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Density of rational points on cyclic covers of Pn

par Ritabrata MUNSHI

Résumé. Nous obtenons une majoration de la densité des points
rationnels sur les revêtements cycliques de Pn. Quand n → ∞
notre estimation tend vers la majoration conjecturale de Serre.

Abstract. We obtain upper bound for the density of rational
points on the cyclic covers of Pn. As n → ∞ our estimate tends
to the conjectural bound of Serre.

1. Introduction

Let Pn denote the n-dimensional projective space over the field of rational
numbers. For a finite cover f : X → Pn over Q, one can define a counting
function

N(f,B) = |{P ∈ X(Q) : H(f(P )) ≤ B}|,
where H is the standard multiplicative height function defined on Pn. If
the degree of f is at least two, Serre [10] proved that

N(f,B) � Bn+ 1
2 (log B)γ

with γ < 1. Here the implied constant depends both on f and γ. Serre’s
proof is based on an analogous result proved by Cohen [3] in the affine case.
The proof is a beautiful application of the large sieve inequalities. Serre [10]
also conjectures that one should have

N(f,B) � Bn(log B)c,

for some c. Broberg [2] almost settled Serre’s conjecture for covers of the
projective line and the projective plane. More precisely, he proved:

(1) If f : X → P1 is a cover of degree d, then for every ε > 0 we have

N(f,B) �ε,f B
2
d
+ε.

(2) If f : X → P2 is a cover of degree d > 2, then for every ε > 0 we have

N(f,B) �ε,f B2+ε.

In the case d = 2, we have

N(f,B) �ε,f B
9
4
+ε

for every ε > 0.
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Broberg’s method is based on that introduced by Heath-Brown in [7].
These methods, though elementary, have proved to be powerful in many
situations. In fact the last result of Broberg for degree two covers of P2,
is the best known result towards Manin’s conjecture, which predicts the
exponent to be 1 + ε, for del Pezzo surfaces of degree 2. Here we will give
a slightly better estimate albeit at the cost of employing heavy machinery.

To this end let F (x0, . . . , xn) be an irreducible homogenous polynomial of
degree md, with d > 1. Moreover suppose that the projective hypersurface
defined by F (x) = 0 is smooth. Then the equation

yd = F (x0, . . . , xn)

defines a variety X in the weighted projective space P(m, 1, . . . , 1), where y
is given weight m and each xi is given weight 1. This variety can be viewed
as a cyclic d-sheeted cover of the projective space Pn, via the natural map

f : X → Pn;

(y, x0, . . . , xn) 7→ (x0, . . . , xn).

This cover is ramified above the hypersurface F (x) = 0. Using adjunction
formula one easily verifies the canonical sheaf of X to be

ωX = OX(−m + md− n− 1).

Hence, if the parameters n, m and d are such that

md−m < n + 1

then the variety X is a Fano variety, i.e. the anticanonical sheaf is ample.
In this case we have a more precise conjecture due to Manin et al ([1], [5]),
regarding the density of rational points.

In this paper, we employ the power sieve together with Poisson summa-
tion formula, and deep results of Deligne [4], and of Katz [9] about cancel-
lation in mixed character sums over finite fields, to estimate the number of
d-powers in the set

{F (x0, . . . , xn) : −B < xi < B}

with some smooth weight W . This will give us our main result.

Theorem 1.1. Let f : X → Pn be a finite cyclic cover of Pn over Q. Then
we have

N(f,B) �f Bn+ 1
n+2 (log B)

n+1
n+2 .

Remark. In the special case of cyclic covers our result is better than that
of Serre [10]. Also it is exciting to note that as the dimension n gets larger
our bound comes closer to the conjectured bound of Serre.
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Remark. For n = 2 and d = 2 our result gives

N(f,B) � B
9
4 (log B)

3
4 ,

which improves the result of Broberg by an ε. However, for n = 2, d > 2
our result is worse.

2. Power sieve

In this section we briefly recall the concept of d-power sieve (see [6] for
d = 2). Let p be a prime such that p ≡ 1 (mod d). Then for every non-zero
element a in the finite field Fp, we can define a d-th root of unity by a

p−1
d .

Now since F∗p is cyclic, we can define a non-canonical isomorphism

θp : F∗p → µp−1,

where µp−1 denotes the group of (p− 1)-th roots of unity in C∗. Using this
we can define a primitive Dirichlet character modulo p,

χp(n) = θp

(
n̄

p−1
d

)
for (p, n) = 1, and χp(n) = 0 for p|n. The crucial property of this character
is the following:

χp(n) = 1 if (p, n) = 1, and n = md for some m.

Now let A = (a(n)) be a finite sequence of non-negative quantities. We
are interested in estimating the sum over the d-powers

S(A) =
∑
n

a(nd).

Let P be a set of P primes each having residue 1 modulo d. Suppose that
a(n) = 0 if |n| ≥ eP , and consider the expression

S =
∑
n

a(n)|
∑
p∈P

χp(n)|2

Each n is counted with a non-negative weight, and if n = md and 0 < |n| <
eP then ∑

p∈P
χp(n) =

∑
p∈P

(p,n)=1

1 � P.

Hence P 2S(A) � S. Moreover

S =
∑

p,q∈P

∑
n

a(n)χp(n)χ̄q(n)

≤ P
∑
n

a(n) +
∑

p6=q∈P
|
∑
n

a(n)χp(n)χ̄q(n)|.

Hence we obtain the following:
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Lemma 2.1. Let P be a set of P primes each having residue 1 modulo d.
Suppose that a(n) = 0 for n = 0 and for |n| ≥ eP . Then

S(A) � P−1
∑
n

a(n) + P−2
∑

p6=q∈P
|
∑
n

a(n)χp(n)χ̄q(n)|.

