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Dedicated to Henri Cohen.

Résumé. L’objet de cet article est d’étudier les équations de la
forme Cyd = F (x, z) où F ∈ Z[x, z] est une forme binaire ho-
mogène de degré n, supposée primitive et irréductible, et d est
un entier quelconque fixé. Par des méthodes classiques de théorie
algébrique des nombres, nous montrons que l’existence d’une solu-
tion propre de ces équations entraîne l’existence d’un idéal entier
de norme donnée dans un certain ordre d’un corps de nombres,
ainsi que l’existence d’une relation dans le groupe de classe im-
pliquant cet idéal. Ce résultat permet de montrer dans certains
cas que ces équations n’ont pas de solution propre. De nombreux
exemples sont donnés pour illustrer ce critère. Dans une seconde
partie, un lien est fait entre ce résultat et les propriétés de la
différente du corps de nombres considéré.

Abstract. In this paper, we study equations of the form Cyd =
F (x, z), where F ∈ Z[x, z] is a binary form, homogeneous of degree
n, which is supposed to be primitive and irreducible, and d is any
fixed integer. Using classical tools in algebraic number theory, we
prove that the existence of a proper solution for this equation
implies the existence of an integral ideal of given norm in some
order in a number field, and also the existence of a specific relation
in the class group involving this ideal. In some cases, this result
can be used to prove that these equations have no proper solution.
Numerous examples are given to illustrate this result. In a second
part, we make a link between this condition and the properties of
the different in the considered number field.

Introduction

Let F (x, z) ∈ Z[x, z] be a homogeneous polynomial of degree n. Through-
out this paper, we will assume that F is irreducible over Q and that F is
primitive (its coefficients are coprime integers).

Manuscrit reçu le 22 décembre 2007.
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Our interest is to study the existence of proper solutions to the equation

(1) yd = F (x, z)

or more generally

(2) Cyd = F (x, z)

where d > 2 and C 6= 0 are fixed integers. A solution (x, y, z) of (1) or (2)
is called proper if x, y and z are integers such that x and z are coprime.

If d is a divisor of n, then any rational solution (x, y, z) of (1) is equivalent
to a proper solution in the sense that there exists a proper solution of the
form (λx, λn/dy, λz). This is also the case for (2) if C is d–th power free. On
the opposite, if d and n are coprime, say for example ad = nb + 1 for some
positive integers a and b, then any values of the parameters t and u lead to
the solutions x = tF (t, u)b, y = F (t, u)a, z = uF (t, u)b of (1). These trivial
solutions are in general highly nonproper, and we want to avoid them in
our study, this is why we consider proper solutions only.

The main application we have in mind is the case d = 2 and n = 4.
These equations arise naturally during the algorithm of 2–descent on elliptic
curves, and have been studied by different authors: [1], [3] or [12]. The
general case is also of some importance among the general Diophantine
equations.

By [6], we know that the general equation (2) has finitely many proper
solutions, except maybe if d = 2 and n 6 4, or d = n = 3. But the question
remains whether there is a proper solution at all. In this paper, we show
that some class group computations can help answering this question.

In [2, §14.2, lemma 2.5], equation (1) is considered in the case where
n = 2 and d > 2 is any integer. Here, F is a quadratic form of discriminant
∆. We can associate to F its class cl(F ) in the class group Cl(∆) of primitive
quadratic forms of discriminant ∆ under composition and modulo proper
equivalence. The result is the following:

Theorem 1 (Cassels, [2]). If n = 2, and d > 2, then equation (1) has a
proper solution (x, y, z) with y coprime to 2∆ if and only if cl(F ) is a d–th
power in Cl(∆).

In this result, we see that there is a condition on the class of F in some
class group. Another result is given in [6, §8] for equation (2), but only
when the form F is monic (its coefficient in x2 is 1):

Theorem 2 (Darmon–Granville, [6]). Suppose that d > 2 and B and C
are coprime positive integers with B ≡ 1 (mod 4) and squarefree, and C
odd.

There are proper integer solutions to x2 +Bz2 = Cyd if and only if there
exist coprime ideals J+ and J− in Q(

√
−B) with J+J− = (C), whose ideal

classes are d–th powers inside the class group of Q(
√
−B).
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Contrary to the result of Cassels, the condition now rests on the class of
an ideal of norm C. A similar result is proved by Cohen in [5, Th. 6.4.8] in
the case of equations of the type xp + Bzp = Cyp (in fact just the only if
part is given).

Our goal in this paper is to unify the only if part of these statements
and to generalize them to arbitrary values of n. In the case of equation
(2), what we prove in our main Theorem 3, and also in Corollary 2 and
Corollary 3, is that the existence of a proper solution implies two things:

(a) the existence of an ideal c with specific decomposition and norm,
(b) the existence of a d–th power relation involving cl(F ) and cl(c) in

the related class group.
The ideal c plays the role of the ideal J+ of Theorem 2, and cl(F ) (defined
in [15]) generalizes the classical cl(F ) involved in Theorem 1.

Unfortunately, we are not able to generalize the if part of the theorems,
which I presume to be false in the general case: I see no reason why con-
ditions (a) and (b) should imply the existence of a proper solution when d
and n are large.

