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The weight distribution of the functional codes
defined by forms of degree 2 on Hermitian

surfaces

par Frédéric A. B. EDOUKOU

Résumé. On étudie le code fonctionnel C2(X) défini sur une
variété algébrique projective X, dans le cas où X ⊂ P3(Fq) est
une surface Hermitienne non-dégénérée. Nous donnons d’abord
des bornes pour #XZ(Q)(Fq) meilleures que celles connues. En-
suite nous calculons le nombre de mots de code atteignant le se-
cond poids. Nous donnons aussi une estimation exacte du troi-
sième poids, une description de la structure géométrique des mots
correspondant, ainsi que leur nombre. L’article s’achève par une
conjecture formulée sur les quatrième et cinquiéme poids du code
C2(X).

Abstract. We study the functional codes C2(X) defined on a
projective algebraic variety X, in the case where X ⊂ P3(Fq) is a
non-degenerate Hermitian surface. We first give some bounds for
#XZ(Q)(Fq), which are better than the ones known. We compute
the number of codewords reaching the second weight. We also
estimate the third weight, show the geometrical structure of the
codewords reaching this third weight and compute their number.
The paper ends with a conjecture on the fourth weight and the
fifth weight of the code C2(X).

1. Introduction

The code Ch(X) over Fq (q = t2, with t a prime power) has been studied
by A. B. Sørensen [10] in his Ph. D. Thesis in the case where X is a non-
singular Hermitian surface and also by G. Lachaud [8]. In fact, the code
C2(X) has previously been studied over F4 by P. Spurr [11] in his master
thesis; by a complete computer search he found the weight distribution of
this code.

In [10], Sørensen was not able to find the minimum distance, even less
the weight distribution. For f a form of degree h, he only conjectured the
following result:

for h ≤ t #XZ(f)(Fq) ≤ h(t3 + t2 − t) + t + 1,
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which should give the minimum distance. In [4] the author didn’t only prove
the conjecture for h ≤ 2, but determined the second weight and three types
of quadrics giving codewords of second weight.

The purpose of this paper is to express as possible the weight distribution
of the code C2(X). For a [n, k ] linear code C, the weight distribution is
the vector of Aw ’s with w = 0, 1, 2, ..., n, where Aw is the number of
codewords of weight w. Indeed, the study of the weights is important since
they measure the efficiency of the code, and their notification is useful in
the procedures of decoding.

The paper has been organized as follows. First of all, we give some bounds
for the number of points of the section of the Hermitian surfaces with
quadrics of rank 2, quadrics cone, and the elliptic quadrics. These bounds
are better than the ones obtained in [4]. Thus, codewords of second weight
are obtained only from the three types of quadrics found in [4]; we compute
their number. We determine the third weight, the geometrical structure of
codewords reaching it and we compute their number. Finally, we conclude
our work by a conjecture on the fourth and fifth weight of the code C2(X).

We now give a summary of notation and terminology. We denote by Fq

the field with q elements and by PN (Fq) the projective space of N dimen-
sion over Fq. We use the term forms of degree h to describe homogeneous
polynomials f of degree h; and we denote by Q = Z(f), the zeros of f in
PN (Fq), which is a quadric when h = 2. Let Q be a quadric, the rank of
Q denoted r(Q) is the smallest number of indeterminates appearing in f
under any change of coordinate system.

Let F be the vector space of forms of degree 2, X ⊂ P3(Fq) the non-
degenerate Hermitian surface X : xt+1

0 + xt+1
1 + xt+1

2 + xt+1
3 = 0 and |X|

the number of rational points of X over Fq. We denote by Wi the set of
points with homogeneous coordinates (x0 : ... : x3) ∈ P3(Fq) such that
xj = 0 for j < i and xi = 1. The family {Wi}0≤i≤3 is a partition of P3(Fq).
The code C2(X) is the image of the linear map c : F −→ F|X|

q , defined by
c(Q) = (cx(Q))x∈X , where cx(Q) = Q(x0, ..., x3) with x = (x0, ..., x3) ∈ Wi.

