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Conjugacy classes of series in positive
characteristic and Witt vectors.

par Sandrine JEAN

Résumé. Soit k la clôture algébrique de Fp et K le corps local
des séries formelles à coefficients dans k. Le but de cet article
est de décrire l’ensemble Yn des classes de conjugaison des séries
d’ordre pn pour la loi de composition. Ce travail concerne les séries
formelles réversibles à coefficients dans un corps de caractéristique
p qui sont d’ordre pn pour la loi de composition. Dans le but
d’explorer la conjecture de Oort, je donne une description des
classes de conjugaison des séries au moyens de vecteurs de Witt
de longueur finie. Nous developpons certains outils permettant de
constuire une bĳection entre un ensemble An de vecteurs de Witt
et un ensemble Xn de couples constitués d’une extension L/K
cyclique totalement ramifiée de degré pn et d’un générateur du
groupe de Galois. Nous pouvons définir pour chaque élément de
An une suite de sauts de ramification. Nous pouvons également
décrire une seconde bĳection entre Yn et les orbites An sous une
certaine action de groupe. Les sauts de ramification d’une série
appartenant à Yn peuvent être retrouvés grâce aux composantes
du vecteur de Witt correspondant dans An.

Abstract. Let k be the algebraic closure of Fp and K be the
local field of formal power series with coefficients in k. The aim
of this paper is the description of the set Yn of conjugacy classes
of series of order pn for the composition law. This work is con-
cerned with the formal power series with coefficients in a field of
characteristic p which are invertible and of finite order pn for the
composition law. In order to investigate Oort’s conjecture, I give a
description of conjugacy classes of series by means of Witt vectors
of finite length. We develop some tools which permit us to con-
struct a bĳection between a set An of Witt vectors and a set Xn of
pairs constituted by a cyclic totally ramified extension L/K of de-
gree pn and a generator of its Galois group. We are able to define
for any element of An a sequence of ramification breaks. We also
describe another bĳection between Yn and the orbits of An under
a certain group action. Ramification breaks of a series belonging
to Yn can be recovered from the components of a corresponding
vector in An.
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1. Introduction

Let p be a prime number, k the algebraic closure of Fp and K = k((t))
the field of meromorphic series with coefficients in k. The main aim of
this paper is to develop some tools in order to classify, up to conjugacy,
power series which are invertible for the composition law. According to a
conjecture of Frans Oort, such a series could be lifted to a series of same
order for the composition law whose coefficients are integer in an extension
of a p-adic number field. This result is known just for n = 1 and n = 2. If
a series can be lifted by a series of the same order then each series in the
conjugacy class can be lifted. Invertible series are precisely formal power
series without constant term such that their derivative at 0 is not zero.
They form a group with regard to the composition law denoted by G0(k):

G0(k) =
{ ∑

ι≥1

aιt
ι such that a1 ∈ k∗

}
.

When the residue field is finite, the case of series of order p was studied
by B. Klopsch. His results prove that two series of order p are conjugate in
G0(k) if and only if they have the same ramification number [7], ramification
number of a series σ, or depth, being the t-adic valuation of σ(t)

t − 1.

For the case of series of order pn, we will lean on Artin-Schreier-Witt
theory which describes cyclic extensions of order pn with the aid of Witt
vectors of length n. In the case of a finite residue field, K. Kanesaka and
K. Sekiguchi [6] have described the ramification of such extensions by in-
troducing a certain set Bn of Witt vectors of length n. Extending this idea
to the case where k is the algebraic closure of Fp, we are able to parame-
trize the set of pairs (L, σ) where L is a cyclic totally ramified extension
of order pn of K and σ a generator of its Galois group by a subset An in
Bn (Theorem 3.8). Thanks to this correspondence, we can compute ramifi-
cation breaks of the extension L/K in term of Witt vectors of An, always
following K. Kanesaka and K. Sekiguchi’s paper.

Any pair (L, σ) will correspond to a conjugacy class of series of order pn.
Then we will be able to put in bĳection conjugacy classes of series of order
pn and elements of An under a certain action of G0(k) (Theorem 5.6).

I am grateful to Ivan B. Fesenko for having supported me during my
stay at the University of Nottingham in 2007. I would like to thank also
my supervisors F. Laubie and A. Salinier who help me for this work.

2. The ring of Witt vectors.

Witt vectors are useful in the description of extensions of degree pn

thanks to Artin-Schreier-Witt theory.
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2.1. Properties of Witt vectors.
Let R be a commutative ring with a unit element, and p be a prime

number.
We denote by W (R) the ring of Witt vectors of infinite length.
For all Witt vectors x = (xj)j≥1 in W (R), the sequence x∗ = (x(h))h of

ghost components is defined by x(h) = xph

0 + pxph−1

1 + ...+ phxh.
Let H(R) = RN be the ring of sequences of elements in R provided with

componentwise addition and multiplication laws. Let gR be the map from
W (R) to H(R) defined by gR(x) = x∗. Then gR is a ring homomorphism.

Let R and S be two commutative rings, ϕ a homomorphism from R
to S, let W (ϕ) : W (R) → W (S) by W (ϕ)(rn) = ϕ(rn) so W (ϕ) is a
homomorphism.

The Witt functor W is the unique functor from the category of commu-
tative rings into itself satisfying the following property: the transformation
which associates to a commutative ring R the map gR is a functorial ho-
momorphism of W to the functor H.

2.2. The additive law in W (R).
In this paragraph, we give a technical lemma about the nth component of

Witt vectors. This Lemma will be used in several ways in the next chapters.
We need firstly to define the weight of a monomial to state this lemma.

Definition 2.1. In the 2j-indeterminate-polynomial ring R[x0, ..., xj−1,

y0, ..., yj−1], the weight of a monomial xη0
0 ...x

ηj−1

j−1 y
µ0
0 ...y

µj−1

j−1 in R is defined
by:

j−1∑
h=0

ph(ηh + µh).

A polynomial is said to be homogeneous if it is a linear combination of same
weight monomials.

Let us notice that the weight depends on the prime p.

Lemma 2.2.
1) Let x = (x0, x1, ...) ∈ W (R), the jth component of −x is −xj−1 +

Ωj−1 with Ωj−1 a homogeneous polynomial of weight pj−1 in
Z[x0, ..., xj−2].

2) Let x = (x0, x1, ...) and y = (y0, y1, ...) be two Witt vectors, the jth
component of x+ y is xj−1 + yj−1 + Σj−1 where Σj−1 is a homoge-
neous polynomial of weight pj−1 in Z[x0, ..., xj−2, y0, ..., yj−2].

Proof.
1) Consider firstly the case of the ring RZ = Z[X0, X1, ..., Xj , ...] of polyno-
mials in countably infinite indeterminates with integer coefficients. We put
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X = (X0, X1, ..., Xj , ...). Let Y = (Y0, Y1, ..., Yj , ...) such that Y = −X in
W (RZ). The jth ghost components of X and Y are respectively:

X(j−1) = Xpj−1

0 + pXpj−2

1 + ...+ pj−2Xp
j−2 + pj−1Xj−1

Y (j−1) = Y pj−1

0 + pY pj−2

1 + ...+ pj−2Y p
j−2 + pj−1Yj−1.

Since gRZ is a ring homomorphism, in H(RZ) we get: X(j−1) + Y (j−1) = 0.
Define the ring RQ = Q[X0, X1, ..., Xj , ...] of polynomials in countably

infinite indeterminates with rational coefficients. Hence, in the ring H(RQ)

Yj−1 = −Xj−1 −
1

pj−1
(Xpj−1

0 + Y pj−1

0 + ...+ pj−2(Xp
j−2 + Y p

j−2)).