The main application of our result is to prove that equation (2) has no
proper solution by showing that (a) or (b) does not hold. Hence, (a) and
(b) have to be seen has necessary conditions for the existence of a proper
solution. The first condition (a) is a local condition, whereas the second (b)
is not: this is what we call the class group obstruction. In the specific case
of equation (1), (a) is just the existence of an ideal of norm 1, hence is an
empty statement, and only (b) remains, exactly as in Theorem 1: this is
stated in Theorem 4, Corollary 4 and Corollary 5.

In section 3, we deduce that equation (1) or (2) has no solution in many
examples for various degrees. In particular, we exhibit pairs of quartic poly-
nomials F (x, z) and G(x, z), where any solution of y2 = F (x, z) is a visible
proof that y2 = G(x, z) is everywhere locally soluble but not globally sol-
uble. While looking for these examples, we observed that the class group
obstruction never applies to the equation y2 = F (x, z) when the degree of
F is odd and its index is 1. This observation is proved in section 4. The two
main ingredients of this proof are the Theorem of Hecke stating that the
class of the different is always a square in the class group, and an explicit
relation between the different and the (n − 2)–th power of the class of F .
When the degree of F is even, this relation exhibits an explicit square root
for the class of the different.

1. Construction of useful objects

We first define the number field K = Q(θ), with F (θ, 1) = 0. This field
is isomorphic to Q[x]/F (x, 1).
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For a first reading, it might be easier to make the assumption that
Disc F = Disc K, or equivalently that Ind(F ) = 1. With this assumption,
we have ZF = ZK is the ring of integers of K, and the ideal b is just the
denominator of θ. By definition, cl(F ) is the class of b in the class group
Cl(K).

The rest of this section is quite technical and is only concerned with the
case when Ind(F ) 6= 1.

1.1. Construction of cl(F ). In [15], we have associated to the polyno-
mial F (x, z) = a0x

n + a1x
n−1z + · · ·+ anzn the following construction:

(1) For i = 0, . . . , n, define the polynomials Pi = a0x
i+a1x

i−1+· · ·+ai.
(2) Construct an order ZF in K with discriminant Disc(ZF ) = Disc(F ).

As a module this order is given by its Z–basis ZF = Z⊕ P1(θ)Z⊕
P2(θ)Z⊕ · · · ⊕ Pn−1(θ)Z.

(3) In ZF , two submodules are of great importance, namely b = P0(θ)Z⊕
P1(θ)Z ⊕ P2(θ)Z ⊕ · · · ⊕ Pn−1(θ)Z and a = θb. The modules a
and b are in fact coprime invertible ideals of ZF . They satisfy
NZF /Z(b) = a0 and NZF /Z(a) = an. The ideal b can be seen as
the denominator of θ and a its numerator. They can also be defined
by b−1 = ZF + θZF and a−1 = ZF + θ−1ZF .

(4) At last, consider the class of b in the ideal class group Cl(ZF ) and
call it cl(F ) (the ideal a is also in the same class).

It was proved in [15] that the field K, the ring ZF and the class cl(F ) in
Cl(ZF ) only depend on the class of F modulo the action of SL2(Z). When
F is a quadratic polynomial, this construction is the standard correspon-
dence between classes of quadratic forms of given discriminant ∆ modulo
SL2(Z) and ideal classes modulo principal ideals in the quadratic ring of
discriminant ∆.

1.2. Invertible and prime ideals of ZF . This section summarizes useful
results of [7].

Let ZK be the ring of integers of K. We have ZF ⊂ ZK and Ind(F ) =
[ZK : ZF ] is an integer such that Disc(F ) = Ind(F )2 Disc(K). If an ideal IF

of ZF is invertible then we can identify it with the ideal IK of ZK through
the relations IF ZK = IK and IK ∩ZK = IF . If an ideal IF of ZF is coprime
to Ind(F ), then it is invertible, but these ideals are not the only invertible
ideals in ZF .

Let p be a prime number. The prime ideals of ZF above p can be
read from the factorization of the polynomial F (x, z) modulo p: F (x, z) =
s∏

i=1

Fi(x, z)ei (mod p). The polynomials Fi ∈ Fp[x, z] are irreducible and

coprime. If fi is the degree of Fi, then we will identify the polynomial
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Fi ∈ Fp[x, z] with any homogeneous lift of Fi in Z[x, z] having the same
degree fi. Associated with this factorization, we define several ideals of ZF .
The first ones are

qi = pZF + (bfiFi(θ, 1))ei .

These coprime integral ideals satisfy the relation pZF =
s∏

i=1

qi. They are

invertible and their norm is NZF /Z(qi) = peifi . The next ideals are

pi = pZF + bfiFi(θ, 1) .

These coprime integral ideals are prime ideals and are the only prime ideals
of ZF above p. Their norm is NZF /Z(pi) = pfi . Each ideal pi satisfies pei

i ⊂
qi ⊂ pi, and it is an invertible ideal if and only if the first inclusion is an
equality. Note that if pi is not invertible, then p | Ind(F ) hence p2 | Disc(F ).

