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Oscillation of Mertens’ product formula

par Harold G. DIAMOND et Janos PINTZ

Résumé. La formule de Mertens affirme que∏
p≤x

(
1− 1

p

)
log x → e−γ

quand x → ∞. Les calculs montrent que la partie droite de la
formule est supérieure à la partie gauche pour 2 ≤ x ≤ 108. Par
analogie avec le résultat de Littlewood sur π(x) − li x, Rosser et
Schoenfeld ont suggéré que cette inégalité et son contraire devait
se produire pour des valeurs suffisamment grandes de x. Nous
montrons que c’est bien le cas.

Abstract. Mertens’ product formula asserts that∏
p≤x

(
1− 1

p

)
log x → e−γ

as x → ∞. Calculation shows that the right side of the for-
mula exceeds the left side for 2 ≤ x ≤ 108. It was suggested by
Rosser and Schoenfeld that, by analogy with Littlewood’s result
on
π(x) − li x, this and a complementary inequality might change
their sense for sufficiently large values of x. We show this to be
the case.

1. Introduction.
One of the last significant prime number discoveries preceding the proof

of the Prime Number Theorem was Franz Mertens’ beautiful asymptotic
formula [11]

(1.1)
∏
p≤x

(
1− 1

p

)
log x → e−γ , x→∞.

Here γ denotes Euler’s constant. Mertens’ argument was quite complicated;
simpler proofs of the formula can be found, e.g. in [8], Theorem 429; [3],
Lemma 4.11; or [12], Theorem 2.7.
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Calculations of Rosser–Schoenfeld (see [13]) have shown that

(1.2) e−γ

log x+ 2/
√
x
<
∏
p≤x

(
1− 1

p

)
<

e−γ

log x

for 2 ≤ x < 108. These authors raised the question of whether, by analogy
with Littlewood’s famous result [10] on changes of sign of π(x) − lix, in-
equalities (1.2) also might change their sense for sufficiently large x. (This
question is mentioned also in the article on Mertens’ Theorem on the Math-
World website [14].) We show this to be the case.

Theorem 1.1. The quantity
√
x
{ ∏
p≤x

(
1− 1

p

)−1
− eγ log x

}
attains arbitrarily large positive and negative values as x→∞.

Mertens himself did not, to our knowledge, make any conjecture here.
However, his name is associated with another famous conjecture, on the size
of the summatory function of the Möbius µ function, that was subsequently
disproved by Odlyzko and te Riele, using a delicate oscillation argument.

We thank Jonathan Sondow for bringing to our attention the question
of Rosser–Schoenfeld and for suggestions on the write-up of this article.

2. Conversion of the problem
We begin by converting the expressions occurring in the theorem into

ones that are more amenable for our analytic approach. The theorem is
equivalent to showing that, for any large positive number K,

(2.1) −
∑
p≤x

log
(
1− 1

p

)
− log log x− γ

{
> K/(

√
x log x)

< −K/(
√
x log x)

for sequences of x values tending to ∞. The expression on the left side of
(2.1) still is not in a convenient form, so we replace it using the following
two lemmas.

Lemma 2.1. Let Π(x) = π(x) +π(x1/2)/2 +π(x1/3)/3 + . . . , where π(·) is
the prime counting function. For x ≥ 2,

−
∑
p≤x

log
(
1− 1

p

)
=
∫ x

1

dΠ(t)
t

+O
( 1√

x log x

)
.

Proof. By the definition of Π(·),∫ x
1

dΠ(t)
t

=
∑
pα≤x

1
αpα

.
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Thus the difference of the main terms of the lemma involves only higher
prime powers:∑

p≤x
pα>x

1
αpα
≤ 1

2
∑
p≤x

∑
α>blog x/ log pc

1
pα
≤
∑
p≤x

p−blog x/ log pc−1

≤
∑

x1/2<p≤x

1
p2 +

∑
p≤x1/2

1
x
� 1√

x log x
+
√
x

x log x
,

which has the claimed order of magnitude. �

Next, we replace the remaining two terms in (2.1).

