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Modified proof of a local analogue of the
Grothendieck conjecture

par VicTorR ABRASHKIN

RESUME. L’analogue local de la conjecture de Grothendieck peut
étre formulé comme une équivalence entre la catégorie des corps
K complets pour une valuation discrete a corps résiduel fini de
caractéristique p # 0 et la catégorie des groupes de Galois ab-
solus des corps K munis de la filtration de ramification. Le cas
des corps de caractéristique 0 a été étudié par Mochizuki il y a
quelques années. Ensuite, 'auteur de cet article a établi, par une
méthode différente ’analogue de la conjecture de Grothendieck
dans le cas p > 2 (mais K de caractéristique quelconque). Nous
proposons ici une modification de cette approche qui inclut le cas
p = 2 dans la preuve, contient des simplifications considérables
et remplace le groupe de Galois par son pro-p-quotient maximal.
Une attention particuliere est accordée au procédé de la recons-
truction de I'isomorphisme de corps a partir d’un isomorphisme
de groupe de Galois compatible avec les filtrations de ramification
correspondantes.

ABSTRACT. A local analogue of the Grothendieck Conjecture is
an equivalence between the category of complete discrete valua-
tion fields K with finite residue fields of characteristic p # 0 and
the category of absolute Galois groups of fields K together with
their ramification filtrations. The case of characteristic 0 fields
K was studied by Mochizuki several years ago. Then the author
of this paper proved it by a different method in the case p > 2
(but with no restrictions on the characteristic of K). In this paper
we suggest a modified approach: it covers the case p = 2, con-
tains considerable technical simplifications and replaces the Ga-
lois group of K by its maximal pro-p-quotient. Special attention
is paid to the procedure of recovering field isomorphisms coming
from isomorphisms of Galois groups, which are compatible with
the corresponding ramification filtrations.

Introduction

Throughout this paper p is a prime number. If F is a complete discrete
valuation field then we shall assume that its residue field has characteristic

Manuscrit recu le 9 mars 2007, révisé le 13 juillet 2009.



2 Victor ABRASHKIN

p. We will consider F to be a subfield of a fixed separable closure Egep.
Define I'p = Gal(Eqep/E). We denote by E(p) the maximal p-extension of
E in Esp and we let I'g(p) = Gal(E(p)/E).

Assume that F and E’ are complete discrete valuation fields with finite
residue fields and there is a continuous field isomorphism p : E — E'.
Then p can be extended to a field isomorphism g : E(p) — E’(p). With
the conventions about compositions of morphisms which are described at
the end of this introduction, the correspondence 7 +— G~ '7ji defines a
continuous group isomorphism p* : I'g(p) — ['g/(p) such that for any
v >0, i*(Tg(p)®) =Tg(p)®). Here T (p)®) is the ramification subgroup
of I'g(p) in the upper numbering.

The principal result of this paper is the following theorem.

Theorem A. Suppose E and E’ are complete discrete valuation fields
with finite residue fields and there is a continuous group isomorphism g :
Te(p) — Tg(p) such that for all v > 0, g(Tp(p)¥) = T (p)™). Then
there is a continuous field isomorphism p : E(p) — FE’'(p) such that
p(E)=E" and g = p*.

This theorem implies easily a corresponding statement, where the maxi-
mal p-extensions F(p) and E’'(p) and their Galois groups I'g(p) and I'g/(p)
are replaced, respectively, by the separable closures Fge, and E’éep and the
Galois groups I'g and I'gr. Such a statement is known as a local analogue of
the Grothendieck Conjecture. Mochizuki [7] proved this local analogue for
local fields of characteristic 0. His method is based on an elegant application
of Hodge-Tate theory. Under the restriction p > 2 the case of local fields of
arbitrary characteristic was proved by another method by the author [3].
This proof is based on an explicit description of the ramification subgroups
Ik (p)® modulo the subgroup Cs(I'k(p)) of commutators of order > 3 in
Ik (p), where K = Ek((t)), and k is a finite field of characteristic p > 2.
The restriction p # 2 appears because the proof uses the equivalence of
the category of p-groups and of Lie Z,-algebras of nilpotent class 2, which
holds only under the assumption p > 2.

The statement of Theorem A is free from the restriction p # 2. Its proof
follows mainly the strategy from [3] but there are several essential changes.

Firstly, instead of working with the ramification subgroups I'g(p)®,
v > 0, we fix the simplest possible embedding of ' (p) into its Magnus’s
algebra A and study the induced fitration by the ideals A®), v > 0, of A. As
a result, we obtain an explicit description of the ideals A mod 73, where
J is the augmentation ideal in A. This corresponds to the description of
the groups I'x (p)®) mod C3(I'x (p)) in [1] but it is easier to obtain and it
works for all prime numbers p including p = 2.
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Secondly, any continuous group automorphism of I'x(p) which is com-
patible with the ramification filtration induces a continuous algebra auto-
morphism f of A such that for any v > 0, f(A®) = A®). Similarly to
[3], the conditions f(A®)mod 73 = A® mod J° imply non-trivial prop-
erties of the restriction of the original automorphism of I' - (p) to the inertia
subgroup I (p)®P of the Galois group of the maximal abelian extension of
K. These properties are studied in detail in this paper. This allows us to
give a more detailed and effective version of the final stage of the proof of
the local analogue of the Grothendieck Conjecture even in the case p # 2.
In particular, this clarifies why it holds with the absolute Galois groups
replaced by the Galois groups of maximal p-extensions.