2. The number of intersection points of the Hermitian surface
with some quadrics

The subject of this section is to find some bounds for the number of
intersection points of the Hermitian surface and some quadrics which are
better than the ones of [4]. In what follows we will note:

s(t) = 2t3 + 2t2 − t + 1 s2(t) = 2t3 + t2 + 1 s3(t) = 2t3 + t2 − t + 1

s4(t) = 2t3 + 1 s5(t) = 2t3 − t + 1
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2.1. Rank (Q) = 2 and Q is a pair of distinct non-tangent planes.
If we write Q = P1∪P2, then P1∩X and P2∩X are non-singular Hermitian
curves in P2(Ft2), such that |P1 ∩X| = |P2 ∩X| = t3 + 1.

Let l = P1 ∩ P2, then l is not contained in X from theorem 9.1 [2] p.
1176. Thus, l ∩ X is either a single point or a set of t + 1 points. Hence
|Q ∩X| = s4(t) when l ∩X is a single point or |Q ∩X| = s5(t) when l is a
secant.

2.2. Rank (Q) = 3 (Q is a cone). Here Q consists of the points on q+1
lines passing through a vertex no three of which are coplanar. Thus, the
intersection of the cone with the Hermitian surface contains at most two
generators. If no line of the cone is contained in X, we get |Q∩X| ≤ t3+t2+
t+1 < s4(t). From proposition 5.3 [4], we conclude that, |Q∩X| = t3+t2+1
or |Q ∩X| = t3 + 2t2 − t + 1 according to the cone contains exactly one or
two lines of X.

2.3. Rank (Q) = 4 and Q is an elliptic quadric. WhenQ is an elliptic
quadric, no line is contained in Q. We get two cases: either |X ∩Q| ≤ 1 or
|X ∩Q| ≥ 2.

In the case |X ∩ Q| ≥ 2, we will use an analogous technique as the one
used in [4] for the elliptic quadric.

Let us choose two distinct points P1, P2 ∈ X∩Q. Let H be a plane passing
through the points P1 and P2. In [6] p. 156, table 7.2, J.W.P. Hirschfeld
gave the classification of quadrics in P2(Fq). Thus, we get that Q ∩ H is
either a line or a pair of distinct lines or a point (a pair of conjuguate lines in
P2(Fq2) which meet in P2(Fq)) or a conic (a non-degenerate quadric). Since
the quadric Q does not contain any line and contains two points, we can
say that Q∩H is a conic (a non-degenerate quadric) and H is non-tangent
to Q.

Let D be the line passing through the two points P1 and P2. We consider
also all the planes (Hi)i∈I passing through the line D. Then Q ∩ Hi as a
non-degenerate quadric is a non-singular curve. On the other hand X ∩Hi

is a Hermitian curve (singular or not). Since Hi is non-tangent to Q, as in
[4] we conclude that:

for each i |X ∩Q ∩Hi| ≤ 2(t + 1) (2.3.1)

The two points P1 and P2 belong to each X ∩ Q ∩Hi, and therefore from
(2.3.1) we get:

|X ∩Q ∩Hi − {P1, P2}| ≤ 2(t + 1)− 2 (2.3.2).
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There are exactly q + 1 planes passing through the line D, and their union
generate the whole projective space P3(Fq). Thus, we get:

Q∩X = (X ∩Q ∩H1) ∪
q+1⋃
i=2

(X ∩Q ∩Hi − {P1, P2}) (2.3.3)

And from the relations (2.3.1), (2.3.2) and (2.3.3) we deduce that |Q∩X| ≤
2(t+1)+q(2(t+1)−2). Thus, we get finally |Q∩X| ≤ 2t3+2t+2. We have
2t3+2t+2 < s2(t) for t ≥ 3 and for t = 2 we also have |Q∩X| < |Q| < s2(2).
Then, when Q is an elliptic quadric we conclude that |Q ∩X| < s2(t).

3. The second weight of the code C2(X)

Theorem 3.1 ([4]). The second weight of the code C2(X) is: w2 = t5− t3.