So Yj−1 = −Xj−1 + Ωj−1 where Ωj−1 is, by induction on j, a polynomial
of X0, X1, ..., Xj−2, necessarily with integer coefficients as Yj−1 is in RZ.
Furthermore Ωj−1 is a homogeneous polynomial of weight pj−1.

2) The proof of the second part is similar to the first one. �

2.3. Witt vectors of length n.
Let n ≥ 1 be an integer and define the ring of Witt vectors of length n.
We define the shift map on W (R) by V : W (R) → W (R) such that for

any vector x = (x0, x1, ...), we have V (x0, x1, ...) = (0, x0, x1, ...). We note
that for all x and y in W (R), we get V (x+ y) = V (x) + V (y) ([12], ch II,
§6).

Definition 2.3. Let In = V n(W (R)) = {(0, ..., 0, xn, xn+1, ...)} be the set
of Witt vectors where the n first components are zero.

The set In is a subgroup and an ideal of W (R). Let Wn(R) = W (R)/In.
Elements of Wn(R) are identified with the vectors (x0, ..., xn−1) ∈ Rn.
These vectors are called Witt vectors of length n. The addition in Wn(R)
is given by the same formulae as the addition in W (R).

2.4. Witt vectors on a field of formal power series.
Let k be a field of characteristic p and K = k((t)) provided with the

t-adic valuation vK be the local field of formal power series. Denote by
OK its valuation ring and pK its maximal ideal. We have OK = k[[t]] and
pK = tk[[t]].

Let F be the Frobenius map from W (K) to itself such that for any vector
x = (x0, x1, ...) we get Fx = (xp

0, x
p
1, ...), the map F is a ring homomor-

phism. Let ℘ = F − id be the abelian group homomorphism from W (K) to
itself whose kernel isW (Fp) [12]. The same notations F and ℘ will be used in
Wn(K). We also define the truncation map T which is the ring epimorphism
from Wn(K) to Wn−1(K) such that T (x0, ..., xn−2, xn−1) = (x0, ..., xn−2).

Define on Wn(K) the map introduced firstly in the PhD thesis of V.
Shabat:
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Definition 2.4. Let x = (x0, x1, ..., xn−1) be a Witt vector of length n, and
put:

mn(x) = min{pn−1−ιvK(xι) for ι = 0, 1, ..., n− 1}.

We also have for any x ∈Wn(K),mn(x) = max{pmn−1(T (x)), vK(xn−1)}.
By Proposition 4.2 of [13], mn is an ultrametric function.

Definition 2.5. Let dn be the metric on Wn(K) given by dn(x, y) =
p−mn(x−y).

This metric is compatible with the additive law. The topology defined
on Wn(K) by the metric dn coincides with the product topology on the set
Kn.

Lemma 2.6. The additive group Wn(K) provided with the metric dn is a
complete ultrametric group.

Proof. We prove by induction on n that Wn(K) is complete.
If n = 1 then W1(K) = K and the property is obvious.
Assume now that Wn′(K) is complete up to n′ ≤ n − 1. Let x(h) be

a Cauchy sequence in (Wn(K), dn) then mn(x(h+1) − x(h)) tends to +∞.
As mn−1(T (x(h+1))− T (x(h))) ≥ 1

pmn(x(h+1) − x(h)) so mn−1(T (x(h+1))−
T (x(h))) tends to +∞ and T (x(h)) is a Cauchy sequence in (Wn−1(K), dn−1).
By induction hypothesis, T (x(h)) tends to T (l) with l ∈Wn(K). For any h,
we can write x(h) = l + y(h) for a vector y(h) = (y(h)

0 , ..., y
(h)
n−1) of length n.

So T (y(h)) tends to the zero vector of Wn−1(K). On other hand, y(h) is a
Cauchy sequence in (Wn(K), dn) as it is a translated sequence of a Cauchy
sequence. Let y(h) = (T (y(h)), β(h)

n−1) with β
(h)
n−1 ∈ K and T (y(h)) being the

n− 1 first components of y(h). There is ∆n−1 ∈ K such that:

y(h+1) − y(h) = (T (y(h+1))− T (y(h)), β(h+1)
n−1 − β

(h)
n−1 + ∆n−1).

By Lemma 2.2, ∆n−1 is a homogeneous polynomial in y
(h+1)
0 , ..., y

(h+1)
n−2 ,

y
(h)
0 , ..., y

(h)
n−2 so it converges to 0 as for all i, y(h)

i and y(h+1)
i tend to 0. Hence

(β(h+1)
n−1 −β(h)

n−1)h tends to 0. Thus β(h)
n−1 is a Cauchy sequence and therefore

it converges to βn−1 in K. We deduce that y(h) converges to (0, ..., 0, βn−1).
So x(h) converges to l+ (0, ..., 0, βn−1) and Wn(k) is a complete group. �

In the following, the notation Wn(pK) design the set of Witt vectors of
length n with components in the maximal ideal pK .

Lemma 2.7. Let x ∈ Wn(OK) then x = y + z with y ∈ Wn(k) and
z ∈Wn(pK).
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Proof. By induction on n. If n = 1, the property is obvious.
Assume now that the property is satisfied for all Witt vectors of length

less than or equal to n − 1. Let x = (x0, ..., xn−2, xn−1) ∈ Wn(OK) and
x′ = (x0, ..., xn−2) its truncation in Wn−1(OK). By induction hypothesis,
there are y′ ∈Wn−1(k) and z′ ∈Wn−1(pK) such that x′ = y′ + z′.

We have to prove that there exist yn−1 ∈ k and zn−1 ∈ pK such that
x = y + z with y and z some Witt vectors of length n for which the n− 1
first components are respectively the components of y′ and z′. By Lemma
2.2, xn−1 −Σn−1 = yn−1 + zn−1 where Σn−1 is a homogeneous polynomial
in y0, ..., yn−2, z0, ..., zn−2. Substitute the values of y′ and z′ into Σn−1 so
vK(Σn−1) is non negative. Since vK(xn−1) is non negative, then xn−1−Σn−1

belongs to OK . We then find yn−1 in k and zn−1 in pK . �

2.5. The case of an algebraically closed residue field.
From now, let k be a finite algebraically closed field. In this paragraph,

we give some results about Witt vectors in Wn(k).

Lemma 2.8. If k is an algebraically closed field then Wn(k) = ℘(Wn(k)).

Proof. It is obvious that ℘(Wn(k)) ⊂Wn(k).
Now the inclusion Wn(k) ⊂ ℘(Wn(k)) is obvious for n = 1. We assume

the property Wn(k) ⊂ ℘(Wn(k)) is satisfied up to n.
Let x = (x0, ..., xn) ∈ Wn+1(k). We have x0 ∈ k so there exists a in k

such that x0 = ℘(a). Let {a} be the Witt vector of length n+1: (a, 0, ..., 0).
So

x− ℘({a}) = (0, x′1, ..., x
′
n) = V (x′1, ..., x

′
n).

By induction hypothesis, for any (x′1, ..., x
′
n) ∈Wn(k) there exists (y1, ..., yn)

in Wn(k) such that (x′1, ..., x
′
n) = ℘(y1, ..., yn). So

x− ℘({a}) = V (x′1, ..., x
′
n) = V (℘(y1, ..., yn)) = ℘(V (y1, ..., yn)).

