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Landau’s problems on primes

par JANOs PINTZ

RESUME. Au congres international de Cambridge en 1912, Lau-
dau dressa la liste de quatre problémes de base sur les nombres pre-
miers. Ces problémes furent caractérisés dans son discours comme
“inaccessibles en I’état actuel de la science”. Ces problemes sont
les suivants :

(1) Existe-t-il une infinité de nombres premiers de la forme

n?417

(2) La conjecture (binaire) de Goldbach, que chaque nombre

pair supérieur a 2 est somme de deux nombres premiers.

(3) La conjecture des nombres premiers jumeaux.

(4) Existe-t-il toujours un nombre premier entre deux carrés

consécutifs ?

Tous ces problemes sont encore ouverts. Le travail présenté
ici est un exposé des résultats partiels aux probleémes (2)—(4),
avec une attention particuliere concernant les résultats récents de
D. Goldston, C. Yildirim et de 'auteur sur les petits écarts entre
nombres premiers.

ABSTRACT. At the 1912 Cambridge International Congress Lan-
dau listed four basic problems about primes. These problems were
characterised in his speech as “unattackable at the present state
of science”. The problems were the following :
(1) Are there infinitely many primes of the form n? + 1?
(2) The (Binary) Goldbach Conjecture, that every even number
exceeding 2 can be written as the sum of two primes.
(3) The Twin Prime Conjecture.
(4) Does there exist always at least one prime between neigh-
bouring squares?

All these problems are still open. In the present work a survey
will be given about partial results in Problems (2)—(4), with special
emphasis on the recent results of D. Goldston, C. Yildirim and the
author on small gaps between primes.

The author was supported by OTKA grants No. 67676, 72731, ERC-AdG No. 228005 and the
Balaton program.
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1. Introduction

In his invited address at the 1912 International Congress of Mathemati-
cians, held in Cambridge, Edmund Landau (1912) gave a survey about de-
velopments in the theory of prime numbers and the Riemann zeta-function.
Besides this he mentioned (without any further discussion) four specific
problems about primes which he considered as “unattackable at the present
state of science”. The four problems (in the original order) were the follow-
ing

(1) Does the function u? + 1 represent infinitely many primes for integer
values of u?

(2) Does the equality m = p + p’ have for any even m > 2 a solution?

(3) Does the equality 2 = p—p have infinitely many solutions in primes?

(4) Does there exist at least one prime between n? and (n + 1)? for any
positive integer n?

In the present work we will begin with some historical remarks referring
to these problems including the few results known in 1912 about those prob-
lems and analyse the connections between the four problems. After this we
will give a survey of the most important results of the past nearly 100 years.
We will discuss the results in connection with Problems (2)—(4) in more de-
tail and briefly those connected with Problem 1 (Section 19), with special
emphasis on recent developments concerning various approximations of the
Goldbach and Twin Prime Problems.

2. History of the problems and related results before 1912

Whereas the conjecture that there are infinitely many twin primes may
originate from the time of Euclid and Eratosthenes, it seems that it ap-
peared first in print in the work of de Polignac (1849), although in a more
general form already. We know much more about the origin of Goldbach’s
Conjecture, however there are some interesting (and partly not well known)
facts to mention concerning its origin. In a letter to Euler, written June 7,
1742, Goldbach formulated his conjecture in two different forms. The first
one asserted that
if a number IV is the sum of two primes, then it
can be written as a sum of arbitrarily many primes.

(2.1)

In these formulations we have to keep in mind that in his time the number
one was considered to be a prime. The second formulation was interestingly
found on the margin of the same letter. This states that
(2.2)

every number greater than 2 can be written as the sum of three primes.

Euler pointed out in his answer of June 30 that the first formulation of
Goldbach’s Conjecture follows from the conjecture that every even number
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can be written as the sum of two primes. As Euler remarks in his letter
this latter conjecture was communicated to him earlier orally by Goldbach
himself. So it is really justified to attribute the Binary Goldbach Conjecture
to Goldbach. The correspondence of Euler and Goldbach appeared already
in 1843 (cf. Fuss (1843)). While the second formulation (2.2) of Goldbach
is clearly equivalent to the usual Binary Goldbach Conjecture, this is not
obvious with the first formulation (2.1). However, surprisingly, this is really
the case. Let us suppose namely that an even number 2k is the sum of two
primes. Then 2k is also a sum of three primes. One of them has to be even,
so 2k — 2 is also a sum of two primes. Continuing the procedure we see that
every even integer below 2k is the sum of two primes. Since all numbers of
the form 2p are sums of two primes, the usual Binary Goldbach Conjecture
follows from the existence of arbitrarily large primes.