2. The main result: a condition on cl(F )

To a couple (x0, y0) of integers (not both zero), we associate the element
δ = (x0 − θz0) ∈ K∗. The norm of this element satisfies a0NK/Q(δ) =
F (x0, z0). We also associate to this couple the invertible integral ideal D =
b(x0−θz0) of ZF , where the ideal b has been defined in the previous section
as the denominator of θ. The norm of this ideal D is given by the simpler
relation

NZF /Z(D) = F (x0, z0).

Proposition 1. Let x0 and z0 be coprime integers. Let D = b(x0 − θz0)
be its associated ideal in ZF . Let p be a prime divisor of F (x0, z0). Then
there exists a unique prime ideal p of ZF above p such that D ⊂ p. This
ideal satisfies f(p) = 1 and p = pZF + D.

Proof. The factorization of F into irreducible factors modulo p gives the
relation

∏
Fi(x0, z0)ei = 0 (mod p), from which we deduce that at least

one of the Fi satisfies Fi(x0, z0) = 0. Since x0 and z0 are coprime, this
implies that Fi is divisible by the nontrivial linear factor (z0x−x0z), hence
Fi = (z0x− x0z) (up to an invertible constant modulo p). This proves the
unicity of Fi. We clearly have D ⊂ pZF + D = pZF + bFi(θ, 1) = pi. The
degree fi of pi is equal to the degree of Fi, which is 1.

Assume now that D ⊂ pj for some other j. Since pZF ⊂ pj , we have
pi = D + pZF ⊂ pj , whence i = j. �

Because the property given by this proposition will play an important
role in the sequel, we propose the following definition:
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Definition: We say that an integral ideal I of ZF satisfies the property (P)
if it is only contained in prime ideals of degree 1 and in at most one such
prime ideal above each p | NZF /Z(I).

Theorem 3. Let F (x, z) be a primitive irreducible binary form. Let
(x0, y0, z0) be a proper solution of (2) and D = b(x0 − θz0) its associ-
ated ideal in ZF . There exist three invertible integral ideals c, g and h of
ZF such that

(1) D = chgd

(2) the ideals D, c, g and h satisfy the property (P).
(3) the primes containing c and g are all invertible, whereas those con-

taining h are all noninvertible.
(4) if p is a prime above p containing g, then vp(g) = vp(y0).
(5) if p is a prime above p containing c, then vp(c) = vp(C).

Proof. Let D =
∏
i

Pi be the primary decomposition of D: the ideals Pi are

coprime invertible integral ideals, all contained in a single prime pi above
some prime divisor pi of F (x0, z0). By Proposition 1, the pi are pairwise
distinct.

We define h as the product of all the Pi such that pi is noninvertible.
Consider now a primary factor Pi of D such that pi is invertible. By

Proposition 1, pi is the only prime ideal above pi, and has degree fi = 1,
hence we have

vpi(C) + dvpi(y0) = vpi(NZF /Z(pi)) = fivpi(D) = vpi(Pi)

We can now define ci = p
vpi (C)
i and gi = p

vpi (y0)
i . We have Pi = cig

d
i . The

ideals c =
∏

i ci and g =
∏

i gi satisfy 1 to 5. �

We can deduce several corollaries from this theorem.

Corollary 2. Let F (x, z) be a primitive irreducible binary form. Assume
that the polynomial F satisfies the property that all the noninvertible prime
ideals pi of ZF are such that fi > 1 (this is for example the case if Ind(F ) =
1, which is itself the case if Disc(F ) is squarefree).

If equation (2) has a nontrivial proper solution, then there exists an in-
vertible integral ideal c of ZF such that

(a) c satisfies the property (P) and its norm is NZF /Z(c) = C;
(b) cl(F )× cl(c)−1 is d–th power in Cl(ZF ).

Proof. Let (x0, y0, z0) be a proper solution and D its associated ideal, with
decomposition D = chgd as given by Theorem 3. The ideal h is only
contained in noninvertible primes of degree 1. But the assumption implies
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that such primes do not exist, hence h = 1. The properties 2, 4 and 5 of The-
orem 3 now imply that c satisfies the property (P) and NZF /Z(c) = C. The
conclusion is a simple consequence of the relation b(x0−θz0) = D = cgd. �

Remark: The first condition on c is just a local condition, given by con-
gruences. The second condition concerns the class group and is usually a
nonlocal condition. The examples given in section 3 will illustrate this fact.

Corollary 3. Let F (x, z) be a primitive irreducible binary form. If (2) has
a nontrivial proper solution (x0, y0, z0) such that y0 is coprime to Ind(F ),
then there exists an invertible integral ideal c of ZF such that

(a) c satisfies the property (P) and its norm is NZF /Z(c) = C;
(b) cl(F )× cl(c)−1 is d–th power in Cl(ZF ).

