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Wilson’s theorem

par Chandan Singh DALAWAT

Résumé. On fait voir comment K. Hensel aurait pû étendre le
théorème de Wilson de Z à l’anneau des entiers o d’un corps de
nombres, pour trouver le produit de tous les éléments inversibles
d’un quotient fini de o.

Abstract. We show how K. Hensel could have extended Wil-
son’s theorem from Z to the ring of integers o in a number field,
to find the product of all invertible elements of a finite quotient
of o.

1. Introduction
...puisque de tels hommes n’ont pas cru ce sujet

indigne de leurs méditations... [1].

More than two hundred years ago, Gauss generalised Wilson’s theorem
((p−1)! ≡ −1 (mod p) for a prime number p) to an arbitrary integer A > 0
in §78 of his Disquisitiones :

Theorem 1.1. ([1]) Poductum ex omnibus numeris, numero quocunque
dato A minoribus simulque ad ipsum primis, congruum est secundum A,
vnitati vel negatiue vel positiue sumtae.

(The product of all elements in (Z/AZ)× is 1̄ or −1̄). He then specifies
that the product in question is −1̄ if A is 4, or pm, or 2pm for some odd
prime p and integer m > 0 ; it equals 1̄ in the remaining cases.

According to Gauss ([1], §76) the elegant theorem according to which
“ upon augmenting the product of all numbers less than a given prime num-
ber by the unity, it becomes divisible by that prime number ” was first stated
by Waring in his Meditationes — which appeared in Cambridge in 1770 —
and attributed to Wilson, but neither could prove it. Waring remarks that
the proof must be all the more difficult as there is no notation which might
express a prime number. Nach unserer Meinung aber müssen derartige
Wahrheiten vielmehr aus Begriffen (notionibus) denn aus Bezeichnungen
(notationibus) geschöpft werden [1]. The first proof was given by Lagrange
(1771).
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Some hundred years later, Hensel [2] developed his local notions, which
could have allowed him to extend the result from Z to rings of integers in
number fields ; our aim here is to show how he could have done it.
Proposition 1.1. (“ Wilson’s theorem ”) For an ideal a ⊂ o in the ring
of integers of a number field K, the product of all elements in (o/a)× is 1̄,
except that it is

(1) −1̄ when a has precisely one odd prime divisor, and vp(a) < 2 for
every even prime ideal p,

(2) 1̄ + π̄ (resp. 1̄ + π̄2) when all prime divisors of a are even and for
precisely one of them, say p, vp(a) > 1 with moreover vp(a) = 2,
fp = 1 (resp. vp(a) = 3, fp = 1, ep > 1) ; here π is any element of
p not in p2, and we have indentified (o/p2)× (resp. (o/p3)×) with a
subgroup of (o/a)×.

The notation and the terminology are unambiguous : a prime ideal p of
o is even if 2 ∈ p, odd if 2 /∈ p ; vp(a) is the exponent of p in the prime
decomposition of a ; fp is the residual degree and ep the ramification index
of Kp|Qp (p being the rational prime which belongs to p).

(It may happen that 1̄+π̄ = −1̄ in (o/p2)× (resp. 1̄+π̄2 = −1̄ in (o/p3)×)
for some even prime p ⊂ o. Example : o = Z (resp. Z[

√
2]) and p the unique

even prime of o. More banally, we have −1̄ = 1̄ in (o/pn)× when p is an
even prime and n is between 1 and ep.)

2. d2

The elementary observation behind the proof of Gauss’s th. 1.1, also used
in our proof of prop. 1.1, is that the sum s of all the elements in a finite
commutative group G is 0, unless G has precisely one order-2 element τ ,
in which case s = τ . Anyone can supply a proof ; he can then skip this
section, and take the condition “ d2(G) = 1 ” as a shorthand for “G has
precisely one order-2 element ”.

Define d2(G) = dimF2(2G), where 2G is the subgroup of G killed by 2.
It is clear that G has 2d2(G) − 1 order-2 elements.
Example. For a prime number p and a positive integer n, we have
d2((Z/pnZ)×) =

(1) 1 if p 6= 2,
(2) 0 if p = 2 and n = 1,
(3) 1 if p = 2 and n = 2,
(4) 2 if p = 2 and n > 2.