The methods of this paper can be helpful for understanding the rela-
tions between fields and their Galois groups in the context of the global
Grothendieck Conjecture. For example, suppose F' is an algebraic number
field, F is its algebraic closure, I'p = Gal(F1 /F), p is a prime divisor in F
@ is its extension to F and Fy, F@ are the corresponding completions of
F and F, respectively. Then I'r s = Gal(Fg/F,,) C I'r is the decomposi-
tion group of @. Suppose F' is Galois over Q and g, : I'pg — I'pg is a
continuous group automorphism which is compatible with the ramification
filtration on I'r 5. By the local analogue of the Grothendieck Conjecture,
Je is induced by a field automorphism fi, : F@ — Fgg such that i := fig|p
maps F to I (because 1(Q) = Q), and, therefore, F to F (because F is
Galois over Q). So, @ induces a group automorphism g of I' p, which extends
the automorphism g, of I' 5, and we obtain the following criterion:

Criterion. A group automorphism g, € Autl'rs can be extended to a
group automorphism g € Awtl'r if and only if g, is compatible with the
ramification filtration on I'pg.

It would be interesting to understand how “global” information about
the embedding of I'ry, into I'r is reflected in “local” properties of the
ramification filtration of I'r .

Everywhere in the paper we use the following agreement about compo-
sitions of morphisms: if f : A — B and g : B — (' are morphisms
then their composition will be denoted by fg, in other words, if a € A then
(fg)(a) = g(f(a)). One of the reasons is that when operating on morphisms
(rather than on their values in a € A) the notation fg reflects much better
the reality that it is the composition of the first morphism f and the second
one g.

The author is very grateful to Ruth Jenni for very careful checking of
the final version of this paper and pointing out various inexactitudes and
misprints.
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1. An analogue of the Magnus algebra for I'(p)

In this section K = k((tx)) is the local field of formal Laurent series with
residue field k = [Fy,, where gg = pNo. Ny € N, and tx is a fixed uniformiser
of K (in most cases tx will be denoted just by t). We fix a choice of a
separable closure K, of K, denote by K (p) the maximal p-extension of K
in Kgep and set I' = Gal(Keep/K), I'(p) = Gal(K (p)/K).

1.1. Liftings. Notice first, that the uniformiser {5 of K can be taken as
a p-basis for any finite extension L of K in Kge,. For M € N, set

OM(L) = WM(UM_IL)[UQM] C WM(L),

where Wj; is the functor of Witt vectors of length M, o is the p-th power
map and tx = [tx] = (tk,0,...,0) € Wy (L) is the Teichmiiller repre-
sentative of tx. Very often we shall use the simpler notation t for tx as (as
well as for tx). Op(L) is a lifting of L modulo p or, in other words, it is
a flat Wy (IF,)-module such that Oy (L) modp = L. This is a special case
of the construction of liftings in [4].

Let Opn(Ksep) be the inductive limit of all Op(L), where L C Kgep,
[L : K] < oo. Then we have a natural action of I' on Ops(Kgep) and
On(Ksep)' = On(K) = Wa(k)((t)). We shall use again the notation
o for the natural extension of o to Op(Ksep). Clearly, On(Ksep)|o=id =
W (Fp). Introduce the absolute liftings O(K') = limOp/(K) and O(Ksep) =

M
UmOn (Ksep). Again we have O(Ksep)! = O(K) and O(Ksep)|o—ia =W (Fp).
M
We can also consider the liftings O (K (p)) and O(K (p)) with the natural

action of I'(p) and similar properies.
Notice that for any j € O(K(p)) there is an i € O(K(p)) such that

o(i)—i=17j.

1.2. The algebra A. Set Z(p) = {a € N | (a,p) = 1} and Z°(p) =
Z(p) U {0}. Let Ay be the profinite associative W (k)-algebra with the set
of pro-free generators {Dg), | a € Z(p),n € Zmod Ny} U {Dg}.
This means that A = @ACMk, where C, M € N,
oM
Acve = W (B)[[{Dan | a < C,n € Zmod No}]|

and the connecting morphisms Ac,a,x — Acyank are defined for Cp >
Cy, M1 > M and induced by the correspondences D, — 0 if Cy < a < C]
and Dy, — Dy, if a < Cy, and by the morphism Wy, (k) — Wy, (k) of
reduction modulo pM2.

Denote again by o the extension of the automorphism o of W(k) to
Ay, via the correspondences o : Dgy +— Dgni1, where a € Z(p) , n €
Z mod Ny, and the correspondence Dy +— Dy. Then A := Ag|,—iq is a pro-
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free Zy-algebra: if 31, ..., BN, is a Zy-basis of W (k) and, for a € Z(p) and
1<r< NOa
D((lr) = Z " (Br)Dan,
n€Z mod Ng

then {D((f) | a € Z(p),1 <r < No}U{Dyp} is a set of pro-free generators
of A. Notice also that if ay,...,an, € W(k) is a dual basis for 51, ...,(n,
(i.e. Tr(cwB;) = 045, where 1 < 4,5 < Np and Tr is the trace of the field
extension W (k) ® Q, over Q) then for any a € Z(p) and n € Zmod Ny, it

holds
Dyn = Z Un(ar)D((f).
1<r<Ng
Denote by 7, resp. Joum, the augmentation ideal in A, resp. Agpyr. Set
Ag = ARO(K), Aok = Acu®O(K), Ak = ARO(K (p)). We shall
also use similar notation in other cases of extensions of scalars, e.g. Jp =

TW (k), Tk = TRO(K), Tk = JQO(K (p)).