Hence x = ℘({a}) + ℘(V (y1, ..., yn)) = ℘({a}+ V (y1, ..., yn)). �

Proposition 2.9. A Witt vector in Wn(OK) belongs to ℘(Wn(OK)).

Proof. Firstly, if x = (x0, ..., xn−1) ∈Wn(pK).
We have F hx = (xph

0 , xph

1 , ..., xph

n−1).

mn(F hx) = min(pn−1−ιvK(xph

ι )) = ph min(pn−1−ιvK(xι)) = phmn(x).

Hence mn(F hx) ≥ ph as mn(x) ≥ 1, so mn(F hx) tends to +∞.
Let y = −

∑
h≥0 F

hx, by Lemma 2.6, the series y converges. Since the
Frobenius map F is continuous, we get:

℘(y) = (F − Id)(y) = −
∑
h≥0

F h+1x+
∑
h≥0

F hx = x.

So x ∈ ℘(Wn(OK)).
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If one or more components are series of valuation zero. By Lemma 2.7,
x = y + z with y ∈Wn(k) and z ∈Wn(pK). Since k is algebraically closed,
then Wn(k) ⊂ ℘(Wn(k)). As Wn(pK) ⊂ ℘(Wn(OK)) then x is the sum of
two elements in ℘(Wn(OK)) and so x ∈ ℘(Wn(OK)). �

We deduce from this the following reduction of Witt vectors :

Proposition 2.10. Every Witt vector x ∈ Wn(K) is congruent modulo
℘(Wn(K)) to a vector (y0, y1, ..., yn−1) where for all ι = 0, ..., n − 1, the
component yι is a polynomial in t−1 with coefficients in k without constant
term.

Proof. By Proposition 2.9, it suffices to show that every Witt vector can
be written as the sum of two vectors (y0, ..., yn−1) and (z0, ..., zn−1), where
for every ι = 0, 1, ..., n− 1, yι ∈ t−1k[t−1] and zι ∈ OK .

If n = 1, we have W1(K) = K, so the property is satisfied.
Assume that the property is satisfied up to n−1. Let x ∈Wn(K) and x′

its truncation in Wn−1(K). Let y′ and z′ be two Witt vectors of length n−1
such that y′ = T (y), z′ = T (z) and x′ = y′ + z′ by induction hypothesis.
Assume that for any 0 ≤ ι ≤ n − 2, y′ι ∈ t−1k[t−1] and z′ ∈ Wn−1(k[[t]]).
There is Σn−1 ∈ Z[y0, ..., yn−2, z0, ..., zn−2] such that (y + z)n−1 = yn−1 +
zn−1 + Σn−1.

Then xn−1−Σn−1 can be written into the form xn−1−Σn−1 = yn−1+zn−1

with yn−1 ∈ t−1k[t−1] and zn−1 ∈ k[[t]]. We verify that y + z = x. �

2.6. The filtered Wn(k)-submodule Bn.
Denote by Np the set of positive integers coprime to p and for each x ∈ K,

let {x} be the Witt vector of length n given by (x, 0, ..., 0).

Definition 2.11. Let Bn be the Wn(k)-module generated by vectors {t−ι}
with ι ∈ Np.

Elements of Bn are vectors in Wn(K) of the form a =
∑

ι∈Np
aι{t−ι} with

aι ∈Wn(k) and aι = 0 for ι sufficiently large. This form is unique:

Lemma 2.12. The elements {t−ι} with ι ∈ Np are linearly independent
over Wn(k).

Proof. Let aι = (aι,0, ..., aι,n−1) ∈ Wn(k). By Proposition 1.10, [14], we
have:

aι{t−ι} = (aι,0, ..., aι,h, ..., aι,n−1){t−ι}

= (aι,0t
−ι, ..., aι,ht

−ιph
, ..., aι,n−1t

−ιpn−1
).
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So each component of aι{t−ι} is a monomial in t−ιph with coefficient aι,h

where 0 ≤ h ≤ n− 1 and ι ∈ Np. Hence by Lemma 2.2:∑
ι∈Np

aι{t−ι} =
( ∑

ι∈Np

aι,0t
−ι, ...,

∑
ι∈Np

aι,ht
−ιph

+ Σh, ...,
∑
ι∈Np

aι,n−1t
−ιpn−1

+ Σn−1

)
.

The hth component of
∑

ι∈Np
aι{t−ι} is

∑
ι∈Np

aι,ht
−ιph

+ Σh with Σh a

homogeneous polynomial in aι,h′t
−ιph′ with h′ < h. Thus Σh are with-

out constant term. Now, by induction on the rank of the components, if∑
ι∈Np

aι{t−ι} = 0 then every Σh is zero and then each aι,h is 0. �

Remark. The truncation T will send Bn to Bn−1. Moreover T (Bn) = Bn−1.
The exponent of the group Wn(k) is pn and let ord(a) be the order of a

in Wn(k) [12]. We have also ord(a+ b) ≤ max{ord(a), ord(b)}.

Definition 2.13. For any a =
∑

ι∈Np
aι{t−ι} ∈ Bn, we put:

ρn(a) = max(ιord(aι)
p ) for all aι 6= 0

ρn(0) = 0 otherwise.

Lemma 2.14. For any a and b in Bn, we have:

ρn(a+ b) ≤ max{ρn(a), ρn(b)}.

The proof is obvious. By this lemma, we get an increasing filtration on
Bn.

Definition 2.15. Let An be the set of elements a =
∑

ι∈Np
aι{t−ι} ∈ Bn

with at least one element aι ∈Wn(k)∗.

Lemma 2.16. Let a =
∑

ι∈Np
aι{t−ι} ∈ Bn. Then the following assertions

are equivalent:
(1) a ∈ An.
(2) max{ord(aι) such that aι 6= 0} = pn.
(3) a /∈ p(Bn). where p is the multiplication by p in Wn(K).

Proof. (1) ⇔ (2) : Assume that a ∈ An so there is ι0 ∈ Np such that
aι0 ∈ Wn(k)∗. Since a ∈ Wn(k) has order pn if and only if it is invertible,
so ord aι0 = pn and max{ord (aι) such that aι 6= 0} = pn is equivalent to
a belongs to An.

(1) ⇒ (3): A Witt vector is invertible if and only if its first component is
invertible. Let b = (b0, ..., bn−1) be a vector in Bn. Since p = V F [12], so
p(b) = V F (b0, ..., bn−1) = (0, bp0, ..., b

p
n−2). So p(b) cannot be invertible.
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(3) ⇒ (2): If the vector a is such that max{ord(aι) such that aι 6= 0} ≤ pn

then there exists a vector b such that a = p(b). �

2.7. The direct sum Wn(K) = ℘(Wn(K)) ⊕ Bn.
The main result of this paragraph is the direct sum of abelian groups:

Wn(K) = ℘(Wn(K)) ⊕ Bn. It will be very useful in the following to get a
way to describe an action of G0(k) on Bn. We firstly prove some lemmas:

Lemma 2.17. Let x =
∑

ι≥1 αιt
ι in K\k. Let ν(x) be the minimum integer

such that there exists ι ≥ 1 with vp(ι) = ν(x) and αι 6= 0. Then we have
ν(℘(x)) = ν(x).

Proof. For any x, let I(x) = {ι ∈ Z, αι 6= 0} so ν(x) = min{vp(ι) with ι ∈
I(x)}.