3. Proof of Theorem 1

Let W : Rn+1 → R be a non-negative smooth function supported in the
dyadic box [−B,B]n+1, and such that the partial derivatives satisfy the
following bound:

|d
i0+···+inW (x0, . . . , xn)

dxi0
0 . . . dxin

n

| � B−(i0+···+in).

Then via integration-by-parts we note the following bound for the Fourier
transform

Ŵ (u) =
∫

Rn+1
W (x)e(−〈x,u〉)dx � Bn+1

n∏
i=0

(1 + |ui|B)−2

where u = (u0, . . . , un).
Then we define a sequence of non-negative numbers by

a(k) =
∑

x∈Zn+1,F (x)=k

W (x).

We wish to obtain an upper bound for

S(A) =
∑
k

a(kd)

using the d-power sieve. Now clearly we have∑
k

a(k) � Bn+1.

Hence to apply the lemma we need to estimate the sum

S(p, q) =
∑
k

a(k)χp(k)χ̄q(k) =
∑

x∈Zn+1

W (x)χp(F (x))χ̄q(F (x)),

where p and q are two distinct primes. Using Poisson summation formula
we obtain

S(p, q) =
∑

a (mod pq)

χp(F (a))χ̄q(F (a))
∑
x≡a

W (x)

= (pq)−(n+1)
∑

u∈Zn+1

g(u; p, q)Ŵ
( u
pq

)
,
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where

g(u; p, q) =
∑

a (mod pq)

χp(F (a))χ̄q(F (a))e
(〈a,u〉

pq

)
is a mixed character sum. Then we observe that the above sum satisfies the
following multiplicative property

g(u; p, q) = g(q̄u;χp)g(p̄u; χ̄q),

where pp̄ ≡ 1 (mod q), qq̄ ≡ 1 (mod p) and

g(u;χp) =
∑

a (mod p)

χp(F (a))e
(〈a,u〉

p

)
.

So our job is reduced to estimating the mixed character sum over the
finite field Fp. Let V be the hypersurface defined by F (x) = 0 over the
field of rationals. Let V ∗ be its dual variety, which in this case is again a
hypersurface. Assuming that the prime p is such that the reduction Vp =
V (mod p) is smooth, we have three situations:

(1) First suppose that the vector u ∈ Zn+1 is such that u ≡ 0 (mod p),
then

g(u;χp) =
∑

a (mod p)

χp(F (a)) � p
n+1

2 ,

where the implied constant depends only on n and the degree of F . This
follows from the multiplicative analogue of Deligne’s bound established by
Katz [8].

(2) If u (mod p) is non-zero and the associated hyperplane 〈u,x〉 = 0 is
not a tangent to the hypersurface Vp, then by Theorem 1.1 in [9] we have
square-root cancellation i.e.

g(u;χp) � p
n+1

2 .

Here again the implied constant depends only on n and the degree of F . In
particular, it does not depend on u.

(3) If u (mod p) is non-zero and the associated hyperplane 〈u,x〉 = 0 is a
tangent to the hypersurface Vp, then using the primitivity of the character
we get

g(u;χp) =
χp(−1)τ(χp)

p

∑
b (mod p)

χ̄p(b)
∑

a (mod p)

e
(bF (a) + 〈a,u〉

p

)
,

where τ(χ) stands for the Gauss sum of the character χ. Then we apply
Deligne’s bound [4] to the inner sum to obtain

g(u;χp) �
√

pp
n+1

2 .

Again the implied constant depends only on n and the degree of F .
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In the first two cases we say that the vector u ∈ Zn+1 is ‘good’ modulo
p. In the third case we say that u is ‘bad’ modulo p.

We first compute the contribution to S(p, q) from those vectors u ∈ Zn+1

which are ‘good’ modulo both p and q. Using square-root cancellation we
see that this is bounded by

� Bn+1 (pq)
n+1

2

(pq)n+1

∑
u∈Zn+1

n∏
i=0

(
1 +

|ui|B
pq

)−2
� (pq)

n+1
2 .

In the last inequality we are assuming that pq ≥ B, which follows from our
choice of the set P. Now the contribution of those vectors u ∈ Zn+1 which
are ‘bad’ for the prime p but ‘good’ for the prime q is given by

(pq)−(n+1)
∑

v∈V ∗
p (Fp)

p∑
λ=1

∑∗

u≡λv (mod p)

g(u; p, q)Ŵ
( u
pq

)
.

The ∗ above the sum indicates that the sum is restricted over those vectors
u ∈ Zn+1 which are ‘good’ modulo q. The above expression is bounded by

Bn+1 p
n+2

2 q
n+1

2

(pq)n+1

∑
v∈V ∗

p (Fp)

p∑
λ=1

∑∗

u≡λv (mod p)

n∏
i=0

(
1 +

|ui|B
pq

)−2

�Bn+1 p
n+2

2 q
n+1

2

(pq)n+1

∑
v∈V ∗

p (Fp)

p∑
λ=1

( q

B

)n+1
� p

n
2 q

n+1
2 .

In the last inequality we have used the fact that |V ∗
p (Fp)| � pn−1. Similarly

one can show that the contribution of those vectors u ∈ Zn+1 which are
‘bad’ for both p and q, is bounded by (pq)

n
2 . Hence we conclude that

S(p, q) � (pq)
n+1

2 .

Now for the set P we pick P consecutive primes in the progression (1 +
dk)k of size ∼ P log P . Then using the d-power sieve inequality, we get

S(A) � Bn+1

P
+ (P log P )n+1.

Then choosing

P =
( B

log B

)n+1
n+2

the theorem follows.
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