
Andrei YAFAEV

Galois orbits and equidistribution: Manin-Mumford and André-Oort.
Tome 21, no 2 (2009), p. 491-500.

<http://jtnb.cedram.org/item?id=JTNB_2009__21_2_491_0>

© Université Bordeaux 1, 2009, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2009__21_2_491_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 21 (2009), 491-500

Galois orbits and equidistribution:
Manin-Mumford and André-Oort.

par Andrei YAFAEV

Résumé. On passe en revue une approche unifiée aux conjectures
de Manin-Mumford et d’André-Oort basée sur la combinaison de
techniques galoisiennes et ergodiques. Ce texte est basé sur les
travaux récents de Klingler, Ullmo et Yafaev sur la conjecture de
André-Oort, et de Ratazzi et Ullmo sur la conjecture de Manin-
Mumford.

Abstract. We overview a unified approach to the André-Oort
and Manin-Mumford conjectures based on a combination of
Galois-theoretic and ergodic techniques. This paper is based on
recent work of Klingler, Ullmo and Yafaev on the André-Oort
conjecture, and of Ratazzi and Ullmo on the Manin-Mumford con-
jecture.

1. Introduction.

This text is based on a talk given by the author at the 25th Journées
Arithmetiques held at Edinburgh University in July 2007. The purpose of
this note is to outline the proofs of the Manin-Mumford and the André-Oort
conjectures based on the “Galois theory/Ergodic theory alternative” in the
geometry of abelian (resp. Shimura) varieties. The proof of the Manin-
Mumford conjecture outlined here is due to Ratazzi and Ullmo and the
proof of the André-Oort conjecture is due to Klingler, Ullmo and the author
of the present note. We will give the ingredients of the proofs and sketch
the final arguments without going into details. For details we will refer to
the papers [5], [7] and [4]. We also recommend the note [6] in which we
make our strategy work in the case of subvarieties of products of modular
curves.

Let S be an abelian or a Shimura variety. Then S contains a large class
of so-called special subvarieties. Precise definitions will be given later on.
For now, we just mention that special subvarieties are subvarieties having
similar geometric structure to that of the variety S itself. Special points
are special subvarieties of dimension zero. Given a special subvariety Z
of S, special points contained in Z are dense for the Zariski (and even
Archemedian) topology. The André-Oort and Manin-Mumford conjectures



492 Andrei Yafaev

assert the converse: a subvariety Z of S containing a Zariski dense set of
special points is special.

The strategy of the proofs presented here is as follows. Let S be a Shimura
or an abelian variety and let Z be an (absolutely, say) irreducible subvari-
ety containing a Zariski dense set of special points. General theory shows
that everything is defined over some number field F . The variety S carries
a large class of correspondences that we denote by T , they are Hecke corre-
spondences in the Shimura case and simply multiplications by the integers
in the abelian case. First one establishes a criterion stating that Z is special
if and only if, roughly speaking, Z stable by some suitable correspondence
T .

Now suppose that Z contains a Zariski dense sequence (Zn) of special
subvarieties of dimension d. Of course our initial data is that Z contains a
Zariski dense sequence of special subvarieties with d = 0. If we could show
that Z is either automatically special or contains a Zariski dense set of
special subvarieties of dimension strictly larger than d then we would have
finished.

The central idea in the proof is the following alternative: consider a
sequence (Zn) of special subvarieties of S. Then one of the following occurs:

(1) The degree of the variety Gal(F/F ) · Zn goes to infinity with n.
(2) The subvarieties Zn are equidistributed in the following sense. Let

µn be the probability measure canonically attached to Zn. There
exists a special subvariety Z and a subsequence nk such that

µnk
−→ µZ

where µZ is the canonical probability measure attached to Z. Fur-
thermore, Znk

⊂ Z for all k large enough.

Which case of the alternative occurs depends on the geometric nature of
special subvarieties Zn.

Let us now come back to our original situation. Let Z be an irreducible
subvariety of S containing a Zariski-dense sequence (Zn) of special subva-
rieties of dimension d. If the second case of the alternative occurs, then Z
is clearly automatically special.