Theorem 3.2. The codewords of second weight correspond to:
– hyperbolic quadrics containing three skew lines of X,
– quadrics which are union of two tangent planes meeting at a line contained
in X,
– quadrics which are pair of two planes, one tangent to X and the second
not tangent to X and the line of intersection of the two planes meeting X
at a single point.

Proof. From paragraph 2.3, we deduce that the codewords of second weight
can not correspond to elliptic quadrics. Therefore the three types of quadrics
found in [4] are the only ones which give codewords of second weight. �

Lemma 3.1. Let P1 and P ′
1 two tangent planes to X, P2 and P ′

2 two non-
tangent planes with P1 ∪ P2 6= P ′

1 ∪ P ′
2 and such that |P1 ∩ P2 ∩ X| =

|P ′
1 ∩ P ′

2 ∩X| = 1. Then (P1 ∩X) ∪ (P2 ∩X) 6= (P ′
1 ∩X) ∪ (P ′

2 ∩X).

Lemma 3.2. Let Q′ be a hyperbolic quadric containing three skew lines of
X. Let Q = P1 ∪ P2 be a pair of disctinct planes, one tangent to X. Then
Q′ ∩X 6= (P1 ∩X) ∪ (P2 ∩X).

Lemma 3.3. Let Q = P1 ∪ P2 be a pair of distinct tangent planes and
l = P1 ∩ P2 ⊂ X. Let Q′ = P ′

1 ∪ P ′
2 be two planes, P ′

1 tangent to X, P ′
2

non-tangent to X and l′ = P ′
1 ∩ P ′

2 intersecting X at a single point. Then
(P1 ∩X) ∪ (P2 ∩X) 6= (P ′

1 ∩X) ∪ (P ′
2 ∩X).

The proofs of these three lemmas are obvious. There are analogous to
the proofs of lemma 6.3 and lemma 6.4 [4].

We come now to the computation of the codewords of second weight.

Theorem 3.3. The number of codewords of second weight is:

Aw2 =
1
2
(t2 − 1)(t5 + t3 + t2 + 1)(3t2 − t + 1)t2.
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Proof. Since there are three types of codewords of second weight we will
find the number of each of them.
(i) From J.W.P. Hirschfeld [7] p. 124, there are exactly nq = 1

2q2(q
√

q +
1)(q + 1) hyperbolic quadrics containing three skew lines of the Hermitian
surface. Let Q and Q′ be two distinct hyperbolic quadrics giving code-
words of second weight, we have Q∩X 6= Q′ ∩X. Thus, there are exactly
(q− 1)[12q2(q

√
q + 1)(q + 1)] codewords of second weight obtained from the

hyperbolic quadrics.
(ii) We also know from [2], theorem 7.3 p. 1172, that there are exactly
#X(Fq) = t5 + t3 + t2 + 1 tangent planes to the Hermitian surface X. We
want now to determine the number of quadrics Q = P1 ∪P2 where P1 and
P2 are two distinct tangent planes meeting at a line contained in X. Given
a tangent plane P1, there are exactly t2(t + 1) = t3 + t2 possibilities to
choose the plane P2; so we get (t5 + t3 + t2 + 1)(t3 + t2) couples (P1, P2).
Since the two couples (P1, P2) and (P2, P1) are the same (they give the
same quadric), we get from these tangent planes 1

2(t5 + t3 + t2 + 1)(t3 + t2)
quadrics giving codewords of second weight. And from lemma 6.3 and 6.4
[4], the codewords obtained from these quadrics are all distinct. Thus, we
get (t2 − 1)[12(t5 + t3 + t2 + 1)(t3 + t2)] codewords of second weight.
(iii) Let Q = P1 ∪ P2 be a quadric where P1 and P2 are respectively a
tangent plane to X, a non-tangent plane to X, where l = P1 ∩ P2 with
l ∩ X = {P1} (l 6⊂ X). Here, we need to find first of all the number of
planes (Hi)i∈I for which we have Hi ∩ P1 = l where l is a line intersecting
X in a single point P1. We know that there are (t2 − t) lines of such type
(lines l).