Waring stated Goldbach’s Problem in 1770 (Waring (1770)) and added
that every odd number is either a prime or is a sum of three primes.

It is much less well known that Descartes formulated a related but not
equivalent conjecture much earlier than Goldbach since he died already in
1650. According to this every even number is the sum of at most 3 primes.
It is unclear why he formulated this only for even integers, but it is very
easy to show that this is equivalent to the following, more natural version
(where we do not consider one to be prime):

Descartes’ Conjecture. Every integer greater than one can be written as
the sum of at most 3 primes.
Let us introduce the following

Definition. An even number is called a Goldbach number (their set will
be denoted by G further on) if it can be written as the sum of two primes.

Then it is easy to see that the Descartes’ Conjecture is equivalent to
(2.3) If N >2iseven, then NeGor N-2¢€g.

It is worth remarking that (as one can easily derive from (2.3)) Descartes’
Conjecture is equivalent to a stronger form of it, namely

Every integer greater than 1 can be written as a sum of three
(2.4)  primes, where the third summand, if it exists, can be chosen as
2,3 or 5.

Although Descartes’ Conjecture is not equivalent to Goldbach’s, the
question arises: could Euler or Goldbach have been aware of Descartes’
Conjecture? Theoretically yes, since some copies of his notes and manu-
scripts circulated in Europe. However, the above two-line long conjecture
was not included in his collected works which appeared in 1701 in Amster-
dam. It is only contained in the edition of Descartes (1908), under Opuscula
Posthuma, Excerpta Mathematica (Vol. 10, p. 298).
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Apart from a numerical verification by Desboves (1855) up to 10,000 and
Ripert (1903) up to 50,000 actually no result was proved before Landau’s
lecture. We have to mention however the conjectural asymptotic formula
of J. J. Sylvester (1871) for the number P5(n) of representation of an even
n as the sum of two primes:

(2.5) Py(n) ~ 4e7Co—s— [ (1 + 1) ,

log“n pin p—2
p>2

where Cj is the so-called twin prime constant,

(2.6) Co=1]] (1 — (1) =0.66016... .

_ 2
e p—1)

Here and later p (as further on p/, p”, p;) will always denote primes, P will
denote the set of all primes.

It was proved later by Hardy and Littlewood (1923) that this formula is
definitely not correct. They made the same conjecture with 4¢~7Cj replaced
by 2Cp. By now, we know that the analogue of (2.5) with 2Cj is true for
almost all even numbers.

The only area where some non-trivial results existed before Landau’s
lecture was Problem 4 about large gaps between primes. Bertrand (1845)
stated the assertion — called Bertrand’s Postulate — that there is always
a prime between n and 2n. The same assertion — also without any proof
— appeared about 100 years earlier in one of the unpublished manuscripts
of Euler (see Narkiewicz (2000), p. 104). Bertrand’s Postulate was proven
already 5 years later by éebyéev (1850). He used elementary tools to show

(2.7) 092129 < 7(x) < 1.10555——— for & > o,
log log

where 7(z) denotes the number of primes not exceeding x. Further on we
will use the notation

(2'8) dp = Ppt1 — Pn-
éebyéev’s proof implies

6
(2.9) dy < (5 + 5) pn for n > ng(e).

The next step
(2'10) d, = 0(pn)
was a consequence of the Prime Number Theorem (PNT)

~lix = di

(2.11) m(z) = J Togt’

- log
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shown simultaneously using different arguments by J. Hadamard (1896)
and de la Vallée Poussin (1896).
The last step before 1912, the inequality

(2.12) dp < ppn €xp (—c\/logpn)

was a consequence of the Prime Number Theorem with remainder term

(2.13) m(z) =liz+ O (x exp(—cy/log a:)) ,

proved by de la Vallée Poussin (1899).

Finally we mention that H. Brocard (1897) gave an incorrect proof of
the closely related conjecture that there exists a prime between any two
consecutive triangular numbers. This shows that Problem 4 of Landau was
examined before 1912, although in a slightly different form.

As we mentioned already, the Twin Prime Conjecture appeared in print
already the first time in a more general form, due to de Polignac (1849):

Every even number can be written in an infini-
(2.14) tude of ways as the difference of two consecutive
primes.