We have xp =
∑

ι≥1 α
p
ι t
−ιp so I(xp) = p(I(x)) and I(xp−x) ⊂ p(I(x))∪

I(x).
By definition vp(ι) ≥ ν(x) for all ι ∈ I(x) so vp(ι) ≥ ν(x) for all ι ∈

p(I(x)).
Therefore vp(ι) ≥ ν(x) for all ι ∈ p(I(x))∪I(x). Hence ν(xp−x) ≥ ν(x).
Conversely, let ι0 ∈ N such that vp(ι0) = ν(x). We have ι0 ∈ I(x)\p(I(x))

and so ι0 ∈ I(xp − x). Hence, we have ν(xp − x) ≤ vp(ι0) = ν(x). �

Lemma 2.18. If x ∈ K and m ∈ N∗ then there exists y ∈ K and αι ∈ k

for all ι ∈ Np such that αι = 0 for ι >> 0 and x =
∑

ι∈Np
αιt

−ιpm−1
+yp−y.

Proof. If m = 1, let x =
∑
αιt

−ι. Using Proposition 2.10 we obtain x =
x′ + yp− y where y ∈ K and x′ a polynomial in t−1 without constant term.

So it suffices to show that each term αιt
−ι belongs to B1 + ℘K. We will

proceed by induction on ι ∈ N. We consider two cases:
If gcd(ι, p) = 1, then

∑
αιt

−ι ∈ B1.
If gcd(ι, p) 6= 1, so ι = ι′p then α′ιt

−ι = α′ιt
−ι′p.

Since k = Falg
p , α′ιt−ι′p = α′′pι t

−ι′p = (α′′ιt−ι′)p − α′′ιt
−ι′ + α′′ιt

−ι′ and
(α′′ιt−ι′)p − α′′ιt

−ι′ ∈ ℘K and α′′ιt
−ι′ ∈ B1 + ℘K by induction hypothesis.

Now, if we have x =
∑

ι∈Np
(−α′ι)t−ιpm−2

+ yp − y with y ∈ K, we put
y = y′ +

∑
ι∈Np

α′ιt
−ιpm−2 so that yp = y′p +

∑
ι∈Np

α′pι t
−ιpm−1 . Thus

yp − y = y′p − y′ +
∑
ι∈Np

α′pι t
−ιpm−1 −

∑
ι∈Np

α′ιt
−ιpm−2

= x+
∑
ι∈Np

α′pι t
−ιpm−1

.

So x satisfies the conditions. �

Proposition 2.19. We have the direct sum of abelian groups:

Wn(K) = ℘(Wn(K))⊕ Bn.



272 Sandrine Jean

Proof. 1) We want, Bn ∩ ℘(Wn(K)) = {0}.
If n = 1, then we have to show that ℘(K) ∩ B1 = {0}. We use the 7th

property of Proposition 4.2 [13]. If x ∈ B1 and x 6= 0 then vK(x) is negative
coprime to p and if x ∈ ℘(K) then vK(x) is either positive or negative but
in this latter case, vK(x) is a multiple of p. So ℘(Wn(K)) ∩ Bn = {0}.

Now, we want to prove that for every n, ℘(Wn(K)) ∩ Bn = {0}.
Let a =

∑
ι∈Np

aι{t−ι} ∈ Bn ∩ ℘(Wn(K)). So a = ℘(x0, ..., xn−2, xn−1)
with xι ∈ K. Assume that (x0, ..., xn−1) 6= 0. Denote by a′ (resp a′ι, resp
{t−ι}n−1) the truncation in Wn−1 of the Witt vector a (resp aι, resp {t−ι}).
By induction hypothesis, if a′ =

∑
i∈Np

a′ι{t−ι}n−1 = ℘(x0, ..., xn−2) = 0
then every a′ι = 0 by Lemma 2.12.

So aι = (0, ..., 0, aι,n−1) with aι,n−1 ∈ k and xι ∈ Fp for 0 ≤ ι ≤ n − 2.
Thus:

a = (0, ..., 0,
∑
ι∈Np

aι,n−1t
−ιpn−1

)

= (xp
0, ..., x

p
n−2, x

p
n−1)− (x0, ..., xn−2, xn−1).

Hence
∑

ι∈Np
aι,n−1t

−ιpn−1
= xp

n−1 − xn−1 + Σn−1 with Σn−1, by Lemma
2.2, a homogeneous polynomial in x0, ..., xn−2 and since xι ∈ Fp for 0 ≤
ι ≤ n − 2 then vK(xι) = 0 and so Σn−1 ∈ Fp. So there is Σ′

n−1 such that
Σn−1 = Σ′p

n−1 − Σ′
n−1. We now write x′n−1 = xn−1 + Σ′

n−1. We have:

x′
p
n−1 − x′n−1 =

∑
ι∈Np

aι,n−1t
−ιpn−1

We suppose there exists ι0 ∈ Np such that aι0,n−1 6= 0, so

ν
( ∑

ι∈Np

aι0,n−1t
−ι0pn−1

)
= n− 1.

In other hand, by Lemma 2.17, we have:

ν
( ∑

ι∈Np

aι0,n−1t
−ι0pn−1

)
= ν(x′pn−1 − x′n−1) = ν(x′n−1).

Hence ν(x′n−1) = n−1 so vK(x′n−1) is a multiple of pn−1. Since vK(x′n−1) <
0 then vK(x′pn−1 − x′n−1) = pvK(x′n−1) . So vK(

∑
ι∈Np

aι0,n−1t
−ι0pn−1

) is a
multiple of pn.

We get a contradiction with the fact that vK(
∑

ι∈Np
aι0,n−1t

−ι0pn−1
) is

of the form ι0p
n−1 with ι0 ∈ Np. Hence x = 0 and we get the result

Bn ∩ ℘(Wn(K)) = {0} for all n.
2) Secondly, we have to prove that for any n, Wn(K) = ℘(Wn(K)) + Bn.

If n = 1, we have already show it in the case m = 1 in Lemma 2.18.
Let x ∈Wn(K). By induction hypothesis, we have T (x) ∈ ℘(Wn−1(K))+

Bn−1. Since the map T is an epimorphism, we can find y ∈ Wn(K) and
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b ∈ Bn such that: T (x) = ℘(T (y)) + T (b) = T (℘(y)) + T (b) = T (℘(y) + b).
So x = ℘(y) + b+ (0, ..., 0, χ) with χ ∈ K.

We can write by Lemma 2.18: χ =
∑

ι χιt
−ιpn−1

+ zp − z.

(0, ..., 0, χ) = (0, ..., 0,
∑

ι

χιt
−ιpn−1

+ zp − z)

= (0, ..., 0,
∑

ι

χιt
−ιpn−1

) + (0, ..., 0, zp)− (0, ..., 0, z)

=
∑

ι

(0, ..., 0, χι){t−ι}+ ℘(0, ..., 0, z)

So
∑

ι(0, ..., 0, χι){t−ι} belongs to Bn and ℘(0, ..., 0, z) belongs to ℘(Wn(K)).
Hence we have for any n, Wn(K) = ℘(Wn(K)) + Bn. �

3. Applications to cyclic extensions of degree pn.

Let L/K be a field extension, if x = (x0, ..., xn−1) is a Witt vector in
Wn(L), the notation K(x) will denote the extension K(x0, ..., xn−1) of K.

We will describe a way to characterize cyclic totally ramified extensions
of degree pn by a unique element of An. We also determine the ramification
breaks of these extensions in terms of coefficients of this element of An.

We recall that k designs the algebraic closure of Fp.