Given a line l, there pass exactly q + 1 planes through l (P1 is one of
these planes). Thus, we get at maximum q(t2 − t) planes Hi, i.e. t4 − t3

planes Hi. In fact, there are exactly t4 − t3 planes Hi, since if H1 and H2

are respectively planes through l1 and l2 two distinct lines, then H1 6= H2.
We also know that the number of tangent planes to X is #X(Fq) =

t5 + t3 + t2 +1, so we deduce that there are exactly (t5 + t3 + t2 +1)(t4− t3)
quadrics Q = P1 ∪ P2 (where P1 is a tangent plane to X, P2 is a non-
tangent plane to X, and l = P1 ∩ P2 intersecting X at a single point).
And from lemma 3.3, the codewords obtained from these quadrics are all
distinct. Thus, we get exactly (t2 − 1)(t5 + t3 + t2 + 1)(t4 − t3) codewords
of second weight from these quadrics.

From lemmas 3.4 and 3.5, we deduce that the codewords obtained from
(i), (ii) and (iii) are all distinct.

Therefore we have exactly: (t2 − 1)[12 t4(t3 + 1)(t2 + 1)] + (t2 − 1)[12(t5 +
t3 + t2 + 1)(t3 + t2)] + (t2− 1)(t5 + t3 + t2 + 1)(t4− t3) = 1

2(t2− 1)(t5 + t3 +
t2 + 1)(3t2 − t + 1)t2 codewords of second weight. �
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Observe that, in the case t = 2, there are exactly 1
2×3×45×11×4 = 2970

codewords of second weight. Thus, we recover the result of Paul P. Spurr
[3] p. 120 calculated by computer.

4. The weight distribution of the code C2(X)

In what follows s(t), s2(t), s3(t), s4(t) and s5(t) have the same values as
in section 2. It has been shown in [4] with the help of the relations (3.2.2)
and (3.4.3) that s(t) and s2(t) give respectively the first weight (minimum
distance) and the second weight.

For t > 3, s3(t) > 2t3 + 2t + 2; and for t = 2, the elliptic quadric Q over
F4 has |Q| = 17 points, and we have 17 < s3(2) = 19. Therefore, from table
4.2, the third weight is given by s3(t) for t 6= 3.

Theorem 4.1. Let l be a line in P3(Fq) and X the Hermitian surface then
l meets X at a single point or t + 1 points or is contained in X. This line
is respectively called a tangent, a secant, or a generator.

Proof. See [2], p. 1179. �

Definition. A regulus (notion used by Hirschfeld [7] p. 4) is the set of
transversals of three skew lines. It consists of q + 1 skew lines.

Theorem 4.2 ([7] p. 23). A hyperbolic quadric Q consists of (q+1)2 points,
which are all on a pair of complementary reguli. The two reguli are the two
systems of generators of Q. A hyperbolic quadric whose complementary
reguli are R and R′ is denoted by H(R,R′).

Remark. When Q is a hyperbolic quadric containing exactly two skew
lines on the Hermitian surface X (i.e. type 12 in table 4.2), we get:
– for t ≥ 3, #XZ(Q)(Fq) ≤ t3 + 3t2 − t + 1 < s4(t),
– for t = 2, we get #XZ(Q)(F4) ≤ 23 + 3 × 22 − 2 + 1 = 19 = s3(2). Let
us suppose in the case (t = 2) that, #XZ(Q)(F4) < 19; therefore it exists a
line l on the considered regulus of Q such that l∩X is a single point. Thus
we get #XZ(Q)(F4) ≤ 2(t2 +1)+(t2−2)(t+1)+1 = 17 = s4(2). Therefore
we can assert that

#XZ(Q)(F4) = s3(2) or #XZ(Q)(Fq) ≤ s4(t) (4.4.1)

Theorem 4.3. Let Q be a hyperbolic quadric containing exactly two skew
lines on the Hermitian surface X. Then we have #XZ(Q)(Fq) ≤ s4(t).