In this example, the unique order-2 element is −1̄ whenever d2 = 1.
Lemma 2.1. The sum s of all elements in G is 0 unless d2(G) = 1, in
which case s is the unique order-2 element of G.
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The involution ι : g 7→ −g fixes every element of the subgroup 2G =
Ker(x 7→ 2x). As the sum of elements in the remaining orbits of ι is 0, we
are reduced to the case G = 2G of a vector F2-space, and the proof is over
by induction on the dimension d2(G) of 2G, starting with dimension 2.
Proof of Gauss’s th. 1.1 : Let A =

∏
p p
mp be the prime decomposition of

A. By the Chinese remainder theorem, (Z/AZ)× is the product over p of
(Z/pmpZ)×, so d2((Z/AZ)×) is the sum over p of d2((Z/pmpZ)×). In view
of the foregoing Example, the only way for this sum to be 1 is for A to be
22, or pmp , or 2pmp for some odd prime p and integer mp > 0.

3. Local units
Let’s enter Hensel’s world : let p be a prime number, K |Qp a finite

extension, o its ring of integers, p the unique maximal ideal of o. Let n > 0
be an integer. We would like to know when d2((o/pn)×) = 1, and, when
such is the case, which one the unique order-2 element is.

Proposition 3.1. Denoting by e the ramification index and by f the resid-
ual degree of K |Qp, we have d2((o/pn)×) =

(1) 1 if p 6= 2,
(2) 0 if p = 2, n = 1,
(3) 1 if p = 2, n = 2, f = 1,
(4) 1 if p = 2, n = 3, f = 1, e > 1,
(5) > 1 in all other cases.

For any o-basis π of p, the unique order-2 element in the cases d2 = 1 is
(1) −1̄ if p 6= 2,
(2) 1̄ + π̄ if p = 2, n = 2, f = 1,
(3) 1̄ + π̄2 if p = 2, n = 3, f = 1, e > 1.

Proof : For every j > 0, denote by Uj the kernel of o× → (o/pj)×. If
p 6= 2, the group (o/pn)× is the direct product of the even-order cyclic
group (o/p)× and the p-group U1/Un, so d2 = 1.

Assume now that p = 2. When n = 1, the group (o/p)× is (cyclic) of
odd order, so d2 = 0. If f > 1, then the d2 of U1/U2 is f and hence the d2
of (o/pn)× is > 1 for every n > 1.

Assume further that f = 1. When n = 2, the d2 of (o/p2)× = U1/U2
is f = 1. If moreover e = 1, then the d2 of U1/Un is 2 for n > 2 (see
Example).

Assume finally that, in addition, e > 1. We see that U1/U3 is generated
by 1̄ + π̄, since (1 + π)2 = 1 + π2 + 2π is in U2 but not in U3. However,
U1/U4 is not cyclic because its order is 8 whereas every element has order
at most 4 : for every a ∈ o,

(1̄ + āπ̄)4 = 1̄ + 4̄π̄ā+ 6̄π̄2ā2 + 4̄π̄3ā3 + π̄4ā4 = 1̄
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in U1/U4. Hence U1/Un is not cyclic for n > 3 (cf. Narkiewicz, Elem. and
anal. theory of alg. numbers, 1990, p. 275). This concludes the proof.

(For p = 2 and n > 2e, we have d2((o/pn)×) = 1 + ef ; cf. Hasse,
Zahlentheorie, Kap. 15.)

Corollary 3.1. The only cases in which the group (o/pn)× has precisely
one order-2 element s are : p 6= 2 ; p = 2, n = 2, f = 1 ; p = 2, n = 3,
f = 1, e > 1. In these three cases, s = −1̄, 1̄ + π̄, 1̄ + π̄2, respectively. The
group (o/pn)× has no order-2 element precisely when p = 2, n = 1.

4. The proof
Let us return to the global situation of an ideal a ⊂ o in the ring of

integers of a number field K |Q. The proof can now proceed as in the case
o = Z (§2). Everything boils down to deciding if the d2 of (o/a)× is 1
— we know that the product of all elements is 1 if d2 6= 1 (lemma 2.1).
Writing a =

∏
p pmp the prime decomposition of a, the Chinese remainder

theorem tells us that d2((o/a)×) is the sum, over the various primes p of o,
of d2((o/pmp)×). This sum can be 1 only when one of the terms is 1, the
others being 0.

For each p, the group (o/pmp)× is the same as (op/p
mp
p )×, where op is

the completion of o at p and pp is the unique maximal ideal of op. Running
through the possibilities enumerarted in prop. 3.1 completes the proof of
prop. 1.1.

Example. Let ζ ∈ Q̄× be an element of order 2t (t > 1) ; take K = Q(ζ)
and p the unique even prime of its ring of integers Z[ζ]. We have ep = 2t−1

and fp = 1 ; we may take π = 1 − ζ. The product of all elements in
(Z[ζ]/pn)× is respectively 1̄, 1̄ + π̄, 1̄ + π̄2, 1̄ for n = 1, n = 2, n = 3 and
n > 3.
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