3.1. The conductor of a cyclic extension.
Let k′ be a field of characteristic p and K ′ = k′((t)). Let L′/K ′ be a cyclic

totally ramified extension of degree pn. Let U be the unit group of K ′. The
conductor of the extension L′/K ′ is defined by (t)r(L′/K′) where :

r(L′/K ′) = min{l ∈ N such that U (l) ⊂ NL′/K′(L′∗)}.

with U (l) = {u ∈ U such that vK′(u− 1) ≥ l} = 1 + tlk′[[t]] the lth term in
the natural filtration of U .

Let s(L/K) be the greatest ramification break of L/K, that is the great-
est integer such that Gal(L/K)s(L/K) 6= {1}. The integer r(L/K) is equal
to ϕ(s(L/K)) + 1 where ϕ is the reciprocity map of the Herbrand function
[11]. So a link between the conductor and the greatest ramification break
holds.

Lemma 3.1. Let L/K be a cyclic extension of degree pn and K ′ be a
closed subfield of K such that L = KL′ with L′/K ′ of degree pn. Assume
that K/K ′ is unramified. The two extensions L′/K ′ and L/K have the same
ramification breaks. In particular the conductor of L/K is the same as the
conductor of L′/K ′.

Proof. Since K/K ′ is unramified, the extension L/L′ is also unramified.
The map σ 7→ σ|L′ is an isomorphism between Gal(L/K) and Gal(L′/K ′).
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We have:

Gal(L/K)ω =
{
σ ∈ Gal(L/K) such that vL

(σ(πL)
πL

− 1
)
≥ ω

}
where πL is a prime element of L. Let π be a prime element of L′, since the
extension L/L′ is unramified then π is also a prime element of L. Hence σ ∈
Gal(L/K)ω if and only if σ|L′ ∈ Gal(L′/K ′)ω. So the ramification breaks in
lower numbering are the same. We get, with the Herbrand functions, the
same ramification in upper numbering.

By [11], Proposition 9, we know that the conductor is equal to (t)r(L/K)

where r(L/K) is the greatest ramification break in upper numbering plus
one, so the conductor of the extension L/K is preserved. �

The map from G(L/K) to G(L′/K ′) which associates to σ, the element
σ|L′ is an isomorphism of filtrered groups by the filtrations of ramification.

3.2. Parametrization of cyclic extensions.
We describe in this paragraph, a way to characterize cyclic totally ram-

ified extensions of degree pn from an element of An.

Remark. By Artin-Schreier-Witt theory, if L/K is a cyclic extension of
degree pn, then there exists a non degenerate pairing ([2], chap IX):

(℘Wn(L) ∩Wn(K))/℘Wn(K)×Gal(L/K) → Wn(Fp)
(a, σ) 7→ [a, σ〉 = σα− α.

where ℘(α) = a and a denotes the class of a modulo ℘(Wn(K)). Moreover
this pairing puts Gal(L/K) and (℘Wn(L) ∩Wn(K))/℘Wn(K) in duality.

Proposition 3.2. Let L/K be a cyclic totally ramified extension of degree
pn and σ a Galois group generator of L/K. There is a unique element
a ∈ An such that:
1) L = K(℘−1(a))
2) [a, σ〉 = 1 = (1, 0, ..., 0) where a denotes the class of a modulo ℘(Wn(K)).

Proof. Prove firstly the uniqueness of the element a. By Proposition 2.19,
we have: ℘(Wn(K)) ∩ Bn = {0}. If L = K(℘−1(a)) = K(℘−1(a′)) and
[a, σ〉 = [a′, σ〉. Then by additivity on the right of Artin’s symbol, we have:

[a, σ〉 − [a′, σ〉 = [a− a′, σ〉 = 0.

Since the pairing is non-degenerate then a − a′ ∈ ℘(Wn(K)). As a and a′

belong to Bn and since Bn ∩ ℘(Wn(K)) = {0} then necessarily a = a′.
Prove now the existence of such an element a. By the previous remark:

Hom(Gal(L/K),Wn(Fp)) ' (℘(Wn(L)) ∩Wn(K))/℘(Wn(K)),
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where the groups Gal(L/K) andWn(Fp) are cyclic of order pn. Then there is
a homomorphism ϕ which associates to σ the element 1 in Wn(Fp). So ϕ cor-
responds in the above isomorphism to a ∈ ℘(Wn(L)) ∩Wn(K)/℘(Wn(K))
generating the group. Let a be a lift of a in ℘(Wn(L)) ∩Wn(K).

Since, a ∈ ℘(Wn(L)) then K(℘−1(a)) ⊂ L.
Conversely, we want to prove that H = Gal(L/K(℘−1(a))) = {id}. Let

τ ∈ H, so for any integer λ, we have,

[λa, τ〉 = λ[a, τ〉 = λ(τα− α)

with ℘(α) = a. Thus α belongs to K(℘−1(a)) so τα = α therefore [a, τ〉 = 0.
So τ is trivial as it is orthogonal to each element of ℘(Wn(L)) ∩Wn(K).

The element a belongs to An since the extension L/K has degree pn. �

3.3. An explicit formula for ramification breaks.
We describe in this paragraph a result on ramification breaks of the

Galois groups of a tower of extensions. For that, we firstly generalize a result
due to K. Kanesaka and K. Sekiguchi [6] to any cyclic ramified extensions.

We recall that we denote by ord(a) the order of a in the additive group
Wn(k). This order divides pn [12].

Lemma 3.3. Let a =
∑

ι∈Np
aι{t−ι} ∈ An. Let L = K(℘−1(a)) be a cyclic

extension of degree pn, the conductor is (t)r(L/K) with r(L/K) defined by:

r(L/K) = max
ι∈Np

{ ι
p

ord(aι) + 1 for aι 6= 0
}
.

Proof. To prove this result, we use Lemma 3.1 and a paper due to K.
Kanesaka and K.Sekiguchi [6]. Let L = K(℘−1(a)) be a cyclic extension of
K of degree pn with a ∈ An. Let a =

∑
ι∈Np

aι{t−ι} with aι ∈Wn(k).
Let k′ be the subfield of k generated by the components of the vectors

aι. As aι = 0 for all but a finite number of ι ∈ Np, k′ is a finite field. Put
K ′ = k′((t)) and now let L′ = K ′(℘−1(a)). Thanks to Lemma 3.1, we know
that the ramification breaks of L′/K ′ are preserved in the extension L/K.
So r(L/K) = r(L′/K ′). By Kanesaka and Sekiguchi’s theorem, ([6], p.367):

r(L′/K ′) = max{ιplι−1 + 1 such that ι ∈ Np and aι 6= 0, lι ≥ 1}
with lι = n− sι and sι defined by :

sι = max{ν such that pν | aι} if aι 6= 0
sι = n if aι = 0.

We have to prove ord(aι) = plι . This is clear if aι = 0 so we assume aι 6= 0.
By definition there is an invertible vector αι such that aι = psιαι with αι

in Wn(k) \ p(Wn(k)). So ord(αι) = pn since Wn(k) has characteristic pn.
Hence

ord(aι) = ord(psιαι) =
ord(αι)

gcd(ord(αι), psι)
= pn−sι = plι
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which concludes the proof. �

Definition 3.4. For any 0 < j ≤ n, we define the maps Tn−j such that:

Tn−j : Wn(K) → Wj(K)
(x0, ..., xn−1) 7→ (x0, ..., xj−1).

Lemma 3.5. Let L/K be a cyclic totally ramified extension of degree pn

such that L = K(℘−1(a)) with a ∈ Wn(K). Let Kj be the subextension
of L/K such that Kj = K(℘−1(Tn−j(a))). Then Kj/K is an extension of
degree pj.