Lemma 2.2. For x > 1,

log log x+ γ =
∫ x

1

1− t−1

t log t
dt −

∫ ∞
x

dt

t2 log t
.

Proof. Differentiation shows the two sides of the formula agree to within a
constant. We need to show that the constant is actually γ. Since the last
integral vanishes at infinity, consider the limit as x→∞ of

I(x) :=
∫ x

1

1− t−1

t log t
dt− log log x.

By integration by parts and then a change of variable,

lim
x→∞

I(x) = −
∫ ∞

1

log log t
t2

dt = −
∫ ∞

0
e−u log u du.

The last expression is −Γ′(1), as we can see by differentiating the integral
form of Euler’s gamma function. Finally, by differentiating the product
form of the gamma function, we obtain −Γ′(1) = γ. �

The last integral in the statement of Lemma 2.2 is O(1/x log x), which
is smaller than the error term in Lemma 2.1. The two lemmas and last
remark enable us to replace the left side of (2.1) by the more analytically
tractable expression

(2.2)
∫ x

1

dΠ(t)
t
−
∫ x

1

1− t−1

t log t
dt+O

( 1√
x log x

)
.

For x > 1, set

A(x) :=
∫ x

1

dΠ(t)
t
−
∫ x

1

1− t−1

t log t
dt.

We shall show that A(x) attains values that greatly exceed 1/(
√
x log x) in

both the positive and negative directions. To do this, we introduce Mellin
transforms and study their analytic properties.
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By the familiar representation of log ζ as a Mellin transform and an
integration by parts, we get for <s > 0,

log ζ(s+ 1) =
∫ ∞

1
x−s

dΠ(x)
x

= s

∫ ∞
1
x−s−1

∫ x
1

dΠ(t)
t

dx.

Also, in the same region, we have

(2.3) log s+ 1
s

=
∫ ∞

1
x−s

1− x−1

x log x
dx,

since the derivatives of the two sides of the formula are the same, and both
sides tend to 0 as s→ +∞. Then, by integration by parts,

log s+ 1
s

= s

∫ ∞
1
x−s−1

∫ x
1

1− t−1

t log t
dt dx, <s > 0.

Combining the preceding formulas, we obtain the Mellin formula

Â(s) :=
∫ ∞

1
x−s−1A(x) dx = 1

s
log ζ(s+ 1)s

s+ 1
, <s > 0.

3. The non-R.H. case
As with many oscillation arguments involving the zeta function, it is

convenient to treat separately the cases in which the truth of the Riemann
hypothesis is or is not not assumed to hold. We first assume that R.H. does
not hold and apply Landau’s Oscillation Theorem ([2], Theorem 11.13; [3],
Theorem 6.31; or [12], Theorem 15.1).

We replace the error term in (2.2) by

B(x) := 1− x−1
√
x log x

� 1√
x log x

, x ≥ 2,

which is better behaved near x = 1, and for which we can read off the
Mellin transform from (2.3): for <s > −1/2,

B̂(s) :=
∫ ∞

1
x−s−1B(x) dx = log s+ 3/2

s+ 1/2
.

The strategy here is to show that, for any fixed value of K, positive or
negative, A(x) +KB(x) changes sign infinitely often.

If R.H. is not true, then log{ζ(s + 1)s/(s + 1)} has a singularity at a
complex point s∗ with σ∗ = <s∗ > −1/2, and so the abscissa of convergence
of the Mellin transform

Â(s) +KB̂(s) = 1
s

log ζ(s+ 1)s
s+ 1

+K log s+ 3/2
s+ 1/2

is at least σ∗. On the other hand, Â+KB̂ is continuable to all points of
the real axis with s > −1/2, because the possible singularity at s = 0 is
removable, as a tiny calculation shows. Thus, the real point on the line of
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convergence of the Mellin transform is a regular point, and so by Landau’s
theorem, A(x) +KB(x) changes sign infinitely often for any fixed value of
K. This completes the proof of Theorem 1.1 if R.H. does not hold.