If the first case of the alternative occurs, then using the explicit de-
scription of the Galois action on special subvarieties, explicit lower bounds
for Galois orbits and the geometric characterisation of special subvarieties,
one produces a Zariski dense sequence (Z ′

n) of special subvarieties of Z of
dimension strictly larger than d.

Let us mention here that there are similar statements in the case of tori
and semi-abelian varieties to which the strategy presented above should also
apply. Note also that there exists analogues of the André-Oort conjecture
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in the function fields case in which case the ambient variety is a Drinfeld
modular variety. We refer to [1] for this.

The author is very grateful to the organisers of the conference for inviting
him and giving him the opportunity to give a lecture.

2. Preliminaries.

In this section we review the relevant definitions. Let us first give defini-
tions in the abelian case.

Definition 2.1. Let S be an abelian variety over C. Let Z be an irreducible
subvariety. Then Z is called special if there exists an abelian subvariety B
of S and a torsion point x such that Z = x + B (Z is a translate of an
abelian subvariety by a torsion point).

A point x is special if x is a special subvariety of dimension zero i.e. x
is a torsion point.

The fact that special points lying on a special subvariety are (analyti-
cally) dense is a simple consequence of the fact that Q is dense in R.

Let us now turn to the Shimura case. We very briefly recall the definitions
concerning Shimura varieties.

Definition 2.2. A Shimura datum is a pair (G, X) where G is a reductive
group over Q and X is a G(R)-orbit of an element h ∈ Hom(S, GR) (where
S is the restriction of scalars to R of GmC) satisfying Deligne’s conditions
(see [3]).

Deligne’s conditions imply that the connected components of X are Her-
mitian symmetric domains. Let K be a compact open subgroup of G(Af),
then consider the set

ShK(G, X) = G(Q)\X ×G(Af)/K

where G(Q) acts on the left on both factors and K acts on the right on the
second. This is a, in general, non-connected and singular analytic variety.
It is also known (Baily-Borel) that this variety is a quasi-projective alge-
braic variety. Further, Shimura, Deligne, Milne, Shih, Borovoi constructed
canonical models of this variety over some explicitly defined (in terms of G
and X) number fields.

The connected components of ShK(G, X) are of the form Γ\X+ where
X+ is a connected component of X and Γ ⊂ G(Q) is a certain congruence
subgroup. Let S0 be a component of ShK(G, X). Writing X+ as G(R)+/K∞
where G(R)+ is the neutral component of G(R) and K∞ is a maximal
compact subgroup of G(R)+, we see that

S0 = Γ\G(R)+/K∞
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We notice an analogy with the abelian case. Indeed, if A is an abelian
variety of dimension n, A(C) is a complex torus, hence can be written as

A(C) = Γ\R2n = Γ\G(R)

where G this time is the group G2n
a and Γ is a lattice in G(R). The Deligne’s

conditions in the Shimura case are analogous to the existence of a complex
structure and a polarisation in the abelian case. We also notice that one of
the main differences between Shimura and abelian cases lies in the fact that
in the first case the group is reductive and in the second case the group is
unipotent. Let us point out here that there is a notion of a mixed Shimura
variety of which Shimura and abelian varieties are special cases. There are
also generalisations of the Manin-Mumford and André-Oort conjectures to
this mixed case. We refer the reader to [8] and [9] for this. We will not go
into details on this in the present paper. To the author’s best knowledge,
these conjectures remain open.

Before giving the definition of special subvarieties and points, we define
the notion of Hecke correspondence. This is analogous to translation by the
group law in the abelian case.

Definition 2.3. Let g be an element of G(Af). Let Sg be the Shimura
variety ShK∩gKg−1(G, X). Then Sg has two maps to S : π1 induced by the
inclusion K∩gKg−1 ⊂ K and π2 induced by the inclusion preceded by right
multiplication by g. The Hecke correspondence Tg is defined by

Tg(x) = π2π
−1
1 (x)

for x ∈ S.