1.3. The embeddings v¢. Take ag € W (k) such that Tr(og) = 1, where
again Tr is the trace of the field extension W (k) ® Qp, D Q. For all n €
Z mod Ny, set Dy, = 0™ () Dy and introduce the element

e=1+ Z t %Dy €1+ Jk.
a€Z0(p)

We shall use the same notation e for the projections of e to any of
Acrvik mod J&y g, where C, M, n € N,

Proposition 1.1. There is an f € 1+ J(y) such that o(f) = fe.
Proof. For C, M,n € N, set

Scyvn = {f €1+ Jomrp) mod Ioyk ) | 0f = femod Ty )}

We use induction on n € N to prove that for all C, M,n € N, Scarm, # 0.

Clearly, Scan = {1} # 0.

Suppose that Scam # 0 and f € Sopp. Then o(f) = femod ngK(p).
Let

2 1+ Jomip) mod T8 () — 1+ Tear ) mod T

be the natural projection. If f1 € 1+ Jonk(p) mod jg;\r;K(p) is such that

7(f1) = f then o(f1) = fie + jmod jg;;K (n)> Where j € Tl - There

is an © € ¢y (p) Such that o(i) —i = j, cf. n.1.1. Therefore,
o(fi—i)=fie+j—(i+j)=(f1— i)emOngR}lK ()’

using that ¢e = 7 mod Jg;\}lK , and Scarn+1 # 0 because it contains fi —i.
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Notice that each Scps, is a finite set and each f € Sop, has a fi-
nite field of definition. This follows from the fact that for any C, M,n € N,
the Zy-module Acyr mod J&,, has finitely many free generators and, there-
fore, the equation o f = fe is equivalent to finitely many usual polynomial
equations. Also notice that {Scam | C, M,n € N} has a natural structure
of projective system. Therefore, @1 CMn # (), and any element f of this

C,M,n
projective limit satisfies f € 1 + Jk(,) and o(f) = fe.
The proposition is proved. O

For any f € 1+ Jk(p such that o(f) = fe and 7 € I'(p), set ¢y(7) =

(rf)f~". Clearly, o(¢4(7)) = 7(af)(0f)~" = (1f)ee™ f = ¢y(r). There-
fore, Y¢(7) € (1 + Tk (p))lo=ia =1+ J.

Proposition 1.2. a) 95 is a closed group embedding of T'(p) into (14+7)*.
b) 1y induces an isomorphism zp?b of the topological groups T'(p)* and
(14 J)* mod J2.

c) If i € 1+ Tk is such that o(f1) = fie then there is an element
c €1+ J such that for any 7 € T(p), ¥, (1) = cips(r)c L.

d) ¥y induces an embedding of the group of all continuous automorphisms

Autl'(p) into the group AutA of continuous automorphisms of the
Zp-algebra A.

Proof. a) Clearly, 15 can be treated as a pro-p-version of the embed-
ding of the group I'(p) into its Magnus algebra. Therefore, by [8], Ch
1, Sec 6, vy induces, for all n € N, the closed embeddings of the quo-
tients Cp(I'(p))/Cr+1(L(p)) of commutator subgroups in I'(p) into 1 +
J"mod J"!. This implies that v ¢ induces, for all n > 1, the closed group
embeddings of I'(p)/Cy(I'(p)) into 1 4+ J mod J", and therefore, 15 is a
closed group monomorphism.

b) Consider the profinite Z,-basis {D((lr) | a € Z(p),1 <r < Ny }U{Do}
for 7 mod J2 from n.1.2. For 1 < r < Ny, as earlier, consider o, € W (k),
which form the dual basis of the basis {3, | 1 <r < Ny} chosen in n.1.2 to

define the generators DEZ”’. Then
e=1+ Z oth_aD((lT) + apDy
1<r<Noa€Z(p)

and
f=1+ > DY + foDomod Ti,,
1<r<Noa€Z(p)
where for 1 < r < Ny and a € Z(p), fér) and fy belong to O(K(p)) C
W (K (p)) and satisfy the equations afér) — fér) = a,t7% and o fo — fo = ap.
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Then for any 7 € I'(p),

Gp(r) =14+ (7 £ = f{)DE + (7 fo — fo) Do mod T,

and the identification ¢y : I'(p)®® ~ (1 + J)* mod J? is equivalent to the
identifications of Witt-Artin-Schreier theory

BaczpW (k)i *@W (Fp)ao = O(K)/(0—id)O(K) = Homes (I'(p), W(EFp)).
¢) Clearly, o(fif~") = o(f1)o(f)~' = free ' f~1 = f1f~1. Therefore,
Aft=ce(l+Tkp)NA=1+T

and for any 7 € T'(p),
Vi (r) =1 =rlef)ef) =) e = epp(r)e

d) This also follows from the above mentioned interpretation of A as a
profinite analogue of the Magnus algebra for I'(p). O

1.4. The identification ¢?b. As it was already mentioned in the proof

of proposition 1.2 the identification ﬂ)?b comes from the isomorphism of
Witt-Artin-Schreier theory