Proof. We obviously have Kj ⊂ Kj+1 ⊂ L.
Let L = K(℘−1(a)) with a ∈ Wn(K). It suffices to show that for every

integer j between 1 and n and every a ∈Wj(K), we have:

[K(℘−1(a)) : K(℘−1(T (a)))] = p.

Let x = (x0, ...xn−1) be an element of Wn(K) such that ℘(x) = a. Since ℘
commutes with the truncation map T , we have:

℘(x0, ..., xj−1) = a⇒ ℘(x0, ..., xj−2) = T (a).

We have K(x0, ..., xj−1) = K(x0, ..., xj−2)(xj−1). By Lemma 2.2, the jth
component of ℘(x0, .., xj−1) is xp

j−1 − xj−1 + ∆j−1(x0, .., xj−2) where ∆j−1

is a polynomial with integer coefficients. So ℘(xj−1) = xp
j−1 − xj−1 ∈

K(x0, ...xj−2).
By Artin-Schreier-Witt theory, K(x0, ..., xj−1)/K(x0, ..., xj−2) is an ex-

tension of degree 1 or p. Since L/K has degree pn, then the extension
K(x0, ..., xn−1)/K(x0, ..., xn−2) and each K(℘−1(T j(a)))/K(℘−1(T j+1(a)))
has degree p and then the extension K(℘−1(T j(a)))/K has degree pj . �

Proposition 3.6. Let a ∈ An. The ramification breaks in upper numbering
of the Galois group Gal(K(℘−1(a))/K) are ρn−j(T j(a)) for 0 ≤ j ≤ n− 1.

Proof. Let a be an element of An and L = K(℘−1(a)). Since the truncation
map is a ring homomorphism which commutes with the additive law, we
obtain:

T j(a) = T j(
∑
ι∈Np

aι{t−ι}) =
∑
ι∈Np

T j(aι{t−ι}) =
∑
ι∈Np

T j(aι)T j({t−ι}).

So we have:
ρn−j(T j(a)) = max

ι∈Np

( ι
p

ord(T j(aι))
)
.

Therefore, following Lemma 3.3, we obtain that the conductor of each
subextension Kj/K is (t)r(Kj/K) with:

r(Kj/K) = max
ι∈Np

{ ι
p

ord(T j(aι)) + 1
}
.
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For any subextension Kj/K of L/K, we put for δ = 0, .., j − 1,

iδ(Kj/K) = max{ε such that Gal(Kj/Kδ) ⊂ Gal(Kj/K)ε}.

Let ψL/K be the Herbrand function for the extension L/K and ϕL/K its
inverse map. By the property of the function ϕL/K [12], we have:

Gal(Kj/K)ε = Gal(Kj/K)ϕL/K(ε).

In the filtration of the Galois group Gal(Kj/K) in lower numbering:

Gal(Kj/K)ε =
{
σ ∈ Gal(Kj/K) such that ord

(σ(πKj )
πKj

− 1
)
≥ ε

}
where Gal(Kj/K) ' K∗/NKj/KK

∗
j . Since:

(K∗/NKj/KK
∗
j )u = {1} ⇔ Uu ⊂ NKj/KK

∗
j ⇔ Gal(Kj/K)u = {1}.

So r(Kj/K) = min{u ∈ N such that Gal(Kj/K)u = {1}}.

ε ≤ ij−1(Kj/K) ⇔ Gal(Kj/Kj−1) ⊂ Gal(Kj/K)ϕL/K(ε)

⇔ Gal(Kj/K)ϕL/K(ε) 6= {1}
⇔ ϕL/K(ε) < r(Kj/K)

⇔ ϕL/K(ε) ≤ r(Kj/K)− 1

⇔ ε ≤ ψL/K(r(Kj/K)− 1).

So ij−1(Kj/K) = ψL/K(r(Kj/K) − 1). Hence, in upper numbering, the
ramification breaks of Kj/K is r(Kj/K)− 1 that is ρn−j(T j(a)). �

Definition 3.7. We call ramification breaks of a ∈ An the n integers de-
fined by ρn−j(T j(a)).

By Proposition 3.2 and Proposition 3.6 we obtain the following theorem:

Theorem 3.8. Let L/K be a cyclic totally ramified extension of degree pn

and σ a Galois group generator of L/K. There is a unique element a ∈ An

such that:
1) L = K(℘−1(a))
2) [a, σ〉 = 1 = (1, 0, ..., 0) where a denotes the class of a modulo ℘(Wn(K)).
Moreover this bĳection preserves ramification breaks between An and Xn.

4. Action of G0(k) on the group Bn.

In the following, we use an action βn of G0(k) on Bn. The isomorphism
between Bn and Wn(K)/℘(Wn(K)) is necessary to define this action.
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4.1. Definition of the action of G0(k) on the ring Wn(K).
Let γ ∈ G0(k) and γ̂ be the automorphism of K fixing k associated with

γ such that γ̂(f) = f ◦ γ−1 for all f ∈ K. By the Witt functor W , we can
deduce an automorphism W (γ̂) of W (K) such that:

W (γ̂)(a0, a1, ..., an, ...) = (a0 ◦ γ−1, a1 ◦ γ−1, ..., an ◦ γ−1, ...).

We recall that In is the additive subgroup of W (K) such that the n first
components of Witt vectors are 0. We have defined Wn(K) to be W (K)/In.
Since W (γ̂)(In) is In, we can define an automorphism Wn(γ̂) in Wn(K) such
that W (γ̂)(a0, a1, ..., an−1) = (a0 ◦ γ−1, a1 ◦ γ−1, ..., an−1 ◦ γ−1). Moreover
Wn(k) ⊂Wn(K)Wn(γ̂) so the automorphism Wn(γ̂) is Wn(k)-linear.

Definition 4.1. We define in this way an action Ŵn of G0(k) on the ring
Wn(K) such that G0(k) acts on every component of Wn(K) i.e.:

Ŵn : G0(k)×Wn(K) → Wn(K)
(γ, (a0, a1, ..., an−1)) 7→ (a0 ◦ γ−1, a1 ◦ γ−1, ..., an−1 ◦ γ−1).

That is Ŵn(γ) = Wn(γ̂).

Remarks.
• For n = 1, the action Ŵ1 is simply γ 7→ γ̂.
• The action Ŵn is Wn(k)-linear.
• The action Ŵn of G0(k) commutes with the map ℘.
• The actions Ŵn and Ŵn−1 of G0(k) respectively on the rings Wn(K) and
Wn−1(K) commute with the map T of Wn(K) to Wn−1(K).

4.2. Definition of the action of G0(k) on the group Bn.
The map ℘ commutes with Ŵn on Wn(K). So the Wn(Fp)-module

℘(Wn(K)) is globally invariant under this action and we obtain an action of
G0(k) on Wn(K)/℘(Wn(K)). As Bn and Wn(K)/℘(Wn(K)) are naturally
isomorphic (Proposition 2.19), a linear Wn(Fp)-automorphism βn(γ) of Bn

holds. Finally βn : G0(k) → AutWn(Fp)(Bn) is an action of the group G0(k)
on the Wn(Fp)-module Bn. The map Wn(γ̂) is a linear automorphism of
Wn(K)/℘(Wn(K)) hence βn(γ) is also a Wn(Fp)-linear automorphism of
Bn.