Kronecker (1901) mentioned the same conjecture (with reference to an
unnamed writer) in a weaker form as

Every even number can be expressed in an in-

(2.15) finitude of ways as the difference of two primes.

Maillet (1905) commented on de Polignac’s conjecture that
(2.16) Every even number is the difference of two primes.

When the even number is 2 or 4 then (2.14) and (2.15) are equivalent,
otherwise (2.15) is weaker than (2.14), while (2.16) is weaker than (2.15).
The form (2.16) is trivial for every concrete small even number and today
we know its truth for almost all even numbers. In strong contrast to this
we do not know whether there is any number for which (2.15) or (2.14) is
true.

The Goldbach and Twin Prime Conjecture were mentioned in the cele-
brated address of Hilbert at the International Congress of Mathematicians
in Paris, 1900 (see Hilbert (1935)). In his Problem No. 8 he mentioned them
together with the Riemann Hypothesis, using the following words:

“After a comprehensive discussion of Riemann’s prime number formula
we might be some day in the position to give a rigorous answer on Gold-
bach’s Problem, whether every even number can be expressed as the sum
of two primes, further on the problem whether there exist infinitely many
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primes with difference 2 or on the more general problem whether the dio-
phantine equation

(2.17) ar +by+c=0

is always solvable in primes x,y if the coefficients a, b, ¢ are given pairwise
relatively prime integers.”

There are close ties between Landau’s problems. These connections de-
pend strongly upon which formulation of the Conjectures (2.14)—(2.16) we
consider. The first two are really generalizations of the Twin Prime Con-
jecture, the third one, (2.16), is obviously trivial if the difference is two. As
the cited lines of Hilbert’s lecture also indicate, both Goldbach’s Conjec-
ture and the Twin Prime Conjecture are special cases of linear equations
of type (2.17) for primes. Using the formulation of (2.16) there is really a
very strong similarity between the equations p+p' = N and p—p' = N
for even values of V. In fact, most of the results for Goldbach’s Conjecture
are transferable to the other equation, too.

On the other hand, the Twin Prime Conjecture is also connected with
Problem 4. The former one refers to the smallest possible gaps between
consecutive primes, the latter one to the largest possible gaps.

Finally, the Twin Prime Conjecture and Problem 1 admit a common
generalization, formulated first by A. Schinzel (Schinzel, Sierpifiski 1958):
if fi1,..., fx are irreducible polynomials in Z[X]| and their product does
not have a fixed factor, then for infinitely many integers n all values f;(n)
are prime. Bateman and Horn (1962) formulated a quantitative form of
it. The special case f;(x) = x + h;, hy € Z of Schinzel’s conjecture was
formulated by L. E. Dickson (1904) more than a hundred years ago, while
the quantitative version of it is due to Hardy and Littlewood (1923). In the
simplest case & = 2, Dickson’s conjecture is clearly equivalent to (2.15).
On the other hand, if £ = 1 and f(z) = ax + h, then this is Dirichlet’s
theorem (see Dirichlet (1837). Landau’s Problem No. 1 is the simplest case
of Schinzel’s conjecture if & = 1 and deg f > 1. There is no single non-
linear polynomial for which we know the answer to Schinzel’s conjecture,
even for k = 1. However, if primes are substituted by almost primes, then
Schinzel’s conjecture is true in the case k = 1 for an arbitrary polynomial f
(see Section 19 for the case when f is an irreducible polynomial).

According to the above connections between Landau’s problems we will
organize the material into four areas as follows (the first three discussed in
detail, the fourth one briefly):

(i) Large gaps between primes

(ii) Small gaps between primes and the prime k-tuple conjecture of Dick-
son, Hardy and Littlewood

(iii) Goldbach’s Conjecture and numbers of the form N = p; — py

(iv) Approximations to Problem No. 1.
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3. Upper bounds for large gaps between consecutive primes

As mentioned in Section 2, the only area where significant results existed
before 1912 was the upper estimation of the differences d,, = pn+1 — pn-
These estimations were trivial consequences of the deep results (2.7), (2.11)
and (2.13) concerning estimation and asymptotics of 7(z). However, this
approach has its natural limits. The Riemann—Von Mangoldt Prime Num-
ber Formula (cf. Davenport (1980), Chapter 17)

e zlog? x
(3.1) A(m)::d)(m)x::ZA(n)m:Zx+0< log >

n<a h<T T

(where 9o = 8 + iy denotes the zeros of Riemann’s Zeta-function, T' < x
and A(n) = logp if n = p™, A(n) = 0 otherwise) tells us that any zero p
itself implies an expected oscillation of size 27 /|o| for the remainder term
A(z). Answering a question of Littlewood, this was proved rigorously in
an effective way first by Turdn (1950), later in an improved form by Pintz
(1980a) and in the sharpest (in some sense optimal) form

1@ 7
e x8/oo] — 27

(3.2)

by Révész (1988).