Proof. See appendix. �

4.1. Table of the intersection of quadrics with the Hermitian sur-
face. Let us show in a table the geometrical structure of the intersection
of quadrics with the Hermitian surface.
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Rank (Q) Description Types
1 repeated plane 1, 2
2 line 3, 4, 5
2 pair of distinct planes 6, 7, 8
3 quadric cone 9, 10
4 hyperbolic quadric 11, 12, 13, 14
4 elliptic quadric 15

Types Description
1 a tangent plane to X
2 a non-tangent plane to X
3 tangent to X
4 secant
5 a generator of X
6 two non-tangent planes to X
7 P1 is non-tangent to X

and P2 is tangent to X
8 two tangent planes to X
9 no generartor in the cone
10 1 or 2 generators in the cone
11 3 skew generators in R
12 2 skew generators R
13 1 generator in R
14 no generator in R
15 elliptic quadric

4.2. Table of the weight distribution. Let us show in a table the
quadrics (geometrical structure) with the corresponding weights associated
to the codewords obtained from them. From the results of section 2 and
those of section 5 [4], we have the following table: Table 3.

Note that, for the code C2(X) over F4, the codewords corresponding to
quadrics of type.1 to type.14 have even weights. It has also been proved by
Spurr (by a computer program) that C2(X) over F4 is an even weight code.

5. The third weight of the code C2(X)

Theorem 5.1. The third weight (for t 6= 3) of the code C2(X) is: w3 =
t5 − t3 + t.

Proof. In fact when Q is a quadric not corresponding to the codewords of
minimum weight and second weight, we get #XZ(Q)(Fq) ≤ s3(t). �
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Rank Types #XZ(Q)(Fq) #XZ(Q)(F4) Weight over Fq Weight
over F4

1 1 t3 + t2 + 1 13 t5 32
(repeated plane) 2 t3 + 1 9 t5 + t2 36

2 3 1 1 t5 + t3 + t2 44
(line) 4 t + 1 3 t5 + t3 + t2 − t 42

5 t2 + 1 5 t5 + t3 40
6 s4(t) 17 t5 − t3 + t2 28

2 s5(t) 15 t5 − t3 + t2 + t 30
(pair of dis- s3(t) 19 t5 − t3 + t 26
tinct planes) 7 s2(t) 21 t5 − t3 24
Q = P1 ∪ P2 s(t) 23 t5 − t3 − t2 + t 22

8 s2(t) 21 t5 − t3 24
3 9 ≤ t3 + t2 + t ≤ 15 ≥ t5 − t 30 ≤ w

+1 < s4(t) ≤ 44
(cone) 10 t3 + t2 + 1 13 t5 32

t3 + 2t2 − t + 1 15 t5 − t2 + t 30

11 s2(t) 21 t5 − t3 24
4 12 ≤ t3 + 3t2 − t ≤ 19 ≥ t5 − t3 26 ≤ w

+1 ≤ s3(t) ≤ 32
(hyperbolic) 13 ≤ t3 + 2t2 ≤ 17 ≥ t5 − t2 28 ≤ w
H(R,R′) +1 ≤ s4(t) ≤ 36

14 ≤ t3 + t2+ ≤ 15 ≥ t5 − t 30 ≤ w
t + 1 < s4(t) ≤ 40

4 ≤ 2t3 + 2t ≥ t5 − t3 + t2 28 ≤ w
(elliptic) 15 +2 < s2(t) ≤ 17 −2t− 1 ≤ 45

Note that in the case t = 2, we recover the third weight of the code
C2(X) over F4 in agreement with [3]which is 25 − 23 + 2 = 26.

Theorem 5.2. The codewords of third weight (for t 6= 3) correspond to
quadrics which are union of two planes, one tangent to the Hermitian sur-
face X, the second not tangent to X, and the line of intersection of the two
planes intersects the Hermitian surface in t + 1 points.

Proof. The codewords of third weight are not given by hyperbolic quadrics
of type 12 in table 4.2 from theorem 4.5, nor by elliptic quadrics if t 6= 3. �

We come now to the computation of the codewords of third weight.