Definition 2.4. An irreducible subvariety Z of S is called special if there
exists a sub-Shimura datum (H,XH) ⊂ (G, X) and g ∈ G(Af) such that Z
is an irreducible component of Tg(ShK∩H(Af))(H,XH)) (where, by abusing
notation, we identify ShK∩H(Af)(H,XH) with its image in S.

One notices that a special subvariety is a ‘translate of a Shimura subvari-
ety by a Hecke correspondence’ just like a special subvariety in the abelian
case is a translate of an abelian subvariety by the group law.

A special point is a special subvariety of dimension zero. By looking at
the Shimura data we notice that this means that H is a torus, in which
case XH is just a point. The fact that special points contained in a special
subvariety are dense follows from two facts: one is that a special subvariety
always contains a special point x and two that H(Q)+ is dense in H(R)+

(neutral component of H(R).) One simply considers the “orbit” H(Q) · x.
This orbit consists of special points and is dense.
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We are now ready to state the Manin-Mumford and the André-Oort
conjecture.

Conjecture 2.5 (Manin-Mumford, André-Oort). Let S be an abelian or
a Shimura variety. Let Z be an irreducible subvariety containing a Zariski-
dense set of special points. Then Z is a special subvariety.

The Manin-Mumford conjecture has been proved for a long time. Actu-
ally, some far reaching generalisations of this conjecture (Bogomolov con-
jecture, Mordell-Lang conjecture) have been established. We recommend a
survey by Tzermias ([10]) for details on this.

We just make one last remark about a presentation of special subvarieties
in the normalised form. The problem is that a presentation of a special
subvariety in the abelian case Z = x+B is not unique as x is defined up to
adding a torsion point of B. Similarly, the Shimura subdatum (H,XH) ⊂
(G, X) defining a special subvariety in the Shimura case is defined up to
multiplying H by a subgroup of the centre of G.

In the abelian case the remedy is the following theorem of Bertrand (an
effective form of Poincaré lemma, see [5], Prop 5.1): let B be an abelian
subvariety of S (abelian), then there exists an abelian subvariety B′ such
that

S = B + B′

and |B∩B′| is uniformly (in terms of S only) bounded. We now let Z = x+B
be a special subvariety. We say that this notation is normalised if x ∈ B′.
This definition gives meaning to saying that a sequence Zn = xn + Bn

(normalised notation) is such that ord(xn) is bounded. As we will see,such
sequences have the equidistribution property.

Let us now turn to the Shimura case. Again, this case is completely
analogous. Let Z be a special subvariety defined by a sub-Shimura data
(H,XH) ⊂ (G, X). We say that this data is normalised if H is the so-called
generic Mumford-Tate group of XH . This means that H is the smallest
subgroup of G such that every x : S −→ GR factors through HR. With
this definition, again, it makes sense to say that for a sequence (Zn) of
special subvarieties defined by normalised Shimura data (Hn, Xn), there
exists a subtorus T of G such that for all n, Hn = THder

n (Hder
n is the

derived subgroup). In the next section we will see that such sequences are
equidistributed.

3. Galois orbits and equidistribution, the alternative.

3.1. Equidistribution theorem. Let S be an abelian or Shimura variety.
To a special subvariety Z is canonically attached a probability measure µZ .
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Theorem 3.2. Suppose S is as before and let Zn be a sequence of spe-
cial subvarieties and µn the sequence of canonically associated probability
measures. We suppose that the following holds.

• Suppose that S is abelian, then for each n, Zn can be written as
Zn = xn + Bn where the order of xn is bounded and Bn is an
abelian subvariety of S.

• Suppose S is a Shimura variety. Then there exists a torus T such
that for any Zn, the Shimura datum (Hn, Xn) defining Zn satisfies
Hn = THder

n .
Then the sequence Zn is equidistributed in the following sense: there exists
a special subvariety Z and a subsquence nk such that µnk

converges weakly
to µZ and furthermore Znk

⊂ Z for all k large enough.

The proof of this theorem in the abelian case can be found in section 4
of [5]. It only involves Fourier analysis.

The proof in the Shimura case is much more involved. It can be found
in [7], where it is derived from a result of Clozel and Ullmo [2]. The proof
involves Ratner’s theorem and theorems of Mozes-Shah and Dani-Margulis.
We refer to [2] for details and references.

