characteristic case.

Projection E’ of the curve E’ on the base field K is (-isogenous with E,
and the connecting isogeny is the projection on the base field of the isogeny
connecting E to E'. It is the same for E”. It is thus enough to project the
denominators of the isogenies on K to identify the required factors of the
{-th division polynomial of E.

4.2. p-adic computations. From now on, we are interested in the p-adic
precision of the lift of the elliptic curve E. This precision must be large
enough so that at the end of the resolution of the differential equation with
Algorithm 1, the result S can be reduced in K.

To this purpose, we need first some definitions.

Definition. For any positive integer r, one defines vy(r) by the largest
power of p which divides r, v,(r) = max {k € N|p* divides r} .
We denote by Loss(p, ) the sum 3>y < <10g,(4¢—1) Decrease(p, £, i), where

Decrease(p, £,i) = max {v,(r)[2' + 1 < r < min(2°"! 40 — 1)}.

The following lemma relates the precision needed to the function Loss.

Lemma 4.1. Let i be the p-adic precision of the coefficients a4 and ag,
then when p > Loss(p,?) the polynomials U, V, J and S computed in
Algorithm 1 have p-adic integer coefficients. Furthermore the precision of
the result S is at least equal to (u — Loss(p,{)).

Proof. One proves this theorem by recurrence on j, the number of iterations
of the loop “while” in Algorithm 1. We assume that at rank j, 0 < j <
log,(4¢ — 1), the polynomials U, V', J and S have p-adic integer coefficients
and that their precision is at least equal to u — >>; <; < ; Decrease(p, £, 4).
INITIALIZATION. In input of the algorithm, we have « =0, 5 =1, H(z) =
ag 25+ a2t +1 and G(z) = 1/(ag 2% + ag z* + 1). The elements a4, ag, )
and ag are integers of precision p and thus G and H are of precision p too
(no division by p occurs in the computation of G). The same is true for U,
V,J and S.
HEREDITY. Let j < logy(4¢ — 1), we suppose the assumption true at rank
j — 1. At the j-th iteration, polynomials U, V and J are updated via
additions, multiplications, derivations and compositions of the values of U,
V', J and S before the entry in the loop. All these operations preserve the
precision and the polynomials U, V and J have p-adic integer coefficients
with precision at least equal to u — 37 <; < ;1 Decrease(p, £, 7).

For S, except the integral operation, the calculations preserve the pre-
cision. Coefficients of the series after the integral operation are inverses of
degrees between 27 +1 and min(2/7!,4¢—1). The largest power of p by which
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we carry out a division is thus Decrease(p, ¢, j). The absolute precision of
the coefficients of S is thus higher or equal to u— 37, ¢, < ; Decrease(p, £, ).
Furthermore, since this precision is positive, each coefficient of S is a lift
of the coefficient of the series deduced from the isogeny over K, and these
coefficients are p-adic integers. O

Lemma 4.2 yields a clear asymptotic bound on the loss of precision stated
in Lemma 4.1.

Lemma 4.2. We have Loss(p,¢) = O (log2 ¢/ 10gp).

Proof. For all i < logy(4¢ — 1), Decrease(p,¢,i) is the largest power of p
which divides a range of integers, at most equal to 2i+1 we have therefore
Decrease(p, /i) < log, 2", and

Loss(p, £) < log,, 2 Z (i+1)],
(40-1)

1<i<log,
< log, 2 logy (40 — 1) (logy(4f — 1) + 1),
<

(logy (40 — 1) + 1)2 /logyp.
O

Computations performed in the Schoof-Elkies-Atkin framework, espe-
cially calls to Algorithm 1, are thus realized in the p-adics with precision
at most O(log? £/ log p). This precision does not modify the O complexities
of the large characteristic case and we still have in the p-adic case a total
complexity equal to O(¢ max(¢, logq)?) bit operations, as announced in
Theorem 1.

5. Experiments

We have implemented this algorithm in the computer algebra system
MAGMA. Thanks to it, we were able to observe that the bound on the
precision stated in Lemma 4.1 is tight. We illustrate the method with an
example too.