I(p)*™ = Hom(O(K)/(0 — id)O(K), W (Fy))
and does not depend on the choice of t = tx and f € 1 + Jk(;). Suppose
10 € T'(p)?® is such that w?b(m) =1+ Dy and for a € Z(p) and 1 < r < Ny,

the elements Té’”) € F(p)ab are such that w;b(n&’”)) =1 +D§J“) mod J2. Then
the element

e=14agDy+ Z art_aD((f)

corresponds to the diagonal element co @79+, , a,,t*“®n§” from O(K)®
L(p)™ =
O(K) @ Hom(O(K)/ (o —id)O(K), Z,) = Hom(O(K) /(0 ~id)O(K), O(K)),
which comes from the following natural embedding
O(K)/(0 —id)O(K) = @aezmW (k)™ @ W(Fy)ao C O(K).
The above elements g, resp. Ty), correspond to t, resp. E(ﬁr,t‘l)l/ ¢ by

the reciprocity map of local class field theory. (Here (1, ..., N, € W (k)
were chosen in n.1.2 and for § € W(k),

E(B,X) = exp(BX + (08)XP/p+ -+ (6" B)X"" /p" +...) € W(K)[[X]
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is the generalisation of the Artin-Hasse exponential introduced by Shafare-
vich [9].) This fact follows from the Witt explicit reciprocity law, cf. [5].
Then the elements D,,,, where a € Z(p) and n € Zmod Ny, correspond to

S 0"(ow) ® B(Br, t)Y € W(k) ®2, Ga,
1<r<Nog
where the (multiplicative) group G, := {E(v,t%) | v € W(k)} is identified
with the Z,-module of Witt vectors W (k) via the map E(y,t*)"/* s ~.
Consider the identification

W(k) ®Zp W<k) = G9771621110(1N()V[/v(k')m,

given by the correspondence o ® 5 — {07 ()8 }mezmod Ny,- Under this
identification the element D, corresponds to the vector d,, € @, W (k)m,
which has n-th coordinate 1 and all remaining coordinates 0. This interpre-
tation of the generators D, will be applied below in the following situation.
Suppose [k’ : k] < oo, k' ~ Fy with q, = pNo. Clearly, N} = 0mod Ny. For
a € Z(p) and n € Zmod N{j denote by D!, an analogue of Dy, constructed
for K' = K/ ((tx’)) with tg = t. Let I'' = Gal(Kgep/K') and let I'(p) be
the Galois group of the maximal p-extension K'(p) of K’ in Kgep. With the
above notation we have the following property:

Proposition 1.3. For any a € Z(p) and n € Zmod Ny, D), is mapped
to Do pmod N, under the map I'(p)2> — T(p)*P, which is induced by the
natural embedding T C T.

2. Action of analytic automorphisms on I2°(p)

As earlier, K = k((t)), k ~ Fy, with go = p™° and I'(p) = Gal(K (p)/K).
Let I(p) be the inertia subgroup of I'(p) and let I(p)®" be its image in the
maximal abelian quotient I'(p)2P of T'(p).

2.1. Consider the group AutK of continuous field automorphisms of K.
Let Fr(t) € AutK be such that Fr(t)|y = o and Fr(t) : t — t. Then any
element of AutK is the composition of a power Fr(t)", where n € Z mod Ny,
and a field automorphism from Aut’(K) := {n € AutK | |, = id}. Notice
that any 7 € Aut’K is uniquely determined by the image 7(t) of ¢, which
is again a uniformizer in K.

Let Autx K (p) be the group of continuous automorphisms 7 of K(p)
such that 7|x € AutK. Then Autx K (p) acts on I'(p): if € AutgxK(p)
and 7 € I'(p) then the action of 7 is given by the correspondence 7 —

——1
(1) = 7', Le. 7°(r) © K(p) T K(p) — K(p) == K(p), cf. the
introduction for the agreement about compositions of maps. The action
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induced by 7* € Autx K (p) on T'(p)®® depends only on 7 := 7j|x and will
be denoted simply by n*.

2.2. Let M = I(p)** @ F,,. If Uk is the group of principal units in K
then we shall use the identification M = Uy /U%., which is given by the
reciprocity map of local class field theory. Notice that, with respect of this
identification, for any nn € AutK, the action n* comes from the natural
action of n on K. We shall denote the k-linear extension of the action of n
to My := M ®p, k by the same symbol n*.

Use the map m +— (¢?b(m) — 1)mod p to identify My with a submod-
ule of J mod(p, J?). For a € Z(p) and n € Zmod Ny, consider the im-
ages of the elements D,,,, where a € Z(p) and n € Zmod Ny (cf. n.1), in
Jr mod(p, jkz) Denote these images by same symbols. Then they give a set
of free topological generators of the k-module M. The action of n € AutK
on My in terms of these generators is as follows.

Proposition 2.1. 1) Fr(¢)*(Dapn) = Dan—1;
2) if n € Aut’K, then
Z 0" ( Z 7 (t)"*Dao mod(k 4 (0 — id)K) @ M.

a€Z(p) a€Z(p)

Proof. 1) Consider the generators aTDL(f) of A from n.1.2, where a €
Z(p),1 < r < Np. Note that the residue of the corresponding element e — 1
modulo (¢ —id)K ® (J mod J?) does not depend on the choice of ¢ or of
the elements a1, ag, ..., any,, because this is the diagonal element of Artin-
Schreier duality. Therefore, if Fr(t)*(DgT)) = D" and Fr(t)*(Do) = Dj
then

e—1=o(ap) ® Dy + Z o(a, )t~ @ D/

a,r

(2.1)
= ap® Dy + Z o, t7? ® D mod(o — id) K @ (J mod J2).