3.3. Galois orbits. The following theorem makes the first case of alter-
native effective i.e. gives explicit lower bounds for Galois orbits.

Theorem 3.4. Let S be as above and let (Zn) be a sequence of special
subvarities. Let F be a field of definition of S.

• Suppose S is abelian then the following holds. We write Zn = xn +
Bn in the normalised form. Let ε > 0 be a real number. Then there
exists a constant C = C(S, F, ε) such that

deg(Gal(F/F ) · Zn) ≥ Cord(xn)1−ε

The degree here is calculated with respect to a fixed projective em-
bedding of S.

• Assume the GRH for CM fields. Suppose S is a Shimura variety.
We make the assumption that K is a product of compact open sub-
groups Kp of G(Qp). Let (Hn, Xn) be the normalised Shimura datum
defining Zn and let Tn be the connected centre of Hn. Fix an inte-
ger N > 0. We let Kn be the compact open subgroup Tn(Af)∩K of
Tn(Af). This is a product of compact open subgroups Kn,p of Tn(Qp).
We also let Km

n be the maximal compact open subgroup of Tn(Af).
This is also a product. For any n we let i(Tn) be the number of
primes p such that Kn,p 6= Km

n,p. We also let dn be the discriminant
of the splitting field of Tn.

The statement now is that there exists a constant C (depending
on N !) and a constant B, both B and C independent of Zn, such



Galois orbits and equidistribution. 497

that

deg(Gal(F/F ) · Zn) ≥ CBi(Tn)|Kn/Km
n |(log(dn))N

In this case, the degree is taken with respect to the Baily-Borel line
bundle on S.

The proof in the abelian case is due to Serre, we refer to [5] for details
and references. The proof in the Shimura case can be found in [7] building
on an earlier work of the author of this note [11]. One needs, among other
things, to give a lower bound for the size of a certain subgroup of the class
group of a certain CM field. This is achieved under the assumption of the
GRH.

We notice the following : if S is abelian, then the degrees of the Galois
orbits go to infinity when ord(xn) is unbounded and when it is bounded
then the equidistribution property holds. Similarly, in the Shimura case,
if Tn varies then one can show that the lower bound above goes to infinity.
When Tn is fixed, then the equidistribution holds. This is the alternative
mentioned in the introduction.

3.5. Galois action and Hecke correspondences. In this section we
explain the relation between the Galois action and multiplication by certain
integers (abelian case) or translation by Hecke correspondences (Shimura
case).

Proposition 3.6. Let S be an abelian or a Shimura variety and F a number
field over which S admits a canonical model. Let Z be a special subvariety
and l a prime number.

• Suppose S is abelian and write Z = x + B. Suppose that l does not
divide ord(x). There exists a constant c depending on S and F only
(not on Z) and σ ∈ Gal(F/F ) such that

[pc]Z = σ(Z)

• Suppose S is a Shimura variety and let (H,XH) be the Shimura
data defining Z and T the connected centre of H. Suppose that l
splits T and Km

l = Kl. There exists a constant c depending on S
and F only and an element m of T (Ql) not contained in a compact
subgroup and σ ∈ Gal(F/F ) such that

σ(Z) ⊂ TmZ and [K : mKm−1 ∩K] < lc

In the abelian case, this theorem is also due to Serre. In the Shimura
case, this is the complex multiplication theory of Shimura-Taniyama refor-
mulated by Deligne in the context of Shimura varieties. The existence of a
Hecke correspondence Tm of bounded degree is proved in [4].
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4. Geometric criterion.

In this section we explain the geometric criterion that will be used in the
course of the induction.

Theorem 4.1. Let S be a Shimura or abelian variety and let Z be an
irreducible subvariety.

• Suppose that there is an integer n ≥ 2 such that [n]Z ⊂ Z, then Z
is special.