Proof. Let (x0, y0, z0) be such a proper solution and D its associated ideal,
with decomposition D = c1hgd as given by Theorem 3. Since y0 is coprime
to Ind(F ), it is only contained in invertible prime ideals andNZF /Z(g) = y0.
Consider the ideal c = c1h. Its norm is equal to C and by Proposition 1, it
satisfies the property (P). We now have the relation b(x0−θz0) = D = cgd,
whence the relation in the class group. �

Example: The “only if” part of Theorem 2 is a consequence of our Corol-
lary 2. Indeed, the assumption B squarefree and B ≡ 1 (mod 4) implies
that the binary form F (x, z) = x2 + Bz2 is irreducible and has index 1.
The field K is Q(

√
−B). The fact that F is monic implies that cl(F ) is

trivial in Cl(F ). We get the conclusion of Theorem 2 by writing J+ = c
and J− = Cc−1 in Corollary 2.

We now focus on equation (1), that is on the case C = 1 of equation (2).
Because this particular case is of some importance, we rewrite the previous
results in this case.

Theorem 4. Let F (x, z) be a primitive irreducible binary form. Let
(x0, y0, z0) be a proper solution of (1) and D = b(x0 − θz0) its associ-
ated ideal in ZF . There exist two invertible integral ideals g and h of ZF

such that
(1) D = hgd

(2) the ideals D, g and h satisfy the property (P).
(3) the primes containing g are all invertible, whereas those containing

h are all noninvertible.
(4) if p is a prime above p containing g, then vp(g) = vp(y0).

Corollary 4. Let F (x, z) be a primitive irreducible binary form. Assume
that the polynomial F satisfies the property that all the noninvertible prime



818 Denis Simon

ideals pi of ZF are such that fi > 1 (this is for example the case if Ind(F ) =
1, which is itself the case if Disc(F ) is squarefree).

If equation (1) has a nontrivial proper solution, then cl(F ) is d–th power
in Cl(ZF ).

Corollary 5. Let F (x, z) be a primitive irreducible binary form. If equation
(1) has a nontrivial proper solution (x0, y0, z0) such that y0 is coprime to
Ind(F ), then cl(F ) is d–th power in Cl(ZF ).

Remark: In the case where F is of degree 2, we recover a part of Theorem
1 but with the weaker condition that y0 is coprime to the Ind(F ) instead
of coprime to Disc(F ).
Example: Consider the equation y2 = 7x3 + 10x2z + 5xz2 + 6z3. In this
case, the index is 2. If a solution exists with y odd, then by Corollary
5, cl(F ) would be a square in Cl(ZF ). Through the natural morphism
Cl(ZF ) → Cl(ZK), we see that the image of cl(F ) in Cl(ZK) would also
be a square. This image is the class of the inverse of the ideal ZK + θZK .
Using gp ([13]), we find that the group Cl(ZK) is isomorphic to Z/2Z and
that the considered class is a nonsquare in Cl(ZK). This proves that there
is no solution with y odd.

Consider now the existence of a proper solution (x, y, z) with y even. The
factorization of F modulo 2 is x(x − z)2. If a proper solution exists with
y ≡ 0 (mod 2), this means that one exactly of the two conditions x ≡ 0
(mod 2), or x− z ≡ 0 (mod 2) holds. The case x ≡ 0 (mod 2) corresponds
to the case where the prime ideal above 2 containing D is 2ZF + bθZF .
Since this ideal is invertible, we are in the case where this ideal divides g,
hence h = 1. We deduce from Theorem 4 that cl(F ) must be a square in
Cl(ZF ), a property that we have already proved to be false.

The last case that has to be considered is when y ≡ x− z ≡ 0 (mod 2).
Such a solution exists, for example (−1, 2, 1). This solution satisfies b(θ −
1) = D = h = 2ZK + b2(θ − 1)2.

3. Examples

3.1. An example with Ind(F ) = 1.

Lemma 6. Let F (x, z) be an homogeneous quartic polynomial in Z[x, z].
The equation y2 = F (x, z) has nontrivial solutions everywhere locally except
maybe over R, over Q2 and over Qp for the odd prime numbers p such that
p2 | Disc(F ).

Proof. Let p be an odd prime number. In [12] we find that y2 = F (x, z)
has a nontrivial solution in Qp except maybe if F = 0 (mod p) or F = aG2

(mod p), with a ∈ F∗
p and G is a nontrivial quadratic polynomial over Fp.

In both cases we have p2 | Disc(F ). �
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Proposition 7. The equation

y2 = 2x4 + x3z + 8x2z2 + 2xz3 + 7z4

is everywhere locally soluble, but has no global solution.

Proof. The discriminant of F (x, z) = 2x4 + x3z + 8x2z2 + 2xz3 + 7z4 is
Disc(F ) = 8069, which is a prime number. The equation clearly has real
solutions since the leading coefficient of F is 2 > 0. We also have F (17, 1) =
4 × 43577, which is a square in Q2 (because 43577 ≡ 1 (mod 8)). Hence,
by Lemma 6, we know that y2 = F (x, z) is everywhere locally soluble.

The polynomial F is irreducible over Q. Let θ be a root of F (θ, 1) = 0
and K = Q(θ). Since Disc(F ) is squarefree, the ring ZF is exactly the ring
of integers ZK of K. The ideal class group of ZK is isomorphic to Z/2Z,
generated precisely by the class of b. In this situation, Corollary 4 shows
that y2 = F (x, z) has no proper solution, hence no rational solution at
all. �

This equation is a homogeneous space for an elliptic curve. The I and J
invariants of F are I = 226 and J = 6679, and the corresponding elliptic
curve is named “129104b1” in Cremona’s data base [4]. This elliptic curve is
known to have rank 0 and analytic order of Sha 4. The present computation
shows that this quartic indeed represents a nontrivial element of order 2
in the Tate–Shafarevich group. The same answer could have been obtained
using a 4–descent, as described in [12] and implemented in magma ([11]) by
the function FourDescent.