Definition 4.2. We get the action of G0(k) on Bn for any γ ∈ G0(k) and
any a ∈ Bn:

βn : G0(k)× Bn → Bn

(γ, a) 7→ a′

where a′ is the vector in the submodule Bn which is congruent to the vector
(a0 ◦ γ−1, a1 ◦ γ−1, ..., an−1 ◦ γ−1) modulo ℘(Wn(K)).

Lemma 4.3. The set An is globally invariant under the action βn.
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Proof. Let a ∈ An and γ ∈ G0(k), we want to show that βn(γ)(a) ∈
An. Lemma 2.16 claims that An = Bn \ p(Bn) so we must prove that if
βn(γ)(a) ∈ p(Bn) then a ∈ p(Bn). Let βn(γ)(a) = p(a′) with a′ ∈ Bn.
Hence

a = βn(γ−1)(βn(γ)(a)) = βn(γ−1)(p(a′)) = p(βn(γ−1)(a′))

so a lies in p(Bn). Hence An is globally invariant under the action βn. �

4.3. Link between the action βn and the map of truncation.
We recall that the truncation map T satisfies T (Bn) = Bn−1.

Proposition 4.4. The actions βn(γ) and βn−1(γ) of G0(k) respectively on
the groups Bn and Bn−1 commute with the map of truncation T from Wn(K)
to Wn−1(K).

Proof. As T sends ℘(Wn(K)) in ℘(Wn−1(K)) we have an induced homo-
morphism T from Wn(K)/℘(Wn(K)) to Wn−1(K)/℘(Wn−1(K)). By the
remarks after Definition 4.1 we have T ◦ Wn(γ̂) = Wn−1(γ̂) ◦ T hence
T ◦ Wn(γ̂) = Wn−1(γ̂) ◦ T , and by the identification of Bn and Bn−1

with respectively Wn(K)/℘(Wn(K)) and Wn−1(K)/℘(Wn−1(K)), the map
T ◦ βn(γ) corresponds to T ◦Wn(γ̂) and the map βn−1(γ) ◦ T corresponds
to Wn−1(γ̂) ◦ T . Therefore T ◦ βn(γ) = βn−1(γ) ◦ T . �

5. Application to the conjugacy classes of series of order pn.

We are looking for a way to characterize conjugacy classes of series of
order pn for any n. We recall that Xn is the set of pairs (L, σ) where L/K
is a cyclic totally ramified extension of degree pn and σ a generator of
Gal(L/K). We denote by Yn the set of conjugacy classes in G0(k) of series
of G0(k) of order pn. For any σ ∈ G0(k), [σ] is the conjugacy class of σ in
G0(k).

5.1. Filtration over G0(k).
For any g ∈ G0(k), the ramification number i(g) of g is vK(g(t)

t − 1). By
convention, the ramification number of identity is ∞. By identification of
G0(k) with the group Autcontk(K), we define a filtration on G0(k) corre-
sponding to the ramification filtration of Autcontk(K) in lower numbering
([12], p.69). We recall that if σ is an automorphism of K fixing k, we put

i(σ) = vK

(πσ

π
− 1

)
where π is a prime element of K, for example t. The map i is central, i.e.
it doesn’t depend of the choice of the prime element, and is an order func-
tion of a filtered group over Autcontk(K) which is called the ramification
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filtration in lower numbering. Then we can define on G0(k) the following
filtration:

Gj(k) = {σ such that i(σ) ≥ j}.
For all j, the set Gj(k) is the group of series belonging to G0(k) whose ram-
ification number is greater than or equal to j. One gets the isomorphisms:
G0(k)/G1(k) ' k∗ and for all j ≥ 1, Gj(k)/Gj+1(k) ' k.

5.2. The map λn.
We define in this paragraph a map between Xn and Yn.

Definition 5.1. We define the map λn : Xn → Yn in this way: if (L, σ) ∈
Xn we choose a prime element π ∈ L and we define λn(L, σ) as the conju-
gacy class of the series σ(π) ∈ L = k((π)).

Firstly, we will verify that λn is well-defined, i.e. it doesn’t depend on
the choice of the prime element π.

Let π and π′ be two prime elements of the field L. Then we have two
functions f and f ′ such that f(π) = πσ and f ′(π′) = π′σ. We thus can
write π′ as a series in π, and there exists in this way ϕ in G0(k) such that
π′ = ϕ(π) where k((π′)) = k((π)). So we get on one hand f ′(π′) = f ′(ϕ(π))
and on the other hand f ′(π′) = π′σ = ϕ(π)σ = ϕ(πσ) = ϕ(f(π)), since the
maps ϕ and σ commute by continuity of σ. So f ′ ◦ϕ = ϕ◦f , and this shows
that λn is independent of the choice of the prime element.

5.3. Some ramification properties of λn.
We will show in this paragraph that the map λn satisfies some properties

about the ramification between Xn and Yn.

Proposition 5.2. The map λn is surjective and respects the ramification,
i.e. i(σ) = i(λn(L, σ)).

Proof. The map λn is surjective. Indeed, let f be an element in G0(k) of
order pn and define G = {h 7→ h ◦ f◦i such that 1 ≤ i ≤ pn} the automor-
phism group of K of order pn and KG = {h such that h ◦ f◦i = h} the
invariant field of G. By Artin’s theorem, K is a Galois extension of KG of
order pn and of Galois group G so it is a cyclic extension. By a theorem
due to Samuel [10], we obtain KG = k((s)) with s =

∏pn

i=1 f
◦i(t) = NG(t)

where NG is the norm of the extension L/K. So KG ' K by an iso-
morphism χ fixing each element of k and sending s to t. Let P be the
irreducible polynomial of K over KG = k((s)) so that K ' KG[X]/(P ) and
put L = K[X]/(χP (X)). The isomorphism χ is extended by an isomor-
phism χ̃ from K to L. Hence AutK(L) = χ̃Gal(K/KG)χ̃−1 so L/K is a
cyclic extension of degree pn. As χ and each element of G fix the elements
of k, then the extension L/K is totally ramified. Put σ = χ̃f̂ χ̃−1 then
λn(L, σ) = [f ] and so i(σ) = i(λn(L, σ)). �
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For all integers j ∈ {0, 1, ...n}, let Kj be the subextension of L/K of
degree pj . The extension L/Kj has degree pn−j . The set of extensions (Kj)j

form an increasing extension tower in L/K, thus we get the Galois group
filtration:

G(L/K) = G(L/K0) ⊃ G(L/K1) ⊃ ... ⊃ G(L/Kn−1) ⊃ G(L/Kn) = {1}.
Put, in lower numbering:

ij(L, σ) = max{ν ∈ N such that Gal(Kj+1/K)ν 6= {1}}.
Let [σ] be the conjugacy class of the series σ in G0(k). On Yn, we put:

ij([σ]) = i(σ◦p
j
) = vK

(σ◦pj
(t)
t

− 1
)

So we get, ij([σ]) = i(σ◦p
j
) = i(λn(L, σ◦p

j
)) by the previous proposition.

Let (L, σ) ∈ Xn and [σ] be the image by λn of (L, σ). We get by this
way:

Corollary 5.3. The surjective map λn of Xn on Yn preserves the ramifi-
cation breaks, that is for all integers j ∈ 0, 1, ..., n− 1, we have ij(L, σ) =
ij([σ]).

5.4. k-isomorphism.
This paragraph gives a characterization for two pairs (L1, σ1) and (L2, σ2)

to be in the same image under λn.
Two pairs (L1, σ1) and (L2, σ2) are k-isomorphic if there is a bi-continuous

isomorphism θ from L1 to L2 such that θ(K) = K and θ ◦ σ1 = σ2 ◦ θ.