Theorem 5.3. The number of codewords of third weight (for t 6= 3) is:

Aw3 = (t2 − 1)(t5 + t3 + t2 + 1)(t6 − t5).

Proof. Let us write Q = P1 ∪ P2, where:
– P1 is a tangent plane to the Hermitian surface X at a point P1,
– P2 is a non-tangent plane to the Hermitian surface X ,
and l = P1 ∩ P2 meets the Hermitian surface in t + 1 points.
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Given a fixed point P1 in P1, there are exactly q+1 lines passing through
P1 and contained in the same plane. We also know that in a plane, there
pass exactly q2 + q + 1 lines. We wish that the line l of intersection is not
a generator, nor a tangent (the number of generators and tangent lines is
q +1). Thus, the remaining lines which number is q2 + q +1− (q +1) = q2,
is the number of possibilities we can choose the line l such that l intersects
X at t + 1 points. For each line l, it pass exactly q + 1 planes (Pi)1≤i≤q+1

(counting P1). Let us consider the q planes (Pi)2≤i≤q+1; they are not all
non-tangent to X (some of them are tangent to X). For a fixed point P1,
there are q2.q = q3 planes Pi constructed and these q3 planes are all distinct.

In total there are exactly (t5 + t3 + t2 + 1)q3 couples (P1,P2), where P1

is a tangent plane to the Hermitian surface X, P2 is a non-tangent plane
to the Hermitian surface X with l = P1 ∩ P2 intersecting the Hermitian
surface at t + 1 points. We also know from the proof of theorem 6.5 [4]
that (t5 + t3 + t2 + 1)t5 is the number of couples (P1,P2) with P1 and P2

two tangent planes to the Hermitian surface X, with the intersection line
meeting X at t+1 points. Thus, one deduces that (t5+t3+t2+1)(t6−t5) is
the number of couples (P1,P2) giving codewords of third weight. Therefore,
there are (t2 − 1)(t5 + t3 + t2 + 1)(t6 − t5) codewords of third weight. �

Observe that, for t = 2, there are exactly 3× 45× 32 = 4320 codewords
of third weight in agreement with Spurr [3] p. 120.

Remark. Conjecture on the fourth and fifth weight.
The author has tried to study again #XZ(Q)(Fq) for Q an elliptic quadric

and conjecture that s4(t), s5(t) should give respectively the fourth and the
fifth weight.

The codewords of fourth weight correspond (for t ≥ 3) now to two types
of quadrics:
– quadrics which are union of two non-tangent planes to X, and the line of
intersection of the two planes meets X at a single point.
– some particular elliptic quadrics.

The codewords of fifth weight correspond (for t > 3) to two types of
quadrics:
– quadrics which are union of two non-tangent planes to X, and the line of
intersection of the two planes meets X in t + 1 points.
– and some particular elliptic quadrics.

Unfortunately no proof is found yet.

6. Appendix

Lemma 6.1. Let l be a line defined over Fq in P3(Fq) and l = l ∩ P3(Fq).
Then l is empty, or a single point or a line defined over Fq.

Proof. It is a direct consequence of the equation of a line P3(Fq). �
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Let Q be a non-degenerate quadric over Fq. Note di = degree of the
curve Ci defined on Q. From [9] (chap. 4 example 2 p. 241), we deduce
an interesting relation between the arithmetical genus of a curve and its
degree. Thus, we get the following result.

Proposition 6.1. Let Q ⊂ P3(Fq) be a non-singular quadric surface in
P3(Fq) and C an irreducible curve on Q.
– If deg C = 2l + 2 then, pa(C) ≤ l2 (?)
– If deg C = 2l + 1 then, pa(C) ≤ l(l − 1) (??)

Let us recall the result of Yves Aubry and Marc Perret on the Weil
theorem for singular curves, see [1]. With this result we get a bound for the
number of rational points of any irreducible curve not necessary smooth.

Proposition 6.2. Let C be a reduced connected projective algebraic curve
over a finite field Fq, with r irreducible components and of arithmetical
genus pa(C). Then |#C(Fq)− (rq + 1)| ≤ 2pa(C)

√
q.

