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Absolute norms of p-primary units

par Supriya PISOLKAR

Résumé. Nous prouvons un analogue local d’un théorème de
J. Martinet sur la norme absolue du discrimant relatif d’une ex-
tension de corps de nombres. Ce résultat peut être vu comme un
énoncé sur les unités 2-primaires. Nous prouvons également un
résultat similaire pour la norme absolue des unités p-primaires,
pour tout p premier.

Abstract. We prove a local analogue of a theorem of J. Mar-
tinet about the absolute norm of the relative discriminant ideal of
an extension of number fields. The result can be seen as a state-
ment about 2-primary units. We also prove a similar statement
about the absolute norms of p-primary units, for all primes p.

1. Introduction
Let K be a p-adic field containing a primitive p-th root of unity ζp. A

unit α ∈ UK is called p-primary if the extension K(α1/p) is an unramified
extension of K. For example, the discriminant of an integral basis of an
unramified extension L/K of a 2-adic field is a 2-primary unit since it has a
square root in L (see proof of Cor.1.1). It is interesting to observe that for
an extension L/K the norm of a p-primary unit in L is again a p-primary
unit in K (see Lemma 2.2). In this paper we prove a result about the
absolute norm of a p-primary unit which is motivated by the following
theorem of J. Martinet.

Theorem 1.1. ([4]; 1.4) Let L/K be a quadratic extension of number fields
such that the absolute norm of the relative discriminant ideal ∂L/K is odd.
If K contains the 2m-th roots of unity for some m ≥ 2, then NK/Q(∂L/K) ≡
1(mod 2m+1).

Although the above result has been stated only for a quadratic extension,
arguments in [4] are sufficient to obtain the same congruence for any finite
extension of number fields satisfying the above hypothesis, by reducing to
the quadratic case. The above result is about the behaviour of the absolute
norm of the discriminant ideal at the prime 2. Thus one may ask if there
is a local analogue of Martinet’s theorem.

Manuscrit reçu le 9 juillet 2008.
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The main contribution of this paper is to prove a local analogue (see
corollary 1.1) of Theorem 1.1 which turns out to be a statement about
2-primary units. In fact, we prove the following theorem about p-primary
units for all primes p.

Theorem 1.2. Let K be a finite extension of Qp containing a primitive
pm-th root of unity where m ≥ 1. Let α be a p-primary unit of UK. Then

NK/Qp(α) ≡ 1(mod pm+1)

Remark. The absolute norm of a p-primary unit may not satisfy a better
congruence. Moreover, this congruence may not hold for arbitrary units.
See example 3.

Corollary 1.1. Let K be a finite extension of Q2 containing a primitive
2m-th root of unity for some m ≥ 1. Let L be an unramified extension of
K and let {α1, α2, . . . , αn} be an integral basis of L/K.Then,

NK/Q2(dL/K(α1, α2, . . . , αn)) ≡ 1(mod 2m+1)

Proof. K(
√
dL/K(α1, . . . , αn) ) is a subextension of L/K and thus an un-

ramified extension of K. Therefore dL/K(α1, . . . , αn) is a 2-primary unit of
K and the result follows from the above theorem. �

Using the above local statement, one would now like to recover Theorem
1.1. We are able to do this in the case when L/K has an integral basis (see
corollary 1.3). We first prove the following.

Corollary 1.2. Let K be a number field containing the 2m-th roots of unity
where m ≥ 1. Let L/K be a finite extension, let ∂L/K be the relative dis-
criminant of L/K, and suppose that the absolute norm NK/Q(∂L/K) is odd.
Assume that α = {α1, ..., αn} is a basis of L/K such that

(i) α is contained in OL.
(ii) α forms a S−1OK-basis of S−1OL where S = Z\(2).

Let dL/K(α) denote the discriminant of the basis α. Then

NK/Q(dL/K(α)) ≡ 1(mod 2m+1)

Proof of Corollary 1.2. The hypothesis that the norm of the discriminant
ideal is odd is equivalent to saying that all primes of OK lying above the
prime ideal (2) are unramified in L. Fix a prime p of OK lying above 2. Let
{qj}rj=1 be the prime ideals of OL lying above p. Choose an integral basis
βj = {βj1, βj2, ...} of Lj/Kp. Here Lj and Kp denote the completion of L and

K at qj and p respectively. Let A = L ⊗K Kp. Since A = ⊕Lj , β =
r⋃
j=1
βj

forms an integral basis for the Kp algebra A. Here by integral basis of A
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we mean an OKp-basis of ⊕jOLj . Let dA/Kp
(β) denote the discriminant of