5.1. p-adic precision. Figure 1 shows the evolution of the precision when
p and ¢ vary. The “The(oretical)” bound mentioned corresponds to 1 +
Loss(p, £) calculations. The “Obs(erved)” bound is what seems necessary
at the time of calculations (checked on some examples).

It turns out that the precision observed in practice is near the theoretical
bound. For many values of £, a gap between the theoretical bound and the
observed bound appears, but this difference remains quite small.
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p=>
p=7T

£ ‘ Obs. ‘ The. 14 ‘ Obs. ‘ The. p=11

7 5 | 5 T 1 1 1 5 ¢ [ Obs. | The.

g g g 13 5 6 13 3 4

7 = 3 17 6 6 17-29 4 5
1931 3 9 19-23 6 7 31 b} 6

37 11 11 29-31 6 8 37-59 6 7
61 11 19 37-61 8 10 61 6 8

o7 3 11 67-73 | 10 11 67-89 7 9
180 13 5 79-83 | 10 12 97 8 10

97 1 16 89-97 | 11 13 131 9 11

131 13 14 257 12 12
131 16 17 257 15 16
257 21 22

FIGURE 1. p-adic precisions for p =5,7,11 and ¢ < 257.

5.2. Example. Let E : y?2 = 2% + 2 + 4 be defined over F5 and ¢ = 11.
We first need to compute an upper bound for the 5-adic precision,

Decrease(5,11,1) =0, Decrease(5,11,2) =1, Decrease(5,11,3) =1
Decrease(5,11,4) = 2, Decrease(5,11,5) =1

We find Loss(5,11) = 5 and the 5-adic precision is thus 6.

A 5-adic lift of the curve at precision 6 is y?> = 2% + o + 4 + O(55).
With the help of the classical 5-th modular polynomial ®1;, we find that a
11-isogenous curve is given by y? = 2% — 7329z — 3934 + O(59).

We can now compute the series G(z) modulo z*~1.

G(x) = 43742 4 4298z"° — 23312°® — 44172°° 4 39362>* + 35052°*
+ 22820 — 10412%® — 61627 + 972" + 2362 + 95270 — 48z'®
— 472" — 122" + 152" + 82" + 2® — 42° — 2* + 1 + O(5°) mod z**

A solution of the differential equation based on G(x) and H(z) = aj 2% +

@y z* + 1is then given modulo z** by

S(z) == (2+0(5) 2™ + 2+ 0(5)) 2" (1+O(5 "+ (8+0(57)

—(1+0(5)2* + (0(5%)) 2* + (0(5 )) - (10+0 (5%)) 2™ — (7+o NE
— (14+0(5%) 2 + (192 + 0(5")) 2 + (125 + O(5")) &' + (293 + O(5")) ="
+ (44 0(") 2" = (161+ O(5 4)) (611+0 )z + (2114 O(5°)) =*!

— (1494 4+ O(5%)) 2°+ (1058 + O(5°)) =" (733+O ) 2°+(0(5°%)) 2®+(1+ O(5%)) =
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and modulo 5, we find

T(z) =32 + 22%° 4+ 42" + 32" + 42" + 32" + 32" 4 42" + 22"

+32% +42% + 427 +42°% + 2° + 2* + 32° + 22° + 1 mod 2*?

We have R(x) = 1/T(z)? mod 2%, that is
R(I):2l’20 + 21}19 + 3:1;18 + le + 21‘15 + 3@14 + I13 + 3‘7;12 + 21‘11
+ 220+ 2% + 327 + 42° + 42° + 42° + 2° + 1 mod z*2.

The rebuilding of the rational fraction corresponding to R gives

3zt + 2 + 28+ 2" + 2 + 325 + 22 + 32 + 222 + 22+ 1
x10 4+ 29 + 28 + 27 + 326 + 325 + 3zt + 223 4+ 22 + 22 + 1
One reverses the order of the coefficients of the denominator to obtain

R(z) = mod 2%,
D) = 2" +22° 4+ 2° + 22" +32° +32° + 32" + 22 + 22 + 2z + L
The ¢-th Elkies polynomial is then
D(z) = 2° + 2* + 2> + 3z + 1.