So, for any a € Z(p), we see that in k @, M = M;,
Do =Y a, @ DY) =3 o(a,) @ D).

Denoting the k-linear extension of Fr(¢)* by the same symbol, as usual, we
have

= a, @ Fr(t)" (D) Za @ D" = 671Dy = D, 1.

Therefore, for any a € Z(p) and n € Zmod Ny, Fr(t)*(Dan) = Dan—1-
Notice also that congruence (2.1) implies that Fr(¢)*Dy = Dy.
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2) Using that 7 is a k-linear automorphism of K and proceeding similarly
to the above part 1) we obtain that

Yo ) (Dag) = Yt “Dagmod(c —id)K @ M.

a€Z(p)° a€Z(p)®

Now apply (n~'®id) to both sides of this congruence and notice that we can
omit the terms with index a = 0 when working modulo (k+(c—id)K)®M,
because they belong to Mj. The lemma is proved. O

2.3. If f is a continuous automorphism of the F,-module M, we agree to
use the same notation f for its k-linear extension to an automorphism of
M. For any a € Z(p), set

f(DaO) = Z aabn(f)Dbn~

beZ(p)
n€Z mod Ny

Then all coefficients ayp,(f) are in k. Sometimes we shall use the notation
aapn(f) if @ or b are divisible by p, then it is assumed that ag,(f) = 0.
Notice that for any m € Z mod Ny,

f(Dam) = Z Um(aabn(f))Db,n+m-

beZ(p)
n€Z mod Ny

Definition. For any v € N, let M) be the minimal closed Fp-submodule

in M such that M,(:) = M® @ k is topologically generated over k by all
Dan, where a € Z(p), a > v and n € Zmod Ny. (Notice that M = M) )

Definition. Aut,q, M is the subset in the group AutM, consisting of
all continuous F)-linear automorphisms f satifying o pmmod N, (f) = 0 if
bp™ < a, for any a,b € Z(p) and —Ny < m < 0.
It is easy to see that:
(1) AutagmM is a subgroup of AutM;

(2) if f € AutagmM then for any a € N, f(M@) c M@ ie. fis
compatible with the image of the ramification filtration in M;

(3) if f € AutagmM then for any a € Z(p), aeo € k* and agen(f) =0
if n # 0.

Definition. For f € AutM, let fa, € End M be such that for all a € Z(p),
fan(DaO) = Z aabO(f)DbO-

bEZ(p)
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Proposition 2.2. If f,g € AutagmM then for any a,b € Z(p) such that
a<b<aph,

aabo(fg) = Zaaco )aebo(9)-

Corollary 2.3. If v < p™0 then the correspondence f — fan is a group
homomorphism from AutagmM to AutaqmM mod M),

Proof. We have aqp0(fg) =

Z Qq,c,nmod Ng (f)an (ac,b,m mod Ny (g))Db,(m—l-n) mod Ng*
m+n=0mod Ny
0>n,m>—Ny

Then g.cnmod Ny (f) 7# 0 implies that ¢p™ > a and o pmmod Ny (9) # 0
implies that bp™ > c. So, if the corresponding coefficient for Dy, (;,4n) mod Ny

is not zero then bp™*™" > a,i.e. m+n > — Ny and, therefore, m =n =0. O
The following proves that Aut’ K C AutaqmM.

Proposition 2.4. If n € Aut’K then n* € AutagmM.

Proof. For a € Z(p), set

N7 =D yabst ™ mod K[[t]]-

beZ(p)
s=0

Clearly, vaps = 0 if bp® > a. It follows from part 2) of proposition 2.1 that
n*(DbO) = Z U_S(’Yabs)Da,—smodNo-

a€Z(p)
s=>0
Therefore, for 0 < m < Ny,
Qp,a,—m mod Ng (n*) = Z U_S(Vabs)
s=m mod Ny
s=>0

and a/p™ < b implies for s = mmod Ny, s > 0, that a/p® < b. So, bp® > a,

Yabs = 0 and Ap,a,—m mod Ny (77*) =0.
The proposition is proved. U

2.4. In this subsection we prove three technical propositions. Notice that
in proposition 2.5 we treat the case of fields of characteristic p # 2 and
in proposition 2.6 the characteristic of K is 2. Propositions 2.5-2.7 will be
used later in section 5. If a,b € N then d,; is the Kronecker symbol.

Proposition 2.5. Suppose p # 2, wo € N, wo+1 < p™° and f € AutagmM
is such that a1q0(f) = 014 if 1 < a < wy and ageo(f) = 0 if a = 1modp
and a < wy. Then there is an n € Auwt°K such that n(t) = tmod ™o,
a1q0(f1*) = 014 if 1 < a <wo+1, and ageo(fn*) =0 if a = 1modp and
a<wy+1.
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Proof. Take n € Aut’K such that n=1(t) = t(1 +~yt*o~!) with v € k. Then
for any a € Z(p), n7 (%) = =41 — ayt™° ") mod t 4T and part 2) of
proposition 2.1 implies that agq0(n*) = 1, ago(n*) =0ifa < b < a+wp—1,
aa7a+wo—1,0(n*) = _(a + wo — 1)7'

Therefore, by proposition 2.2 ai.0(fn*) = d1s if 1 < a < wp and
a2q0(fn*) =0 if a = 1mod p, a < wyp.