3.2. A family of examples with Ind(F ) = 1. We still consider the
polynomial F of the previous example, but we also consider

G(x, z) = x4 − 2x2z2 − xz3 + 4z4

This new polynomial defines the same quartic number field K as F . Since
it also satisfies Disc(G) = 8069 = Disc(K), we have ZF = ZG = ZK .

Lemma 8. Let p be a prime number. The factorizations of F and G modulo
p are exactly of the same type.

Proof. Since ZF = ZK , we know from the results listed in section 1.2 that
the factorization of F modulo p into irreducible factors, with given degree
and multiplicity, corresponds to the factorization of the ideal pZK into
prime ideals, with the same degree and multiplicity. Since we also have
ZG = ZK , we get the conclusion. �

Lemma 9. Let k 6= 0 be a squarefree integer coprime to 8069. The following
conditions are equivalent:

(i) ky2 = F (x, z) is everywhere locally soluble.
(ii) k > 0 and if p is a prime divisor of k then F (x, z) has a linear factor

modulo p.
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Proof. (ii) ⇒ (i)
If k > 0, then (x, y, z) = (k1/4, 21/2, 0) is a real solution.
The discriminant of F is equal to the prime number 8069, hence by

Lemma 6, we know that ky2 = F (x, z) is always soluble at finite primes
coprime to 2k.

Let now p be a prime divisor of k. Since p 6= 8069, a linear factor of F
modulo p lifts to a linear factor (z0x − x0z) of F over the p-adics. Then
(x0, 0, z0) is a local solution of ky2 = F (x, z).

If p = 2, then F has a linear factor, hence the previous argument still
works.

(i) ⇒ (ii)
If (x0, y0, z0) is a real solution, then ky2

0 = F (x0, z0) > 0, since F has no
real root. Hence k > 0.

Let p be a prime divisor of k and (x0, y0, z0) be a p–adic solution. We
may assume that x0 and y0 are p–adic integers, not both divisible by p.
Since k is squarefree, this implies that y0 is also a p–adic integer. It is clear
that (z0x− x0z) is a linear factor of F modulo p. �

Lemma 10. Let k 6= 0 be a squarefree integer coprime to 8069. The fol-
lowing conditions are equivalent:

(i) ky2 = F (x, z) is everywhere locally soluble.
(ii) ky2 = G(x, z) is everywhere locally soluble.

Proof. Exactly the same proof as for Lemma 9 would prove that the local
solubility of ky2 = G(x, z) only depends on the factorization type of G
at some places. But by Lemma 8 the factorization types of F and G are
identical. Hence they are locally soluble exactly at the same time. �

Proposition 11. Let S = {5, 13, 29, 41, 47, 59, 67, 79, 97 . . .} be the set of
prime numbers p 6= 8069 such that x4−2x2−x+4 has a single root modulo
p. Let k > 0 be a squarefree integer divisible only by primes in S.

Then the equations

ky2 = 2x4 + x3z + 8x2z2 + 2xz3 + 7z4

and
ky2 = x4 − 2x2z2 − xz3 + 4z4

are both everywhere locally soluble. However, at most one of them can have
a global solution.

Proof. Let k be such an integer. By Lemma 9 and Lemma 10, we know that
ky2 = F (x, z) and ky2 = G(x, z) are everywhere locally soluble.

In the previous section, we have proved that cl(F ) is the nontrivial class
in the class group Cl(K) (which is isomorphic to Z/2Z). On the contrary,
since G is monic, cl(G) is the trivial class. Assume now that these equa-
tions simultaneously have a rational solution. Applied to ky2 = F (x, z),
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Corollary 2 tells us that there exists an integral ideal cF of norm k, such that
cl(cF ) = cl(F ) is nontrivial. According to the section 1.2, the assumption on
k implies that there exists a single prime ideal of degree 1 above each prime
divisor of k. The ideal cF must be the product of these ideals. Similarly,
Corollary 2 applied to ky2 = G(x, z) tells us that there exists another ideal
cG of norm k such that cl(cG) = cl(G) is trivial. The same argument shows
that cG is also the product of the prime ideals of degree 1 above the prime
factors of k, hence cG = cF . This is a contradiction since the class of this
ideal should be at the same time trivial and nontrivial. �

Remark: The Galois group of x4−2x2−x+4 is S4. Hence, by Frobenius’s
Theorem [8], the set of primes S is infinite and has density 1

3 .