• Suppose that S is a Shimura variety. We make a certain number of
assumptions. The group G is semisimple of adjoint type, the group
K is neat and is a product. The variety Z is Hodge generic (not
contained in a proper special subvariety) and contains a special sub-
variety V defined by a normalised Shimura datum (H,XH) where H
has a non-trivial connected centre T . Suppose that there is a prime
number l splitting T and such that the component Kl is contained
in an Iwahori subgroup.

Suppose that there exists an element m of T (Ql) not contained in
a compact subgroup such that Z ⊂ TmZ. Then Z contains a special
subvariety V ′, containing V properly.

The proof of the statement in the abelian case is due to Hindry and is
explained in [5]. The proof in the Shimura case can be found in [4]. The
proof uses the existence of variations of polarisable Z-Hodge structures
over S, a theorem of Yves André’s on the Zariski closure of the image of
the monodromy, a theorem of Nori’s on adelic closure of finitely generated
subgroups of G(Q) and some stuff on Bruhat-Tits buildings.

5. The proofs.

In this section we show how the ingredients from the previous sections
combine to give proofs of the Manin-Mumford and the André-Oort conjec-
tures. In the Shimura case, the details and verifications are rather tedious,
we omit them in what follows and refer the reader to the original papers.

So let S be an abelian or a Shimura variety and Z a subvariety contain-
ing a Zariski dense sequence (Zn) of special subvarieties of dimension d. We
suppose that the sequence (Zn) is such that the second case of the alterna-
tive does not occur, otherwise there is nothing to prove. Hence, writing in
the normalised form Zn = xn + Bn (abelian case), we have ord(xn) −→∞
or Bi(Tn)|Kn/Km

n |(log(dn))N −→∞ (Shimura case). Choose a number field
F such that S and Z admit a model over F and Z is irreducible over F .

We let l be a prime number and Zn a special subavariety such that, in
the abelian case

(1) Zn = xn + Bn and l does not divide ord(xn).
(2) l � log(ord(xn))A where A is some uniform constant.
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Then σZn ⊂ Z ∩ [lc]Z. If [lc]Z ⊂ Z, then we are done. Otherwise we
replace Z by an F -component of Z ∩ [lc]Z containing Zn. Therefore the
dimension of Z has gone down and the degree multiplied by a uniform
power of log(ord(xn)). So, either at some point the inclusion [lc]Z ⊂ Z has
occured or dim(Z) = d + 1. In this last case, the facts that the degree of
Z is bounded by a uniform power of log(ord(xn)) and that Z contains the
Galois orbit of Zn which is of the size at least a small power of ord(xn)
force the inclusion [lc]Z ⊂ Z. This finishes the proof.

The Shimura case is very similar, but technically a lot more compli-
cated. We just outline the proof without going into details. First one has
to carry out some reduction steps to put ourselves in the situation where
the geometric criterion holds.

• Choose Zn defined by the Shimura data (Hn, Xn) whose Galois
orbit is large.

• We choose a prime l that splits Tn, Km
n,l = Kn,l and l is small

compared to Bi(Tn)|Kn/Km
n |(log(dn))N (again, smaller then ). The

choice of l requires the assumption of the GRH (in the form of the
effective Chebotarev theorem).

For technical reasons, we also need to assume that the l-component Kl of
K is contained in an Iwahori subgoup of G(Ql). This is a safe assumption,
as replacing Kl by a suitable Iwahori subgroup amounts to passing to a
covering of degree bounded by a uniform power of l. We let Tm be the
Hecke correspondence of degree bounded by a uniform power of l and such
that σZn ⊂ TmZn for some σ ∈ Gal(F/F ).

Exactly, as in the abelian case, if Z ⊂ TmZ, then Zn is properly contained
in a special subvariety. If the intersection Z∩TmZ is proper, then we replace
Z by an F -component containing Zn. At this point we have to replace the
Shimura variety S by the smallest one containing Z (so that Z is Hodge
generic) and then replace the group by the adjoint. This requires quite a
lot of tedious verifications. Once this is done, we repeat the process. If the
inclusion has not occured earlier, then eventually dim(Z) = dim(Zn) + 1
and the comparison of the degree of Z with the degree of the Galois orbit
of Zn proves the inclusion Z ⊂ TmZ.
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