A of β. Note that α is also an integral basis of A and the p-adic image
(dL/K(α))p is equal to dA/Kp(α). Therefore

(dL/K(α))p = dA/Kp
(β) · u2

for some unit u ∈ UKp . Since dA/Kp
(β) =

r∏
j=1
dLj/Kp

(βj), by Corollary 1.1

we have,

NKp/Q2dA/Kp
(β) =

r∏
j=1

NKp/Q2(dLj/Kp
(βj)) ≡ 1(mod 2m+1)

As Q2(ζ2m) ⊂ Kp, by theorem 2.4 we have, NKp/Q2(u) ∈ Um,Q2 . This
implies that NKp/Q2(u)2 ∈ Um+1,Q2 . Thus

NKp/Q2(dL/K(α))p ≡ 1(mod 2m+1)

By using ([6],II,3.2) we get

NK/Q(dL/K(α)) =
∏
p|2

NKp/Q2(dL/K(α))p ≡ 1(mod 2m+1)

�

Corollary 1.3. Let K be as above with m ≥ 2. Let L/K be a finite ex-
tension having an integral basis α. Assume that the absolute norm NK/Q
of the discriminant ideal ∂L/K is odd. Then NK/Q(dL/K(α)) is the positive
generator of NK/Q(∂L/K). In particular

NK/Q(∂L/K) ≡ 1(mod 2m+1)

Proof. Since NK/Q(dL/K(α)) is a generator of NK/Q(∂L/K), it suffices to
show that it is positive. As K is purely imaginary, the norm NK/Q of any
nonzero element is positive. �

Theorem 1.2 will be proved in section 3. In section 2, we recall some
classical results on the behaviour of the norm map of a totally ramified
cyclic extension of local fields. See for example [2].

Acknowledgement : I am thankful to Prof. C. S. Dalawat for his help.
This problem was suggested to me by him. I am indebted to Joël Riou for
painstakingly going through the first draft of this paper and for important
suggestions. I am grateful to Amit Hogadi for his interest and stimulating
discussions. I thank Prof. Loïc Merel for his useful comments.
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2. Cyclic ramified extensions and the norm map.
In this section we state some results about the norm map of a totally

ramified cyclic extension of local fields. These results will be crucially used
in the proof of the theorem 1.2.
Notation. Let K be a finite extension of Qp. Let k be the residue field of
K. We denote by Ui,K the subgroup of UK given by

Ui,K = {x ∈ UK|vK(1− x) ≥ i}
We denote by eK the absolute ramification index of K and eK = eK/p− 1.
Theorem 2.1. ([6], p. 212) Let K be a finite extension of Qp. For all
n > eK, the map ( )p : Un → Un+eK is a bĳection.
Theorem 2.2. ([2], III.1.4) Let L/K be a totally ramified Galois exten-
sion of degree p. Let πL be a uniformiser of L. Let σ be a generator of
Gal(L/K). Then σ(πL)/πL ∈ U1,L. Further, if s is the largest integer such
that σ(πL)/πL ∈ Us,L, then s is independent of the uniformiser πL.

Thus the integer s, defined above depends only on the extension L/K.
Therefore we will denote it by s(L/K). Note that s(L/K) is the unique
ramification break of Gal(L/K).
Theorem 2.3. ([2],III.2.3) s(L/K) ≤ peK.
Example. Let K = Q2. Then K has six ramified quadratic extensions
namely, K(

√
−1),K(

√
−5),K(

√
±2),K(

√
±10). For the first two extensions

s = 1 and for the remaining extensions s = 2.
We will now state some results about the Hasse-Herbrand function, which

is an important tool in understanding the behaviour of the norm map in
wildly ramified extension.
Proposition 2.1. ([2], III, prop. 3.1) Let L/F be a finite Galois extension
of local fields and N = NL/F : L∗ → K∗ be the norm map. Let kF be
infinite. Then there exists a unique function

h = hL/F : N→ N
such that h(0) = 0 and

NUh(i),L ⊂ Ui,F, NUh(i),L 6⊂ Ui+1,F, NUh(i)+1,L ⊂ Ui+1,F.

(1) For L/F a totally tamely ramified extension,
h(i) = [L : F]i,

(2) If L/F is totally ramified extension of degree p = char(kF) then,

h(i) =
{
i, if i < s
s(1− p) + pi if i ≥ s,
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If we have the tower of field extension L ⊂ M ⊂ F then,

hL/F = hL/M ◦ hM/F.

To treat the case of local fields with the finite residue fields we have the
following.