Appendix A. Proof of Proposition 3.1

Let d be a non-zero even integer, we assume that we know a solution of
the differential equation modulo z%t!. We thus have

(A.1) S42 =G - (HoSy) mod 2%, S4(0) = a, $(0) = 3.

2d+1 d+1

Let Soqy = Sz + Aoy be a solution modulo x , with x dividing Asg,
therefore (S + Ab,)> = G - (H o (Sq+ Asq)) mod 22 . This yields a linear
differential equation in Agy.

25 ,2d_G'(H,OSd)‘AQdZG'(HOSd)—SQQmdeM.

With initial condition As4(0) = 0, a solution of this equation is

G- (HoSy) — 872 -J
(A.2) AQdZ;/( (Ho ;g, i) 2 10 mod #2441
2d d
. !
where Jyg = exp <—/G(fﬁ d:):) mod z2¢+1
d

From Eq. (A.1), we know that (G - (H o Sy) — %) is divisible by 2%,
Moreover, S/, has a non-zero constant coefficient. A factor z¢ appears then
in the integral of As; and it’s enough to compute Joy modulo z%. The
inverse of Jo4 is multiplied by the integral, it will thus be multiplied by
291 and it’s enough to evaluate this inverse modulo z?. The inverse of
S’ is needed in the computations of Agy and Jagq. In Agg, this inverse is
multiplied by 2% and we then compute a primitive. In Joy, we compute
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only modulo z?. In both cases, the inverse of S’ modulo x% is enough. This
inverse is provided by Eq. (A.1):

1 Sl d

— =—"%—— mod z.

ST G- (HoSy 07

We plug this expression in the computation of Joy modulo z¢, we find

G-(H oSy) ,  [Sy-(H oSy) d
= log(HQO Sa) mod z.

We then find the following nice formulas for Jo; and 1/.Js3 modulo x4,

1 1
Jgdzimodxd, —:\/HoSdmodxd.
Ho Sy J2q
Ua ; Va
Wy';-
Sa ™
Uaq Vaa

Joa

Sad
F1GURE 2. Computation of Usy, Vo4, Jog and Sag

These formulas allow to efficiently compute So4 from Sy and other known
quantities.

e From the inverse of §, /2 modulo z%2, denoted by Uy, we use a
classical Newton iteration to compute Uzq. Since Sg = Sg/ mod
%2t we have Usy = Uy mod z%/2
of Uy thanks to

Usg =Uy- (2= 5 -Uy) mod z¢.

and we compute the coefficients



796 Reynald LERCIER, Thomas SIRVENT

/2

e From ,/H oS,/ modulo z%¢, denoted by Vy, and the inverse of

V4 modulo z 2 denoted by J;, we compute Vg and Jog as follows.
Getting Vo, consists in computing a solution of v2 —(H o Sy)(x) = 0.

We use ) Hos
_ = ©9d d
Vog = 5 (Vd—l— v, > mod z%.

Jgq and Vj are by definition inverses of each other modulo 92 We
obtain the inverse Way of V; modulo z% thanks to Newton formulas
too,
Wog = Jg- (2~ Vg Jg) mod z?.
If we now plug this value in the V54 formula, we finally find
2Vag =Vy+Jy- (HoSy) (2—Vy;-J;) mod z¢.
Another use of Newton’s inversion formula yields Joq,
Jgd:Jd' (Q*Jd-ng) modxd.

Thanks to all these equations, we can compute Usg, Vaoq, Jog from Uy,
Va, Jq and Sg. The quantity Sog is then obtained from Eq. (A.2),

Soq = Sy + % /UQd - Jog - (G . (H o Sd) — S&Z) dr mod x24T,

We illustrate the corresponding computations in Fig. 2.

It remains to obtain initial values, for d = 2. Let 7y be defined by Sa(z) =
a+ Bx+vx? mod x3. The series Sy is solution of the differential equation
modulo x? and thus 3?+4 3~z = G(x) H(a+ Bz) mod x2. Once derivated,
and evaluated at x = 0, we obtain -, and thus the value of So,

c) P H'<a>> a8

Sa(x) =a+fx+ 15 + 1

We deduce as well

1
Us(z) = 3 modz, Va(zr)=1modz and Ja(z)=1modz.
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