Remark: The invariants of F are I(F ) = 226 and J(F ) = 6779. Hence
ky2 = F (x, z) corresponds to a homogeneous space for the elliptic curve
Fk : ky2 = x3 − 27 · 226x − 27 · 6779. Similarly, the invariants of G are
I(G) = 52 and J(G) = −587. Hence ky2 = G(x, z) corresponds to a ho-
mogeneous space for the elliptic curve Gk : ky2 = x3 − 27 · 52x + 27 · 587.
Proposition 11 shows that for the given values of k, the homogeneous spaces
are elements of the 2–Selmer groups of Fk and Gk, and that at least one of
them corresponds to a nontrivial element of order 2 in the Tate–Shafarevich
group. It is interesting to observe that the j–invariant of the elliptic curve
Fk is 2141338069−1, whereas for Gk it is equal to 21111338069−1, hence the
curves are not isomorphic over C. The conductor of F1 is 248069, whereas
the conductor of G1 is 228069, hence the curves are not isogenous.

Remark: The same kind of result can be obtained for the following exam-
ples, where the class group of the corresponding field is always isomorphic
to Z/2Z, the class of F is nontrivial and the class of G is trivial. In this
table, a horizontal line is used to separate forms that generate different
number fields. I do not know the origin of the symmetries that appear in
the following table (next page).

3.3. A collection of examples with Ind(F ) = 1. In this section, we
give a collection of examples illustrating Corollary 4. All the following ex-
amples are about the proper solutions of equations of the form (1) where
F is an homogeneous irreducible polynomial with integral coefficients, such
that the index Ind(F ) is trivial. If cl(F ) is not the trivial class, then Corol-
lary 4 tells us that if equation (1) has a proper solution, then d can not be an
integer multiple of some integer k. For example, if the class group Cl(ZF ) is
cyclic and cl(F ) is a primitive element, then we can choose k = #Cl(ZF ).
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Disc F I(F ) J(F ) G I(G) J(G)
8069 2x4 + x3 + 8x2 226 6679 x4 − 2x2 52 −587

+2x + 7 −x + 4
8069 2x4 + x3 + 8x2 226 6679 x4 + 6x2 132 2997

+2x + 7 +x + 8
8069 3x4 + 2x3 + 8x2 226 6679 x4 + x3 + x2 52 −587

+3x + 5 −5x + 3
8069 3x4 + 2x3 + 8x2 226 6679 x4 + x3 + 6x2 132 2997

+3x + 5 +4x + 9
7537 2x4 + x3 + 4x2 85 1501 x4 + 5x2 73 1163

+x + 3 +x + 4
7537 2x4 + x3 + 4x2 85 1501 x4 + 2x3 − 3x2 111 −2295

+x + 3 −5x + 6
7537 2x4 + 3x3 + 7x2 85 1501 x4 + x3 + 5x2 73 1163

+4x + 3 +4x + 5
7537 2x4 + 3x3 + 7x2 85 1501 x4 + 3x3 111 −2295

+4x + 3 −7x + 4

The following table gives a list of polynomials F , together with the struc-
ture of the class group Cl(ZF ) = Cl(K) as an abstract cyclic group, and
the image of cl(F ) in this group as given by gp. From these values, the best
value of k just defined is easy to determine. Since we have not observed any
dependence on the signature of F , the polynomials given have the smallest
possible number of real roots.

Disc(F ) F Cl(K) cl(F ) k
−648 2x3 + 3x2 + 2 Z/3Z (1) 3
−1879 2x3 + x2 − x + 4 Z/4Z (2) 4
−1572 2x3 + 2x2 + x + 4 Z/5Z (2) 5
−2856 2x3 + 2x2 + 5x− 3 Z/7Z (3) 7
−18628 4x3 − 9x2 + 4x + 7 Z/8Z (4) 8
−22443 8x3 + 5x2 − 3x + 3 Z/9Z (3) 9
−12244 3x3 − 4x2 + 7x + 4 Z/11Z (1) 11
−19919 2x3 − 5x2 + 7x + 10 Z/12Z (2) 3 or 4
−9064 5x3 − 4x2 − 5x + 6 Z/13Z (9) 13
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It is surprising that, despite of quite a long search, we have not been able
to find the least example in degree 3 with k = 2, and more generally where
cl(F ) is not a square in Cl(K).

Disc(F ) F Cl(K) cl(F ) k
2448 2x4 + 2x3 − 5x2 − 2x + 5 Z/2Z (1) 2

13785 4x4 − 3x3 + 14x2 − 5x + 11 Z/3Z (1) 3
14504 4x4 − 5x3 − 6x2 + 5x + 4 Z/4Z (2) 4
13396 2x4 − 2x3 + 6x2 − 3x + 5 Z/5Z (3) 5
43245 2x4 − 3x3 + x2 + 3x + 2 Z/6Z (1) 2 or 3
25205 2x4 − x3 + 5x2 + x + 2 Z/7Z (1) 7

438445 3x4 − 2x3 + 8x2 + x + 4 Z/8Z (4) 8
235901 2x4 − x3 − 7x2 + x + 10 Z/9Z (3) 9
77648 2x4 − 6x3 + 5x2 + 10x + 3 Z/10Z (7) 2 or 5

330781 3x4 − 4x3 + 4x2 + 5x + 2 Z/11Z (1) 11
122728 4x4 + 3x3 − 6x2 − 3x + 4 Z/12Z (10) 3 or 4
146548 2x4 − 2x3 + 8x2 − x + 3 Z/13Z (12) 13
141681 3x4 − 4x3 + 11x2 − 5x + 7 Z/14Z (3) 2 or 7