Proof of theorem 4.5. From the relation 4.4.1 of remark 4.4, we need to
prove that #XZ(Q)(F4) 6= s3(2). A hyperbolic quadric over F4 is a pair of
two reguli, each regulus containing five skew lines. Let R be the regulus of
Q containing the two skew lines l1 and l2 of the Hermitian surface.

s s s s s l1

s s s s s l2

s c s c s l3
A1 A2 A3

l′1 l′2

If each one of the remaining three lines of R is not secant to X (i.e. meets
X at three points), then the problem is solved. Suppose now that there is
a secant line. Let l3 be a line of R secant to X; l3 meets X at three points
A1, A2 and A3. Let us consider the five planes passing through l3; each of
them is tangent to the quadric Q (since l3 ∩X = {A1, A2, A3} ⊂ H ∩ Q).
In fact, H ∩ Q as a degenerate quadric of rank 2 in P2(Fq), is a set of 2
lines from J.W.P. Hirschfeld [6] p. 156. Thus, we can distinguish two cases:
H ∩ Q = {l3, l} where l is a line of Q passing through one of the three
points of {A1, A2, A3} or l does not meet any of the points A1, A2 and
A3. Without loss of generality, we may assume that H ∩ Q = {l3, l′1} or
H ∩Q = {l3, l′2}.
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First case: Suppose that H ∩ Q = {l3, l′1}
If H is tangent to X: In this case H ∩X is a degenerate Hermitian curve

of rank 2 consisting of 13 points (a set of three lines meeting at a common
point). But, two of the three points A1, A2 and A3 can not be on a the
same line of H ∩X, otherwise l3 should be contained in X. So we get two
eventualities:
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(a) l′1 ⊂ H ∩X
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(b) l′1 6⊂ H ∩X

(a) l′1 ⊂ H ∩ X: In this case, Q contains three lines of X among which
two lines are in the same regulus and the third is in the complementary
regulus. We can now write: C = Q ∩ X = l1 ∪ l2 ∪ l′1 ∪ C (where C is a
curve of degree 3 over F4). If C is irreducible, it is defined on F4 and from
proposition 6.2, we have pa(C) = 0 and therefore from proposition 6.3, we
get |Q ∩X| ≤ 18. If C is not irreducible and since there is no plane conic
on X, we deduce that C = C1 ∪ C2 ∪ C2 (union of three lines); at most
one line among them should be defined over Fq. Thus, from lemma 6.1 we
deduce that |Q ∩X| ≤ 18.

(b) l′1 6⊂ H ∩X: Here l′1 ∩H ∩X = 3 points. So that |H ∩X ∩Q| ≤ 5.
If H is non-tangent to X: In this case, H∩X is a non-degenerate Hermitian
curve with |H ∩X| = 9. Here we need to distinguish two cases:
– If l′1 ⊂ H ∩X, we recover the case which has been done previously.
– If l′1 6⊂ H ∩X, then |l ∩ (H ∩X)| = 3; so |Q ∩H ∩X| ≤ 3 + 3 = 6.

Second case: Suppose that H ∩ Q = {l3, l′2}
Similary, if H is tangent to X, then H ∩X is a set of three lines meeting

at a common point. And we get the following configuration:
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Thus |Q ∩H ∩X| ≤ 3 + 3 = 6.
If H is non-tangent to X, then H ∩X is a non-singular plane curve and

therefore irreducible. Here H ∩X does not contain the line l′2, so l′2 meets
H ∩X in exactly three points. Then, |Q ∩H ∩X| ≤ 6.

Summary: When Q is a hyperbolic quadric which regulus R contains ex-
actly two skew lines of the Hermitian surface X, Q should contains an other
line l of X, in this case l is contained in the complementary regulus of R
and then |Q ∩X| ≤ 18; or |Q ∩Hi ∩X| ≤ 6 for each one of the five planes
(Hi)1≤i≤5 passing through the line l3, which leads to |Q∩X| ≤ 18, therefore
|Q ∩X| ∈ {13, 15, 17}. This concludes the proof of theorem 4.5. �
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