We assume henceforth that the Riemann hypothesis holds. The situation
here is more delicate; while Landau’s theorem can show changes of sign of
A(x), it does not provide a measure of the oscillations, which is essential
for proving Theorem 1.1. We give two arguments; the first a quickie, citing
deep theorems of Littlewood and Cramér, and the second one, with more
detail, that is based on a variant of the Wiener–Ikehara method and an
application of almost-periodicity.

4. The R.H. case, I
By the results of §2, it suffices to show

Proposition 4.1.

A(x) = Ω±
( log log log x√

x log x

)
.

Proof. For x ≥ 2, set

li∗x :=
∫ x

1

1− t−1

log t
dt = lix− log log x+O(1)

and
∆∗(x) := Π(x)− li∗ x.

Our first goal is to express A in terms of ∆∗, which we do in formula
(4.2) below. By integration by parts, we have

A(x) = Π(x)− li∗x
x

+
∫ x

1

Π(t)− li∗t
t2

dt(4.1)

= ∆∗(x)
x

+
∫ x

1

∆∗(t)
t2

dt.

Using the logarithmic form of (1.1) (Mertens’ formula) and Lemmas 2.1
and 2.2, we see that A(x) → 0 as x → ∞. Also, we have the crude result
that

∆∗(x)
x
� x/ log x

x
→ 0, x→∞.

The last two estimates together with (4.1) imply that∫ ∞
1

∆∗(t)
t2

dt = 0,

and hence

(4.2) A(x) = ∆∗(x)
x
−
∫ ∞
x

∆∗(t)
t2

dt.
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We have from Littlewood’s famous result on sign changes of π(x) − lix
[10] that

∆∗(x)
x

= Ω±
( log log log x√

x log x

)
,

which gives the desired estimate for one term of (4.2). We shall show that
the other term is suitably small by using the inequality

(4.3)
∫ 2x

x
|ψ(t)− t| dt� x3/2,

which is an equivalent form of Cramér’s bound in [4],

1
x

∫ x
1

|ψ(t)− t|√
t

dt� 1.

We have, by integration by parts,

∆∗(x) =
∫ x

1

1
log t
{dψ(t)− (1− t−1) dt}

= ψ(x)− x
log x

+O(log log x) +
∫ x

2

ψ(t)− t
t log2 t

dt.

Break the last integral at x1/4 and note that, trivially,∫ x1/4

2

ψ(t)− t
t log2 t

dt� x1/4.

Break the remaining interval into dyadic subintervals and use (4.3) on each
one to obtain∫ x

x1/4

ψ(t)− t
t log2 t

dt�
{∫ x
x/2

+
∫ x/2
x/4

+ . . .
}ψ(t)− t
t log2 t

dt

� x1/2

log2 x

{
1 + 1√

2
+ 1√

4
+ . . .

}
,

whence

∆∗(x) = ψ(x)− x
log x

+O
( x1/2

log2 x

)
.

By another application of the dyadic interval estimates,∫ ∞
x

|ψ(t)− t|
log t

dt

t2
� 1√

x log x
.

It follows that the last term in (4.2) also satisfies this estimate. Since this
quantity is smaller than the Littlewood oscillation term in (4.2), A has the
claimed oscillation. �
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5. The R.H. case, II
For the second method, we shall apply an argument along the lines of

that used in [5]. The key technical device is the following variant of the
Wiener–Ikehara method, which is essentially due to Ingham, [9].

Lemma 5.1. Let F be a real valued function on [1, ∞) that is continuous
from the right and satisfies a one-sided bound: for some β < 1, F (x) <
logβ x holds for all sufficiently large x or F (x) > − logβ x holds for all
sufficiently large x. Let

F̂ (s) :=
∫ ∞

1
x−s−1F (x) dx

converge for σ := <s > 0. Let T > 0 and suppose that there exists a
function

H(s) :=
∑
|γn|<T

an
s− iγn

(for some choice of complex numbers an and real γn) such that the family
of restricted functions

t 7→ F̂ (σ + it)−H(σ + it) =: Jσ(t), −T ≤ t ≤ T,

is Cauchy in L1 norm as σ → 0+, i.e.,

lim
σ,σ′→0+

∫ T
−T
|Jσ(t)− Jσ′(t)| dt = 0.