Disc(F ) F Cl(K) cl(F ) k
212449 5x5 − 11x4 + 11x3 + 2x2 − 9x + 7 Z/3Z (1) 3

3374829 3x5 + 4x4 + 5x3 − 2x2 − 3x− 3 Z/4Z (2) 4
753652 2x5 + x4 − x3 − x2 − x− 2 Z/5Z (3) 5

3013976 2x5 + 3x4 − 3x3 − x2 + 2x + 2 Z/7Z (6) 7
36204064 2x5 − 2x4 − 5x3 + 4x2 + 3x + 4 Z/8Z (4) 8
41417024 4x5 − 3x4 + 10x3 + x2 + 4x + 6 Z/9Z (3) 9
12714804 2x5 − 3x4 + 5x3 − 3x2 + x + 4 Z/11Z (3) 11
20601837 2x5 + 3x4 + 2x3 − 2x2 − 3x + 4 Z/12Z (10) 3 or 4
10677952 2x5 + 2x4 + 3x3 − 3x2 + 2x + 2 Z/13Z (8) 13
63632529 2x5 − 3x4 + 11x3 − 6x2 + 7x + 4 Z/15Z (2) 3 or 5
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Similarly to the degree 3 case, cl(F ) is always a square in Cl(K).

Disc(F ) F Cl(K) cl(F ) k
−8923959 2x6 − 5x5 + 6x4 − 3x3 + x2 Z/2Z (1) 2

−x + 2
−4936112 2x6 − 3x5 + x4 − 4x3 + 2x2 Z/3Z (2) 3

+x + 3
−37462463 3x6 + x5 + 5x4 + 4x3 + 7x2 Z/4Z (2) 4

+3x + 2
−31859379 2x6 + x5 − 3x4 − 4x3 + 2x2 Z/5Z (4) 5

+3x + 2
−25016224 2x6 − 2x5 − x4 + x3 − x2 + x + 2 Z/6Z (5) 2 or 3
−22115792 2x6 − x5 + 5x4 + x3 + 5x2 + x + 3 Z/7Z (6) 7
−575577900 3x6 + 3x3 + 4x2 − 3x + 3 Z/8Z (4) 8
−765513112 2x6 − x5 + 4x4 − 2x3 + x2 Z/9Z (6) 9

+4x + 2
−96526268 3x6 + 2x5 − x4 − x3 − 2x2 − x + 2 Z/10Z (1) 2 or 5
−181202524 2x6 + 4x4 − x3 + x2 + x + 2 Z/11Z (9) 11
−162484272 2x6 − x5 + 4x3 + 2x2 + 2 Z/12Z (10) 3 or 4
−293129280 3x6 + 3x2 − 2x + 2 Z/13Z (6) 13
−150393564 3x6 − x4 + x3 − 2x2 − x + 2 Z/14Z (9) 2 or 7

Similar tables were also obtained for higher degrees. In all the cases we
have looked at, we could make the same observation:

Observation 12. If F is a primitive integral irreducible polynomial with
index Ind(F ) = 1 and with odd degree, then cl(F ) is a square in Cl(K).

This condition that the class of an ideal is always a square in the class
group reminds us of a result of Hecke [9, Th. 176].

Theorem 5 (Hecke). Let K be a number field with ring of integers ZK .
The class of the different of ZK in the class group Cl(K) is always a square.

Thus we will now investigate a relation between our ideal b and the
different of ZF , and in fact we will prove this observation.

4. The Different of ZF and a proof of the observation

The codifferent (or the dual) of a submodule M ⊂ K is by definition the
set

M ′ = {x ∈ K, TrK/Q(xM) ⊂ Z}.
If M =

∑
Zwi, where w1, . . . , wn is a Q–basis of K, then M ′ =

∑
Zw′

i,
where w′

1, . . . , w
′
n is the dual basis relative to the trace TrK/Q.

We want to compute the codifferent of the ring ZF . For this, we will
compute the dual basis of (1, P1(θ), . . . , Pn−1(θ)), where the polynomials Pi
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were already defined in section 1.1 from P (x) = F (x, 1) = a0x
n +a1x

n−1 +
... + an by

P0 = a0

P1 = a0x + a1

. . .

Pn−1 = a0x
n−1 + · · ·+ an−1

Pn = a0x
n + · · ·+ an−1x + an = P (x)

Proposition 13. The dual basis of (P0(θ), P1(θ), . . . , Pn−1(θ)), is(
θn−1

P ′(θ)
,

θn−2

P ′(θ)
, . . . ,

θ

P ′(θ)
,

1
P ′(θ)

)
Proof. We have the relation

P (x) = (x− θ)(Pn−1(θ) + Pn−2(θ)x + · · ·+ P1(θ)xn−2 + P0(θ)xn−1)

hence we can apply [10, prop III.2] and deduce that the dual basis of
1, θ, . . . , θn−1 is (

Pn−1(θ)
P ′(θ)

,
Pn−2(θ)
P ′(θ)

, . . . ,
P0(θ)
P ′(θ)

)
from which we we easily deduce the result. �

Proposition 14. A Z–basis of the codifferent of ZF is given by

1
P ′(θ)

,
θ

P ′(θ)
, . . . ,

θn−2

P ′(θ)
,
a0θ

n−1

P ′(θ)

It is equal to the fractional ideal (bn−2P ′(θ))−1 of ZF .