The crucial observation that helps to produce improvements of the es-
timate (2.12) is that, subtracting the two formulas of type (3.1) for x + y
and x, we obtain

(3-3) Y(z+y) =)=y )

IyI<T

(r+y)? —a? zlog? x
+0 T

and in (3.3) any single zero o has only an effect of size

0 _ 0 B
(3.4) @tye—at _ o (zw,ymm) |
Y

which is alone always inferior to y. So, unlike in the problem of estimating
A(z) as in (3.2), one single zero itself can never destroy everything. It is the
number of zeros with large real part § and not too large imaginary parts
|v| that influences the estimation of d,. The earliest of such results, called
density theorems today, was proved by Carlson (1920):

(3.5) N(@T)= Y 1<riel-ote
((0)=0
Bza,|y|<T
Based on this, Hoheisel (1930) could reach the first result of type
(3.6) dy < pSt (91 <1)

with the value ¥; =1 —1/33 000.
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His result was improved later significantly as

V1 =3/4+4¢ Cudakov (1936),

Y1 =5/8+4¢ Ingham (1937),

Y1 =3/5+¢ Montgomery (1969),
1 =T7/124¢ Huxley (1972).

The result of Ingham shows that we always have primes between n3 and
(n+1)3 if n is sufficiently large. These results all showed beyond (3.6) that
the PNT is valid in intervals of length 21,

Y
log

(3.7) m(x+y) —7w(z) ~ (y = o).

Riemann’s Hypothesis (RH) implies (cf. v. Koch (1901))
(3.8) A(z) < Vrlog?
and thereby
(3.9) dp < Vzlog? z.
This result was improved under RH by Cramér (1920) to
(3.10) d, < \/rloguz,

which still falls short of answering Landau’s question No. 4 positively, even
assuming the RH.

In the case of the unconditional estimates the exponent 7/12 is still the
best one known for which (3.7) holds. However, concerning (3.6), a break-
through occurred when Iwaniec and Jutila (1979) obtained by an ingenious
combination of analytic and sieve methods the result

(3.11) 9y = 13/23.

An important theoretical consequence of the results of Iwaniec and Jutila
was to overcome the ‘parity obstacle’ (to be discussed later in Sections 10—
11) which in general prevents sieve methods from revealing the existence
of primes in a suitable set (cf. Greaves (2001) p. 171).

The later developments all used both analytic and sieve methods and
showed, similarly to Iwaniec and Jutila (1979), an inequality weaker than
(3.7) but stronger than (3.6), namely

Y
log

(3.12) m(x +y) —7w(x) > (y =a™).
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Y1 =11/20 Heath-Brown, Iwaniec (1979),
91 = 17/31 Pintz (1981, 1984),
¥ = 23/42 Iwaniec—Pintz (1984),
(3.13) Y =11/20 — 1/384  Mozzochi (1986),
v =6/11 Lou—-Yao (1992, 1993),
v =17/13 Lou—-Yao (1992, 1993),
Y1 = 107/200 Baker-Harman (1996).

Finally the best known result is

Theorem (Baker-Harman—Pintz (2001)). d, < pil/ 40

If we are contented with results which guarantee the existence of primes
in almost all short intervals of type

(3.14) [z, +y], y=a2",
then the method of Huxley (1972) yields this with (3.7) for
(3.15) 99 = 1/6 +¢.

Further, the combination of analytic and sieve methods led to (3.12) in
almost all short intervals with

Y9 =1/104+¢  Harman (1982)

Y9 =1/144+¢  Ch. Jia (1995a), Watt (1995)
9y =1/15+¢ H. Z. Li (1997)

Yo =1/204+¢  Ch. Jia (1996a).

(3.16)

These results will also have later significance in the examination of gaps
between consecutive Goldbach numbers in Section 14.