Suppose wg Z 0mod p. Then by proposition 2.2

A1uwo0 (f17) = —woy + Q1uweo(f) = 0

if v = walalwog(f). This proves the proposition in the case wg Z 0mod p,
because wp+1 # 1 mod p and no conditions are required for ag yy+1,0(f7*).

Suppose wy = 0mod p. Then there are no conditions for ai.,0(fn*) and
by proposition 2.2

2,0+1,0(f1) = @220 () 2,000 +1,0(1") + @2,00+1,0(f ) Qo 41,0 +1,0(1")
= —a20(f)7 + a2.we+1,0(f) =0

if v = QQ,wO_FL()(f)OLQQ()(f)il. (Using that f € AutaqmM hence ag90(f) €
The proposition is proved. O

Proposition 2.6. Let M € N, p = 2, wg = 4M and wy + 1 < 2MNo,
Suppose [ € AutaamM is such that aia0(f) = 014 if 1 < a < wp — 3 and
@340(f) = 034 if 3 < a < wo— 1. Then there is an n € Aut’K such that
@1a0(fN*) = 014 and azao(fn*) = 634 if a < wo + 1.

Proof. 1st step.

Take 1 € Aut’K such that n; ' (t) = t(1 4 7t*M~2) with 41 € k. Then
for a € Z(2), n; (7% = (1 + yt*M=2) mod t~*+*M and by part 2) of
proposition 2.1, au0(nf) = 1, ago(ny) = 0if a < b < a+4M — 2, and
aa7a+4M—270(77>1k) =7-

So by proposition 2.2, a140(fn}) = a1a0(f) if a < AM — 3 = wy — 3,
aza0(f17) = aza0(f) if @ <AM =1 = wo—1, a1wy—1.0(f7) = 1 wo-10(f)+
1 e—1,0(n7) = 01f 11 = a1 wy-1,0(f)-

2nd step.

By the above first step we can now assume that o ,—1,0(f) = 0.

Take 7o € Aut’K such that 1y ' (t) = t(1 4 2t ~1). Then for a € Z(2),
ny (7)) = 741 + wt?M T 4+ §5(a)y3t*M2) mod M | where §(a) =
ala+1)/2.

So by part 2) of proposition 2.1, ageo(75) = 1, agpo(n3) = 0if a < b <
a+4M — 2 (notice that —a +2M — 1 = 0mod 2), and g q4+am—2,0(75) =
§(a + 4M — 2)y3 (notice that §(a + 4M — 2) = 0 if @ = 1mod4 and
d(a+4M —2) =1if a = 3mod4).
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Again by proposition 2.2, a140(f15) = a1a0(f) if a <4M — 1 = wy — 1
(use that a1wy-1,0(f) = a1we-1,013) = 0), aza0(f13) = aza0(f) if a <
AM — 1 = wo — 1, a3we+1,0(f73) = @3we+1,0(f) + @3awet+1,0(n3) = 0 if
9 € k is such that 722 = 3,uwo+1,0(f)-

3rd step.

Now we can assume that o —1,0(f) = a3.we+1,0(f) = 0.

Take 13 € Aut’K such that 03 ' (t) = t(1 + ~3t*M). Then for a € Z(2),
3 (¢ = (1 + yst™M) mod tHME2 a0 (n3) = 1, aapo(ni) = 0 if
a<b<a+4M, and ogq1am,0(n3) = 73

This implies that aiq0(f73) = @ieo(f) if @ < 4M — 1 = wy — 1,
A1wet+1,0(f73) = 1wor1,0(f) + a1wer1,0(n3) = 0 if 43 = a1,we+1,0(f) and
a3q0(fn3) = aza0(f) if @ <wo + 1.

The proposition is proved. O

Proposition 2.7. Suppose a € Z(p), wo < ap™°, where wy € pN, wy > a+
1ifp+# 2 andwy € 4N, wg > a+2 if p = 2. Suppose n,m € Aut’K are such
that for any b, c € Z(p) satisfying the restrictions a < ¢ < b < wg < ap™°,
we have the equality

acbo(ﬁ*) = O‘cbO(nD'

Then n(t) = m(t) modt™, where vgo = wo —a+ 1 if p # 2 and vy =
(wo—a+1)/2 if p=2.

Remark. With notation from Subsection 2.3 this proposition implies that
if 17, = ¥, mod M) then n(t) = 1y (t) mod tv.

Proof. Use proposition 2.2 to reduce the proof to the case n;(t) = t.
Suppose, first, that 77 1(¢) = at mod t2. Then

(2.2) acco(N®) =a ¢ =1.

If a +1 € Z(p) then p # 2 and we can use formula (2.2) for c=a,a+ 1 to
prove that o = 1. Suppose a+1 ¢ Z(p). Ilf p =2 use (2.2) forc =a,a+2 <
wp, and if p # 2 use (2.2) for ¢ = a +2,a + 3 < wp to prove again that
a=1.

Assume now that p # 2.