Lemma 2.1. ([2], III, 3.2) Let L/F be a finite separable totally ramified
extension of local fields. Then for an element α ∈ L we get

NL/F(α) = NL̂ur/F̂ur .

where F̂ur is the completion of Fur, L̂ur = LF̂ur.

This lemma shows that, if kF is finite then, for a finite Galois extension
L/F, hL/F = hL̂ur/L̂ur .

We will be using the following theorem from class field theory,

Theorem 2.4. ([5], p. 45) The norm map carries units of Qp(ζpm) into
Um,Qp; i.e, NQp(ζpm )|Qp

(
UQp(ζpm )

)
= Um,Qp.

Next we recall some results discussed in [1]. Let K be a finite extension
of Qp. We know that K∗ has a filtration (Un)n∈N. Put U0 = UK and
Un = Un/Un ∩Up0. We thus a get a filtration on K∗/K∗p by Fp subspaces,

· · · ⊂ Un ⊂ · · · ⊂ U1 ⊂ U0 ⊂ K∗/K∗p

From ([1], Prop. 33), if K∗ contains an element of order p then Upek is
an Fp-line in K∗/K∗p. Further, Fp-lines in K∗/K∗p are in bĳection with
the cyclic degree p extensions of K. The line which corresponds to the
unramified extension is given by following proposition.

Proposition 2.2. ([1], Prop. 16) The Fp-line in K∗/K∗p which gives the
unramified (Z/pZ)-extension of K upon adjoining p-th roots is UpeK.

We thus get the following important corollary.

Corollary 2.1. A unit α in UK is p-primary if and only if the image of α
in K∗/K∗p belongs to UpeK.

In the earlier version of this paper, the statement of the following lemma
was hidden in the proof of Theorem 1.2. I thank Joël Riou for his suggestion
of stating it as a separate lemma and also providing an elegant proof.

Lemma 2.2. Let E/F be an extension of p-adic fields containing a prim-
itive p-th root of unity. Then the norm map NE/F : E∗ → F∗ takes a
p-primary unit to a p-primary unit.
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Proof. It suffices to prove this result in two cases: E/F is a totally ramified
extension and E/F is an unramified extension. Let α ∈ E be a p-primary
unit. By definition of a p-primary unit, there exists an unramified extension
E′/E and β ∈ E′ such that α = βp.

Suppose that E/F is a totally ramified extension. Then the extension
E′/E corresponds to the extension of residue field of E. The residue field
of E is the same as that of F. Thus there exists an unramified extension
F′/F such that E′ = F′E. It is easy to see that NE/F(α) = NE′/F′(α) and
thus NE/F(α) = NE′/F′(β)p.

Suppose now E/F is an unramified extension. E′/E is also an unram-
ified extension. Since these extensions are Galois, NE/F(α) is a product
of all σ(α) where σ ∈ Gal(E/F). For each σ ∈ Gal(E/F), we choose
σ̃ ∈ Gal(E′/F) which extends σ. Then NE/F(α) is a p-th power of a product
σ̃(β). This product lies in an unramified extension of F namely E′ and thus
NE/F(α) is a p-primary unit. �

3. Proof of Theorem 1.2
Proof of Theorem 1.2 . By hypothesis, K contains the pm-th roots of unity
where m ≥ 1. By above Lemma 2.2, the norm NK/Qp(ζpm ) of a p-primary
unit in K is a p-primary unit in Qp(ζpm). Thus it is enough to prove the
result in the special case K = Qp(ζpm).

Suppose that K = Qp(ζpm). By corollary 2.1, a unit α ∈ K is p-primary
if and only if

α = u · wp

where u ∈ UpeK,K and w ∈ UK. By theorem 2.4, NK/Qp(u) and NK/Qp(w)
belong to Um,QP . Thus by theorem 2.1, NK/Qp(w)p ∈ Um+1,Qp . To prove
the theorem it now remains to show that NK/Qp(u) ∈ Um+1,Qp . We are
going to show this by using the Hasse-Herbrand function. In fact, we will
show that hK/Qp(m) = pm − 1. Then, by using the property of Hasse-
Herbrand function we will get that, NK/Qp(Uh(m)+1,K) = NK/Qp(Upm,K) ⊂
Um+1,Qp .

Consider the tower of field extensions K = Km ⊃ Km−1 ⊃ · · · ⊃ K1
where Ki = Qp(ζpi). Note that for each 2 ≤ i ≤ m, Ki/Ki−1 is a wildly
ramified cyclic extension of degree p, and K1/Qp is tamely ramified cyclic
extension of degree p − 1. Let vKi be the surjective valuation of Ki. By
([6], IV, Lemma 1(c)), sKi/Ki−1 = pi−1 − 1. Indeed, vKi(σ(ζP i) − ζpi) =
vKi(ζpζpi − ζpi) = vKi(ζp − 1) = pi−1.