Landau’s Problem No. 4 can be approximated in other ways if primes
are substituted by almost primes. We call an integer a P, number if it has
at most 7 prime factors (counted with multiplicity). Already Viggo Brun
(1920) showed that there is a Pj; number in any interval of type (z, z++/z)
for > ¢ (consequently between neighboring squares, if n > ng). After
various improvements, J. R. Chen (1975) showed this for P, numbers, too.

Another approach is to show that we have a number n in every interval
of type (x,z + /x) such that the greatest prime factor of it

(3.17) P(n) > n®

with a ¢; < 1, possibly near to 1. The first and the last results of this type
are

1 =15/26 = 0.5769 ... Ramachandra (1969),
c1 =0.738 H. Q. Liu, J. Wu (1999).

It is interesting to observe that if we consider the slightly larger interval
[z, z+azt/ 2+¢] then we have already numbers with much larger prime factors,

(3.18)
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namely P(n) > n“, where again the earliest and the latest results are the
following

ca=2/3—¢ Jutila (1973),

3.19
(3.19) ¢y =25/26 —e Ch. Jia, M. Ch. Liu (2000).

We mention that the methods leading to the strong results about P(n),
use, similarly to the work of Iwaniec and Jutila, a combination of ana-
lytic and sieve methods including the linear sieve with Iwaniec’s bilinear
expression of the error term.

4. The expected size of large gaps. Cramér’s probabilistic model

Empirical data suggest that the largest gaps between primes are much
smaller than the size d,, < 2,/p, which would imply Landau’s conjecture
(and is of about the same strength). It was Cramér who first used a prob-
abilistic approach to predict the size of the largest possible gaps between
consecutive primes. His probabilistic model (Cramér (1935, 1936)) is a good
starting point to formulate conjectures about the asymptotic behaviour of
primes. Based on the Prime Number Theorem (2.11) he defined the inde-
pendent random variables £(n) for n > 3 by

(4.1) P(6y=1)= ——, P(6=0)=1——

:logn’ logn’

On the basis of his model he conjectured

(4.2) lim sup d+ =1,
n—00 log DPn
which would be true with probability 1 in his model.

This model would predict the truth of all four conjectures of Landau and
seemed to agree with our knowledge about primes when used for appropri-
ate problems. The Cramér model (CM) predicts asymptotically the same
number of even and odd primes below a given bound, which is clearly not
true. That was not an issue as long as the mathematical community be-
lieved it knew which were the appropriate problems for the model. Cramér’s
model predicted the truth of PNT in short intervals of size (logx)* for any
A > 2, for example, that is, the relation (cf. (3.7))

Y
logz’

(4.3) m(x+y)—7(x) ~ y = (logz)*, X>2.

It is naturally quite difficult to check numerically conjectures like (4.3)
for all short intervals for really large values of x. However, the general
belief was that this is an appropriate problem and CM can be applied to
predict relations like (4.3) despite the obvious deficiencies of the model. It
was therefore a great surprise when Maier (1985) showed that, taking an
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arbitrarily large fixed A, the relation (4.3) will be always false for suitable
values 2,4, = (logz,)* — oco.

As explained in Granville (1994, 1995) the reason why CM makes an
incorrect prediction for (4.3) is the same as mentioned already: the model
does not contain the trivial information that primes have no small divisors.
If CM is corrected in the way that all numbers having a divisor below a
given parameter z = z(z) (with % — 00) are a priori excluded from
the set of possible primes (and the remaining numbers are chosen with a
probability proportional to 1/logn), then the contradiction discovered by
Maier disappears. The corrected CM (CCM) will predict falsity of (4.3) for
a suitable (rare) set of short intervals. On the basis of this corrected model,
Granville (1993) conjectures that (4.2) holds with 1 replaced by 2e™".

However, the present author has shown that any type of modification
preserving the independence of the variables &, will still be in a ‘non-trivial’
contradiction with the true distribution of primes. Specifically, we still have
a contradiction with the global result

(4.4) )1(7<7T(x) S
0

Vire S

2<n<zx log n ’ 10g2 X ’

valid on RH. If RH is not true, then we have a much more significant
contradiction with CM-type probabilistic models, since then we have much
larger oscillation than v/ X as shown by the result (3.2) of Révész. We
remark that in case of existence of zeros with §y > 1/2, also the average
size of the error is larger, as shown first by Knapowski (1959) and later in
a stronger form by Pintz (1980b, c).