Suppose 71 (t) =t + at* ' modt’ withv >3 and a € k*. Ifa+v—2 €
Z(p) then by part 2) of proposition 2.1 ag q4v—2,0(n*) # 0. This implies that
a+v—22wy+1,ie. v>=>wy—a+1,asrequired. If a +v —2=0modp
then by part 2) of proposition 2.1 ag11,a4+0—1,0(n*) # 0.This implies that
a+v—12wy+1landv>wy—a+2>wy—a+ 1. The case p # 2 is
considered.

Assume now that p = 2.
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Suppose that M € N is such that

n i) =t (1 + Z 'yrtr> = tmod t*M

r>2M—1

with either o571 # 0 or yops # 0.

Therefore, if 7 = 0mod2, r > 2M — 1 and a + 7 < ap™° then by part
2) of proposition 2.1 aq q4r0(n*) = 7. This implies that either 2M > wy
(and the proposition is proved) or 2M < wy — 2, vopr = 0 and o571 # 0.

Suppose a + 4M < wg. Then with the notation from the second step in
the proof of proposition 2.6, we have

Qaatar—2,0(0") = Yani—2 + Yarr_10(a + 4M — 2)
Qar2,ata00(n") = Yanr—2 + Vorr—16(a + 4M).

The sum of the right hand sides of the above two equalities is v3,, | # 0,
because 0(a+4M —2)+6(a+4M) = 1. Therefore, at least one of their left
hand sides is not zero. This means that the assumption about a+4M < wyq
was wrong. Therefore, 4M > wy —a and 2M > (wg —a +1)/2.

The proposition is proved. O

3. Compatible systems of group morphisms

For any s € Zxo, let K, be the unramified extension of K in K(p) of
degree p°. Then Kg = ks((t)), where t = tx is a fixed uniformiser, k C ks,
(ks : k] = p°, ks ~F,,, g5 = p™V* with Ny = Nop®.

Let Ky be the union of all K, s > 0. This is the maximal unramified
extension of K in K (p) and its residue field coincides with the residue field
k(p) of K(p). Let Ik, (p)®P, resp. Ik, (p)2P, for s € Zsp, be the images
of the inertia subgroups of Gal(K(p)/Kur), resp. Gal(K(p)/Ks), in the

corresponding maximal abelian quotients. Then I (p)*® = im /7, (p)2b.
S

3.1. For s > 0, introduce the Fy-modules Mgs = I, (p)*® ® F, and
Mgw = Ik, (p)*® @ F, with the corresponding k(p)-modules My, =
MK5®Fpk(p) and Mgy = /\/lKur®]Fpk(p). Then for all s > 0, we have natu-
ral connecting morphisms j : Mg 41 — Mg and J; : /\;lK,SH — Mg,
(both are induced by the natural group embeddings I';,,, — I'x,). There-
fore, we have projective systems {Mps,js+ and {Mps,7s} and natural

identifications Mg = @M ks and Mg == @M K-
S S

Let Moo be the k(p)-submodule in M g, which is topologically gen-
erated by all Dgy = limD y where a € Z(p) and n € Z. Here for

a,nmod Ng’
s
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a € Z(p) and n € Zmod Ng, Déf) are generators for ./\;le, which are ana-
logues of the generators Dy, introduced in Section 2 for the k-module M.
Notice that the generators D((;;) depend on the choice of the uniformising

element ¢ in K.

Proposition 3.1. The k(p)-submodule Mo of Mg does not depend
on the choice of t.

Proof. Let t; be another uniformiser in K. Introduce n € Aut’(K,,) such
that n(t) = t1. The proposition will be proved if we show that n*(Mg) =
MEkoo.

For s > 0, let ns = 0|k, € Aut’K,. Then for a € Z(p) and n € Zmod Ny,

77; (D(giz)) = Z " Qgpm (77; )Dl(:T)rH-n’
bEZ(p)
meZmod Ny

where the coefficients agpm,(nk) € ks satisfy the following compatibility
conditions (using that js(Dé‘Z)) =pt-b ):

a,nmod Ng_1
if a,b € Z(p) and m € Zmod Ns_; then
Z Qabn (M5) = Cabm (Ms—1)-

nmod Ng_1=m

By proposition 2.4, if 0 < m < Ng and b/p™ < a then
Qg b —mmod N, (15) = 0. Therefore, if s is such that b/pNs < a then
g —m (M) = Qb —mmod N, (15) does not depend on s and for any a € Z(p)
and n € Zxy,

7*(Dg) = Y gy () DS € Moo
bEZ(p),m=0

The proposition is proved. O

3.2. Consider the identification of class field theory Ig, (p)*® = Uk.,
where Uk, is the group of principal units of K. Define the continuous
morphism of topological k(p)-modules

Tis : Mics = Ik, (0) " Ok(p) — Q0

by Trs(u ® a) = ad(u)/u for u € Uk, and a € k(p). Here Q})K is the
completion of the module of differentials of the valuation ring O,  with
respect to the t-adic topology. Notice that for any a € Z(p) and 0 < n < Nj,

Dg?lmod N, — Z U; @ (O'nOéi HlOdp).
0<i<Ng
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Here {oy | 1 < i < Ny} is a Zy-basis of Wi(ks). If {8; | 1 < i < Ng} is
its dual basis then for 1 < i < N, u; = E(ﬁi,ta)l/“, cf. Subsection 1.4.
Therefore,

s apntis | d(t)
WKS(Dé,imost) = (Zt P ) I

120

It is easy to see that mgy, = liilﬂ'}(s is a continuous map from Mg t0

A

OKur’
Notice that if 7 = lim(ns; mod N;) € imZ/N,Z, where all ng € [0, N)

s

and if D = @D(S) for a € Z(p), then mrgw(Dos) = 0if n ¢

a,ns mod Ng»

S
Zzo Clim Z/NZ, and 7xo(Dg5,) = t*" 71 d(t) if 1 =n € Zzo.
Let Tioo = TKur| My, - Then one can easily prove the following propo-
sition.