Henceforth for simplicity of notation we write si for s(Ki/Ki−1).
Step 1: For m = 1, we want to prove that hK1/K(1) = p−1. Since K1/K is
a tamely ramified extension of the degree p− 1, this follows by the formula
of Hasse-Herbrand function for tamely ramified extensions. See (1).
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Step 2: For m ≥ 2, we want to show that hKm/Qp(m) = pm − 1. We will
use the transitivity of the Hasse-Harbrand function thorough the tower of
field extensions. For simplicity of notation, we will write hK1/Qp = h1,
hKi/Ki−1 = hi, and h = hm ◦ · · · ◦ h1.

(i) We know from (1) that h1(m) = m(p−1). To compute h2(m(p−1)),
first observe that s2 = p − 1 and m(p − 1) > s2. Now applying
formula (2),

h2(m(p− 1)) = (p− 1)(1− p) + p(m(p− 1)) = (m− 1)p2 − (m− 2)p− 1.
(ii) For 1 ≤ n < m, let us assume that
(∗) hn ◦ hn−1 ◦ · · · ◦ h1(m) = (m− (n− 1))pn − (m− n)pn−1 − 1

It is easy to check that
(m− (n− 1))pn − (m− n)pn−1 − 1 ≥ sn+1 = pn − 1.

Now we can apply the formula (2).
hn+1 ◦ (∗) = hn+1((m− (n− 1))pn − (m− n)pn−1 − 1)

= (pn − 1)(1− p) + p[(m− (n− 1))pn − (m− n)pn−1 − 1]
= (m− n)pn+1 − (m− (n+ 1))pn − 1.

Thus, for n+ 1 = m, we get hm ◦ · · · ◦ h1(m) = h(m) = pm − 1.
This proves that NK/Qp(Uh(m)+1,K) = NK/Qp(Upm,K) ⊂ Um+1,Qp and

thus
NK/Qp(u) ∈ Um+1,Qp .

This completes the proof of the Theorem 1.2.
�

Remark. The result NK/Qp(Upm,K) ⊂ Um+1,Qp can also be derived without
the explicit use of the function hK/Qp . This can be achieved by the repeated
application of the fact ([2], III, 1.5) that, for a totally ramified cyclic degree-
p extension L/K, we have

(1) NL/K(Us+pi,L) ⊆ Us+i,K ∀ i > 0
(2) NL/K(Us+i,L) = NL/K(Us+i+1,L) for i > 0, p - i.

and for totally tamely ramified Galois extension of degree-n ([2], III, 1.3),
(1) NL/K(Uni,L) ⊆ Ui,K
(2) NL/K(Ui,L) = NL/K(Ui+1,L) if n - i.

In fact, in the notation Km = Qp(ζpm), these formulae imply
NKi/Ki−1(Uri,Ki) ⊂ Uri−1,Ki−1 , for 2 ≤ i ≤ m.

where for 1 ≤ i ≤ m, ri = (m− i+ 1)pi− (m− i)pi−1. It is easy to see that
NK1/Qp(Ur1,K1) ⊂ Um+1,Qp .
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Example. Let us show that a p-primary unit may not satisfy a congruence
better than that of Theorem1.2. Suppose that K = Q3(ζ34). Let α ∈
U2,Q3\U3,Q3 . Then α ∈ U34,K i.e α ∈ U3eK,K. Therefore α is a 3-primary
unit by using 2.2. We claim that NK/Q3(α) 6≡ 1(mod 36). Now NK/Q3(α) =

α[K:Q3] = α54. Since U1,Q3
( )2
−→ U1,Q3 is an isomorphism which preserves all

filtration levels, α2 ∈ U2,Q3\U3,Q3 . By using Prop.2.1,

U2,Q3/U3,Q3
( )27
−→ U5,Q3/U6,Q3

is an isomorphism. This implies that NK/Q3(α) 6≡ 1(mod 36).
Now we will show that a general unit which is not a 3-primary unit of K

may not satisfy the congruence as in the Theorem 1.2. Let α ∈ U1,Q3\U2,Q3 .
Thus α ∈ U2.33,K\U2.33+1,K and hence α is not a 3-primary unit of K. As
above, NK/Qp(α) = α54 and by Prop. 2.1, α54 ∈ U4,Q3\U5,Q3 .
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