What makes the contradiction between (4.4) and Cramér’s model more
peculiar is the fact that the result (4.4) was proved 15 years before the
discovery of Cramér’s model and the mathematician who showed (4.4) was
Harald Cramér (1920) himself.

The theorem below shows that in order to avoid conflict with reality,
our set from which we choose our ‘possible primes’ (which was the set of
numbers without prime divisors of size O(log* ) for any A earlier) has to
coincide nearly exactly with the set of primes. Our freedom is just to add
a thin set of composite numbers to the primes whose cardinality is less
than that of the primes by a factor at least clogx. This means that any
reasonable new model has to give up the simple condition of independence.

Theorem 1 (J. Pintz (2007)). Let x be a large even number, I = (x/2,z]N
Z. Let S} be arbitrary with

|1

|55

(4.5) Pr=PNICS CI A=
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Let us define independent random variables n, for alln € I as

(4.6) =0 ifne¢sS
while for n € S} let
A A
4. Pn,=1 P(n, =0)=1—
(4.7) (n=1) = logn’ (7 = 0) log 1

Then the truth of the relation

(4.8) D2<Z nn)

et ot

implies
* * x
(4.9) 1Sz \Pal < loo? 2
og“x
5. Lower bounds for large gaps between primes. The
Erdés—Rankin Problem
The Prime Number Theorem (2.11) obviously implies

d
(5.1) A := lim sup
n—oo 10gn
This was improved to A > 2 by Backlund (1929) and A > 4 by Brauer,
Zeitz (1930). Soon after this, further improvements were made. Westzyn-
thius (1931) proved just one year later that A\ = oo, by showing

d
(5.2) lim sup = > 2e7,
n—0o logpn logs prn/ logy pn

where log,, z denotes the v-fold iterated logarithmic function. Erdés (1935)
succeeded in improving loglog log p,, to loglog p,,. More precisely, he proved

d
(5.3) lim sup - >0
n—oc log pn logy pn/(10g3 pn)

Rankin (1938) was able to add a further factor log, p,, to it:

(5.4) lim sup G > ¢ with ¢ =1/3.
n—oo log pn 10g2 Pn 10g4 pn/(lOgS pn)

The value of ¢p = % was increased to €? by Ricci (1952) and Rankin
(1962/63).

In 1979 Erdés offered a prize of USD 10,000 for the proof that (5.4) is true
with ¢y = oo, the highest prize ever offered by Erdés for any mathematical
problem. Two improvements of the constant ¢y were achieved in the past
28 years. Maier and Pomerance (1990) showed this with ¢g = 1.31...¢e"
while the best known result is the following

Theorem (Pintz (1997)). (5.4) is true with cy = 27 .

> 1.
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The usual way to find lower estimation for d,, is by showing a lower esti-
mate for the function J(x) = max j(n), where j(n) stands for the maximal
nsxT

gap between consecutive integers prime to n (Jacobsthal’s function).

The results before 1970 used Brun’s sieve and estimates of de Bruijn
for the number of integers below a given x composed of primes less than
a suitably chosen y = y(z). The work of Maier and Pomerance relied on
deep analytic results about the distribution of generalized twin primes in
arithmetic progressions. Finally, the work of the author needed beyond the
tools of Maier and Pomerance a new result about colorings of graphs, which
was shown in Pintz (1997) by probabilistic methods.

6. Small gaps between primes. Earlier results

Contrary to the uncertainty concerning the size of possible large gaps
between primes, the smallest possible gaps d, occurring infinitely often
between consecutive primes are generally believed to be 2, as predicted by
the Twin Prime Conjecture. Hence, we try to give upper estimates for the
size of the small gaps in terms of p,. Since the average value of d, is log p,
by the Prime Number Theorem, analogously to (5.1) we try to give upper
bounds for the corresponding quantity

n

(6.1) Ap = liminf <1.
n—oc logpn

Progress in the case of the analogous problem of the lower estimation of
A was rather quick. One year after the first non-trivial estimate of Backlund
(1929), the bound A > 4 was obtained; two years after that, A = oo was
reached. This was not the case with this problem (cf. (6.7)). The first non-
trivial result was reached 80 years ago: Hardy and Littlewood (1926) showed