Then, as y →∞,∫ ∞
u=1

F (u)KT (y − log u)du
u

=
∑
|γn|<T

an
(
1− |γn|

T

)
eiγny + oT (1).

Here

KT (x) := 1
2π

∫ T
−T

(
1− |t|

T

)
eixt dt, x ∈ R,

is the Fejer kernel, and oT (1) denotes a function of y and T that, for fixed
T , goes to 0 as y →∞.

The forms of this lemma given in [3] and [9] suppose that J(s) has a
continuation as a continuous function on the closed strip

{s = σ + it : −T ≤ t ≤ T, σ ≥ 0},

while [5] assumes just the L1 hypothesis given here. These conditions allow
one, in the proof of the lemma, to shift the Fourier inversion integral for F
(arbitrarily near) to the imaginary axis. By the completeness of L1[−T, T ],
these methods are essentially the same.
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It is instructive to apply the last lemma to the function F (x) := 1 for
1 ≤ x < ∞. Then F̂ (s) = 1/s and we take H(s) := 1/s, so that Jσ is
identically 0. The lemma gives∫ ∞

u=1
KT (y − log u)du

u
= 1 + oT (1), y →∞,

i.e., the Fejer kernel satisfies∫ ∞
−∞

KT (t)dt = 1.

Let us suppose that, for some real number K, A(x)+KB(x) is ultimately
of one sign. (Our aim is to show that this is not the case.) Then by Lan-
dau’s Oscillation Theorem, the abscissa of convergence of Â(s) +KB̂(s) is
−1/2, for this is the rightmost point at which the function has a singularity
on the real axis. The same holds for B̂(s), whence, by subtraction, the ab-
scissa of convergence of Â(s) is at most −1/2; the presence of singularities
with real part −1/2 insures that this is the abscissa of convergence of Â(s).

Since the singularities hypothesized in Lemma 5.1 are located on the
imaginary axis, we work with Â(s − 1/2), which satisfies this condition.
Still, we are not in a position to apply the lemma, because the singularities
are logarithmic zeros, rather than poles. We can handle this problem by
forming the derivative

−Â ′(s− 1/2) =
∫ ∞

1
x−s−1A(x)x1/2 log x dx

= 1
(s− 1/2)2 log ζ(s+ 1/2)(s− 1/2)

s+ 1/2

− 1
s− 1/2

(ζ ′(s+ 1/2)
ζ(s+ 1/2)

+ 1
s− 1/2

− 1
s+ 1/2

)
.

This expression has poles on the imaginary axis, as we would like; of
course, there remain the logarithmic singularities, but as we shall see, those
will count for little. Also, we remark that s = 1/2 is a regular point of this
function, by the earlier observation about Â(s) at s = 0.

In Lemma 5.1 take F (x) := A(x)
√
x log x. Our goal is to show that F is

unbounded from above and below. Continuing with the assumption that
A(x) +KB(x) is ultimately of one sign, then F is bounded from one side,
and one hypothesis of this lemma is satisfied. This justifies an exchange of
limiting processes in the proof of the lemma.

Next, take F̂ (s) = −Â ′(s−1/2), the Mellin transform of F . Given T > 0
(which we can assume is not the ordinate of a zeta zero), take

H(s) :=
∑
|γn|<T

−1
iγn(s− iγn)

,
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where the numbers γn are the ordinates of the zeros of the Riemann zeta
function, counted with appropriate multiplicity in case zeta has zeros of
higher order. Then H matches the pole terms of

−1
s− 1/2

· ζ
′(s+ 1/2)
ζ(s+ 1/2)

lying on the imaginary segment I := {s = it : −T ≤ t ≤ T}, and so we
have

Jσ(t) :=F̂ (σ + it)−H(σ + it)

= 1
(s− 1/2)2 log ζ(s+ 1/2)(s− 1/2)

s+ 1/2
+G(σ + it),

with G analytic on an open set containing I.
It is not hard to show that Jσ satisfies the L1(−T, T ) Cauchy condition

hypothesized in Lemma 5.1: the continuous portion, G, clearly satisfies the
condition, and for each of the finite number of logarithmic zeros having
ordinate of size at most T, we apply the following estimate.