Proposition 5.4. Two pairs (L1, σ1) and (L2, σ2) have the same image by
λn if and only if they are k-isomorphic.

Proof. Choose prime elements π1 of L1 and π2 of L2 so that L1 = k((π1))
and L2 = k((π2)) and thus t = f1(π1) = f2(π2) where f1 and f2 are two
series. Since σ1 is a series in π1 and σ2 a series in π2 then there is a series
s1 in G0(k) such that gσ1 = g ◦ s1 for all g in L1 and in the same way, there
exists s2 such that gσ2 = g ◦ s2 for all g in L2.

Assume firstly that (L1, σ1) and (L2, σ2) are k-isomorphic and prove they
have the same image by λn. Let ϕ be a series of G0(k) such that πθ

1 = πϕ
2 .

On one hand, we have:

σ1(πθ
1) = (σ1(π1))θ = sθ

1 = s1(πθ
1) = s1(π

ϕ
2 ),

and on the other hand:

σ2(πθ
1) = σ2(π

ϕ
2 ) = (σ2(π2))ϕ = (s2(π2))ϕ = s2(π2)ϕ.

By hypothesis, θ ◦ σ1 = σ2 ◦ θ so s1(π
ϕ
2 ) = s2(π2)ϕ and s1 ◦ ϕ = ϕ ◦ s2.

Assume now that (L1, σ1) and (L2, σ2) have the same image by λn and
prove they are k-isomorphic. Denote respectively by G1 and G2 the Galois
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groups of L1/K and L2/K. Let π1 (resp π2) be a prime element of L1

(resp of L2) and let S ∈ G0(k) be a series such that for any automorphism
σ1 of G1, the series σ2 = S−1 ◦ σ1 ◦ S is an element of G2. Let θ be
the k-isomorphism of L1 to L2 defined by πθ

1 = S(π2). We show that θ
makes the pairs (L1, σ1) and (L2, σ2) k-isomorphic, that is θ(K) = K.
For x ∈ K, there is a unique series f1 in K such that x = f1(π1). We have
xθ = f1(π1)θ = f1◦S(π2). As xσ1 = x, since x ∈ K, then f1◦σ1(π1) = f1(π1)
and so f1 ◦ σ1 = f1. Hence:

(xθ)σ2 = f1 ◦ S(π2)σ2 = f1 ◦ S ◦ σ2(π2) = f1 ◦ σ1 ◦ S(π2) = f1 ◦ S(π2) = xθ

and we get the result. �

5.5. Determination of conjugacy classes by the orbits of An.
We finish now by describing a bĳection between Yn and the orbits of An.

Lemma 5.5. Let α ∈ Wn(K) and suppose that L = K(α) is an extension
of K of degree pn. Let a = ℘(α) and ϕ be a field homomorphism from K to
another field K ′. Let δ be a Witt vector such that ℘(δ) = ϕ(a) then ϕ may
be extended to a unique homomorphism ϕ̃ from L to L′ = K ′(δ) such that
ϕ̃(α) = δ.

Proof. If n = 1, let a ∈ K and α such that ℘(α) = a. Let P = Xp−X−a ∈
K[X]. Since the degree of α on K is p then P is the minimum polynomial of
α so it is irreducible. Let δ be a root of Xp−X−ϕ(α). Hence ℘(δ) = ϕ(a).

Now, if the assertion is true for vectors of length less than n. Let T (α) and
T (δ) be the truncation of α = (α0, ..., αn−1) and δ of length n− 1. There is
ϕ̂ such that ϕ̂(T (α)) = T (δ). We have K(α) = K(T (α))(αn−1). By Lemma
2.2, an−1 = αp

n−1−αn−1+∆(α0, ..., αn−2) with ∆ a polynomial with integer
coefficients. As ϕ(a) = ℘(δ) so ϕ(an−1) = δp

n−1− δn−1 +∆(δ0, ..., δn−2). For
any j ≤ n− 2 we have ϕ̂(αj) = δj , we obtain the result. �

Theorem 5.6. There is a bĳection determined by λn between Yn and the
orbits of An under the action βn of G0(k) on An.

Proof. We want to prove that a and a′ are two elements in the same orbit
of An under the action βn if and only if they define two k-isomorphic pairs
(L, σ) and (L′, σ′) with L = K(℘−1(a)), L′ = K(℘−1(a′)) and σ and σ′ two
generators of respectively Gal(L/K) and Gal(L′/K).

Let γ ∈ G0(k) such that γa − a′ ∈ ℘(Wn(K)). By Artin-Schreier-Witt
theory, a′ and γa define the same extension. So we have to prove the exis-
tence of a k-isomorphism γ̃ between L = K(℘−1(a)) and L′ = K(℘−1(γa)).
Let α and α′ be the Witt vectors such that ℘(α) = a and ℘(α′) = γa,
so [a, σ〉 = σ(α) − α and [γa, σ′〉 = σ(α′) − α′. By Lemma 5.5, there is a
homomorphism γ̃ from L to L′ such that (σ′ ◦ γ̃)(α) = σ′(α′) = α′ + 1 in
K(α′) and we obtain (γ̃ ◦ σ)(α) = γ̃(α+ 1) = γ̃(α) + γ̃(1) = α′ + 1. Hence
γ̃ is a k-isomorphism between (L, σ) and (L′, σ′).
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Conversely, let a and a′ be two elements of An such that there exists a
k-isomorphism θ between (K(℘−1(a)), σ) and (K(℘−1(a′)), σ′).

Let γ be the series γ(t) ∈ K. We want to find the homomorphism θ = γ̃
where γ is the restriction of θ in the field K. Let σ and σ′ be generators of
Gal(K(℘−1(a))/K) and Gal(K(℘−1(a′))/K) such that [a, σ〉 = [a′, σ′〉 = 1.

We are looking for a series γ ∈ G0(k) such that a′ = βn(γ)a, i.e. a′ =
γa modulo ℘(Wn(K)). If we put γ = θ(t) we have then to show that:

[a′ − γa, σ′〉 = 0 ⇒ [a′, σ′〉 − [γa, σ′〉 = 0

⇒ 1− [γa, σ′〉 = 0

⇒ 1− [θ(a), σ′〉 = 0

⇒ 1− σ′(θ(α)) + θ(α) = 0.

And this is true since ℘(θ(α)) = γa and a = ℘(α) so ℘(θ(α)) = θ(a). �

Corollary 5.7. If two elements of An lie in the same orbit of An by the
action βn then they have the same ramification breaks.

Proof. Let a ∈ An and a′ ∈ An be in the same orbit under the action
βn. Let (un)n and (u′n)n the sequences of ramification breaks of a and a′.
By Theorem 3.8, the bĳection between An and Xn preserves ramification
breaks so (un)n and (u′n)n are the sequences of ramification breaks of (L, σ)
and (L′, σ′), where (L, σ) and (L′, σ′) correspond respectively to a and a′.
Ramification breaks are preserved by λn (Corollary 5.3), so (un)n and (u′n)n

are the sequences of ramification breaks of [σ] and [σ′] where [σ] and [σ′]
are the elements of Yn corresponding to (L, σ) and (L′, σ′). Since a and
a′ are in the same orbit, by Theorem 5.6, they correspond with the same
conjugacy class in Yn. So [σ] = [σ′] and the sequences (un)n and (u′n)n are
equal. �

Remark. It should be interesting to find a more direct proof, that is a
proof which does not use the map λn.
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