(6.2) A1 <2/3 on GRH

by the circle method, where GRH stands for the Generalized Riemann
Hypothesis. It was 14 years later that Rankin (1940) improved (6.2) to
A; < 3/5, also assuming GRH. In the same year Erdds (1940) succeeded
in obtaining the first unconditional estimate

(6.3) A <l-—c
with an unspecified but explicitly calculable small positive constant c.
Specifically, he could show that values of d,, cannot accumulate too strongly

around the mean value log p,,, since every even value 2k appears as a dif-
ference of two primes pi1, p2 at most

1

(6.4) Ce(zk)]\;N (6(2k) =TI (1 ¥ ) )

log plk, p>2 p—2

times for p; = po + 2k < N.
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This result was improved by Ricci (1954) to A; < 15/16, later by Wang,
Xie, Yu (1965) to Ay < 29/32.

A breakthrough came when Bombieri and Davenport (1966) refined and
made unconditional the method of Hardy and Littlewood by substituting
the Bombieri-Vinogradov theorem for the GRH and obtained A; < 1/2.
They also combined their method with that of Erd6s to obtain
2+/3

8
Their result was further improved to

0.4571... Pilt’ai (1972),

0.4542 ... Uchiyama (1975),

0.4463... Huxley (1973),

0.4425... Huxley (1977),

0.4393... Huxley (1984),

0.4342 Fouvry, Grupp (1986).

Finally, Maier (1988) succeeded to apply his celebrated matrix method

to improve Huxley’s estimate by a factor e~7, where ~y is Euler’s constant.
He obtained

(6.7) Ap <e7-0.4425---=0.2484. ..,

which was the best result until 2005.
The method of Bombieri and Davenport (1966) was also suitable to give
an estimate for chains of consecutive primes. They showed

(6.5) Ay < = 0.4665. . . .

(6.6)

. . pPn+v — DPn 1
. A, = liminf 2v = Pn o, 2
(68) R logp, SV 72
which was improved by Huxley (1968/69, 1977) to
) 1
. A, <v—-— —.
(6.9) <y 8+0<J

Finally, similarly to the case v = 1, Maier (1988) obtained an improvement
by a factor e™7:

10 sozer(v-2eo().

The method of Huxley (1968/69) also yielded an extension of the result
(6.9) to small gaps between consecutive primes in an arithmetic progression
of a fixed difference q.

Finally we have to mention an important conditional result of Heath—
Brown (1983). He proved that the existence of Siegel zeros implies the
Twin Prime Conjecture, and more generally that every even number can be
expressed in infinitely many ways as the difference of two primes. Naturally
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most mathematicians believe that there are no Siegel zeros. (The truth of
GRH trivially implies this, for example.) So there is not much hope to prove
the Twin Prime Conjecture via Heath-Brown’s result. However, this result
means that if we try to prove the Twin Prime Conjecture, or any weaker
version of it as the Small Gap Conjecture or Bounded Gap Conjecture (see
Section 7), for example, then we are entitled to assume that there are no
Siegel zeros. In the light of the results of the next section it is also interesting
to note that both

(i) the existence of Siegel zeros, that is, extreme irregularities in the
distribution of primes in some arithmetic progressions (AP), and

(ii) improvements of the Bombieri—Vinogradov theorem, that is, a very
regular distribution of primes in most AP’s
imply the Bounded Gap Conjecture.

7. Small gaps between primes. Recent results

In the present section, extending the discussion of Section 2, we will
formulate in more detail several conjectures related to the Twin Prime
Conjecture and describe some recent results about them. All these results
were reached in collaboration with D. A. Goldston and C. Y. Yildirim. The
results of Section 6 raised the goal to prove the

Small Gap Conjecture. A; = 0,

as an approximation to the Twin Prime Conjecture. A much better approx-
imation would be to show the

Bounded Gap Conjecture. lim inf(p,+1 — pp) < oo.
n—oo

It turned out (as it often happens in mathematics) that in order to ap-
proach the above weaker form of the Twin Prime Conjecture it is worth to
examine the much stronger generalizations of it, formulated in a qualitative
form by Dickson (1904), and in a quantitative form by Hardy and Little-
wood (1923). Let H = {h;}¥_; be a set composed of k distinct non-negative
integers, and let us examine whether we have infinitely many natural num-
bers n such that all n + h; are simultaneously primes, that is

(7.1) {n+h}r, ePt o,

where i.0. stands for ‘infinitely often’.

Dickson (1904) formulated the conjecture that if a trivial