Proof. A Z–basis of ZF is by definition 1, P1(θ), . . . , Pn−1(θ). By Propo-
sition 13, we indeed find that its dual is given by 1

P ′(θ)I, where I =
Z ⊕ θZ ⊕ · · · ⊕ θn−2Z ⊕ a0θ

n−1Z. First, we remark that Pi(θ) ∈ I for all
i = 0, . . . , n−1, hence ZF ⊂ I. Now, we extend the sequence ai to subscripts
i > n + 1 by ai = 0, and we can also define Pi for large values of i by Pi =
a0x

i+a1x
i−1+· · ·+ai. For i > n, we have Pi(θ) = 0, and certainly Pi(θ) ∈ I

for all i > 0. Now, we have θjPi(θ) = Pi+j(θ)−(ai+1θ
j−1 + · · ·+ai+jθ

0) ∈ I
for all i and all j 6 n − 2. For j = n − 1, the same relation shows that
a0θ

n−1Pi(θ) ∈ I. This proves that I is a fractional ideal of ZF . We can now
write

I = Z⊕ θZ⊕ · · · ⊕ θn−2Z⊕ a0θ
n−1Z

= ZF + θZF + · · ·+ θn−2ZF + a0θ
n−1ZF

= ZF +
(

a

b

)
+ · · ·+

(
a

b

)n−2

+ a0

(
a

b

)n−1
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But a and b are coprime integral ideals in ZF , hence

I =
(

1
b

)n−2

+ a0

(
a

b

)n−1

=
(

1
b

)n−1 (
b + a0a

n−1
)

=
(

1
b

)n−1

(b + a0ZF )

By definition of b, we have a0 ∈ b, hence b+a0ZF = b, whence the relation

I = b−(n−2)

�

Corollary 15. The different of ZF is the ideal bn−2P ′(θ) of ZF .

Corollary 16. Let K be a number field. If ZK is equal to ZF for some
polynomial F , then the class of the different of ZK in the class group Cl(K)
is an (n− 2)th power.

For quadratic extensions, this says that the different is always a principal
ideal, but this is well known. For larger degrees, it is well known that if
ZK = Z[θ] for some algebraic integer θ, then the different is principal,
generated by P ′(θ), where P is the minimal polynomial of θ. This corollary
gives a generalization of this result for rings of integers of the type ZF for
a nonmonic polynomial.

For number fields of even degree, Corollary 15 gives explicitly a square
root of the class the different in Cl(K), the existence of which being proved
by Hecke in Theorem 5.

We are now able to prove that Observation 12 is always true.

Corollary 17. Let F be a primitive irreducible polynomial with integral
coefficients. If the degree of F is odd and Ind(F ) = 1, then cl(F ) is a
square in Cl(K).

Proof. By Theorem 5, we know that the class of the different of ZF in
Cl(K) is a square. By Corollary 15, this different is bn−2P ′(θ). Since n− 2
is odd, we conclude that the class of b is a square in Cl(K). �

Example: In section 2, we have considered the polynomial F = 7x3 +
10x2z + 5xz2 + 6z3, having index 2. The class cl(F ) was proved to be a
nonsquare in Cl(ZF ), because its image in Cl(ZK) was also a nonsquare.
We deduce that the class of the different of ZF is not a square, neither in
Cl(ZF ), nor its image in Cl(ZK).
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From this example, we know that it is false in general that the class of
the different is a square when the index is not 1.

We now investigate the relation between the different dK of ZK and the
different dF of ZF . Let f be the conductor ideal of the nonmaximal order
ZF . It can be defined as the largest ideal (in the sense of inclusion) of ZK

which is contained in ZF . I use the notation bK for bZK .

Proposition 18. The different dF is an invertible ideal of ZF , satisfying
the relations

dF ZK = fdK = bn−2
K P ′(θ)

Proof. By [14, Th. 4.34], the dual of f is the fractional ideal f−1d−1
K of ZK .

Since f is the largest fractional ideal of ZK contained in ZF , its dual is
the smallest fractional ideal of ZK containing the codifferent of ZF . Hence,
by Proposition 14 we have Codiff(ZF )ZK = f−1d−1

K =
(
bn−2P ′(θ)ZK

)−1 =(
bn−2

K P ′(θ)
)−1

. �

Using this description of the different of ZF , we can now give a general-
ization of Corollary 17 in the case where Ind(F ) 6= 1.

Corollary 19. Let F be an irreducible polynomial with integral coefficients.
We assume that F is primitive. If the degree of F is odd, then cl(fbK) is a
square in Cl(K).

Proof. By Theorem 5, we know that the class clK(dK) in Cl(K) is a square.
By Corollary 15, we know that cl(fbn−2

K ) is also a square in Cl(K). Since
n− 2 is odd, we conclude that the class of fbK is a square in Cl(K). �
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