Lemma 5.2. Let a branch of log be fixed. Then

lim
σ, σ′→0+

∫ 1

−1
| log(σ + it)− log(σ′ + it)| dt = 0.

Proof. It suffices to show that

I(σ) :=
∫ 1

0
| log(σ + it)− log(it)| dt→ 0 as σ → 0 + .

Let ε > 0 be given. Since the integrand converges to 0 uniformly for
ε ≤ t ≤ 1, the integral over this region tends to 0 with σ. For the remainder
of the range, note first that | arg{log(σ + it)− log(it)}| < π/2, so that

I(σ) < επ

2
+
∫ ε

0
log
∣∣∣σ + it

it

∣∣∣dt� ε+
∫ ε

0
log
(
1 + σ2

t2

)
dt.

The last integral converges to 0 with σ, since the integrand converges to 0
pointwise and the integral is dominated by∫ ε

0
log(1 + t−2) dt <∞.

Thus I(σ) can be made arbitrarily small by choosing σ > 0 sufficiently
small. �

The conditions of Lemma 5.1 are now satisfied, so we have∫ ∞
1
F (u)KT (y − log u)du

u
= −

∑
|γn|<T

(
1− |γn|

T

)eiγny
iγn

+ oT (1),
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with F (u) := A(u)
√
u log u, KT the Fejer kernel, and oT (1) a function that,

for fixed T > 0, tends to 0 as y →∞. By the reflection principle, zeros of
the zeta function occur in conjugate pairs, so we have

(5.1)
∫ ∞

1
F (u)KT (y − log u)du

u
= −2

∑
0<γn<T

(
1− γn

T

)sin γny
γn

+ oT (1).

We noted before that the Fejer kernel has integral 1. Also, since KT
can be written as the square of a real valued function, it is nonnegative.
Thus the left side of (5.1) is an average of the function F . If this average is
large positive or negative, then F itself must have this property as well. It
remains to show that the right side of the formula can assume large positive
and negative values for suitable choices of T and y, which we shall do in
the next section.

6. Conclusion of method II
Let

Σ(y) := 2
∑

0<γn<T

(
1− γn

T

)sin γny
γn

.

As a trigonometrical polynomial, Σ(y) is almost-periodic; thus any value
that it assumes, it approximates arbitrarily closely for a sequence of y
values tending to infinity. We shall show that Σ(y) assumes large positive
and large negative values by the beautiful device of investigating its values
near the origin. This idea seems to be due to Ingham and first to have been
used by Fawaz ([6], [7]). (We are indebted to Anderson–Stark [1] for these
historical observations.)

We have
Σ(1/T ) = 2

T

∑
0<γn<T

(
1− γn

T

)sin γn/T
γn/T

.

The estimate sin x > 2x/π for 0 < x < π/2 yields

Σ(1/T ) > 2
T

∑
0<γn<T/2

1
2

2
π

= 1
π

N(T/2)
T/2

,

where N(T ) denotes the number of zeros β+ iγ of Riemann’s zeta function
with 0 < γ ≤ T . It is known (see [3], Theorem 8.18 or [12], Corollary 14.2)
that N(T )/T →∞ as T →∞. Thus Σ(1/T ) can be made arbitrarily large
by choosing T large enough. It follows from (5.1) that F (y) can assume
arbitrarily large negative values for a sequence of y’s tending to infinity.

The preceding argument easily implies the existence of arbitrarily large
positive values as well: since Σ(y) is an odd function, we have Σ(−1/T ) =
−Σ(1/T ), and F (y) can assume arbitrarily large positive values for another
sequence of y’s tending to infinity.
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Tracing back, we see that
√
x log x

{∫ x
1

dΠ(t)
t
−
∫ x

1

1− t−1

t log t
dt
}

assumes arbitrarily large positive and negative values and hence, by (2.1),
the theorem is proved. �
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