Proposition 3.2. 1) mxo : Mgoo — Qlokm is a continuous epimorphism
of k(p)-modules;
2) ker mg oo 18 the k(p)-submodule in Mk topologically generated by all
D with n < 0.

3.3. Admissible systems of group morphisms. Suppose K' =
k((t")) C K(p) has the same residue field as K. Using K’ instead of K we
can introduce analogues Mgy, Mgrs, Moo, €tc. of Mgs, Mgs, Mkeo,
etc.

Definition. fxx = {fxk’s}s>0 is a family of continuous morphisms of
Fp-modules frgrs : Mg — Mgrg which are always assumed to be com-
patible, i.e. for all s > 0, fxx’ s+175 = JsfrK's- Here js : Mg 41 — Mo
and j, : Mg 541 — Mg, are connecting morphisms.

We shall denote the k(p)-linear extension of fx ks by the same symbol

fKK’s- Set _ _

frK ar = liLHfKK’s s Miar — Mg

S

Definition. With the above notation fx g is called admissible if:
A1l. There is a continuous k(p)-linear isomorphism fxgroo : QIOK —
Q%)K, such that frx T = Truw fK Koo
A2. frg Koo commutes with the Cartier operators C and C’ on QloK and,
resp., QbK‘/H;

A3. For all m € N, frxgroo (th})K ) C t/mQ})K, .

ur
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Remark. Recall that the Cartier operator C' : QIOKM — QIOKM is uniquely
determinAed by the following properties:

2) C(d(Ox,, ) =0

b) if f € tOk,, then C(fPd(t)/t) = fd(t)/t.

It can be shown that the definition of C' does not depend on the choice of
the uniformiser ¢, C is o~ !-linear and KerC = d(Ok,,).

The following properties of admissible systems fxx = { fx ks }s>0 follow
directly from the above definition:
(1) the map fx koo is uniquely determined by fx xrur;
(2) if K" = k((¢")) € K(p) and gxrg» = {gx'K7s}s>0 is admissible
then So is the COHlpOSitiOH (fg)KK// = {fKK’SgK’K”s}SZO a,nd it
holds (fg) kKo = fKK/c0 K K" 005

(3) frxroo(dOk,,) CdOxk ;

(4) for all a,b € Z(p) and m € Zx, there are unique ag5, _,,(fxk') €
k(p) such that if n > 0 then

/

31 e () = T oo (e
beZ(p)
0<m<n

(5) the above coefficients ag5, . (fr k) satisty the following property:
if b/p™ < athen g5, (fxr') =0.

Definition. With the above notation an admissible compatible system
fr e will be called special admissible if f g (Mioo) C Mkioo-

Notice that the composition of special admissible systems is again special
admissible.

3.4. Characterisation of special admissible systems. Let frg =
{fKK's}s>0 be a compatible system. Then for any s > 0, the k(p)-linear
morphism frrrs : Migs — Mgrs is defined over Fp, i.e. it comes from
a Fp-linear morphism frr/s : Mgs — Mg Therefore, in terms of the

standard generators Dé‘?} and D,’l(ﬁ) (which correspond to the uniformisers
t = tx and, resp., t’ = tg), we have for any s > 0 and a € Z(p) that

fKK/s(Dc(li))) = Z O‘abm(fKK/s)D;;(:L)7
bEZ(p)
meEZ mod Ng
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where all agpm(frks) € ks C k(p). Notice that for all n € Zmod Ny, it
holds

frrs(DE) = 3 Unaabm(fKK’s)Dll,Eir)L+n-
bEZ(p)
meZmod Ny
Proposition 3.3. Suppose frxr = {fxk's}s>0 is a compatible system.

Then it is special admissible if and only if for any s > 0, there are vy € N
such that vy — oo if s — o0, and if a,b < vs, m > 0 and b/p™ < a then

Qg,b,—m mod Ns(fKK’s) =0.

Proof. Suppose fxg is special admissible. Then fx gru(MKroso) € MEkroo
and for all a € Z(p) and n € Z,

fKK’ur Z ﬁanmeb ,n+m:

beZ(p)
meEZ

Here all coefficients Bunpm € k(p) and because fx iy commutes with o,
there are Yapm, € k(p) such that Bunpm = 0™ (Yabm ). Therefore, if a,b € Z(p),
m € Z and Yapm # 0 then m < 0 and o9 (frK’) = Yabm-

If s >0, a€Z(p),

fKK’s(D((zf))) = Z aa,b,—m(fKK’S)Dg(,s—)m
bEZ(p)
meEZ mod Ng

and b/p™s < a then for any m > 0, @ p —mmod N, (fKK's) = gy —m(fKK)
This implies that ag b, —mmod N, (frr's) = 0 if a,b < p™s and b/p™ < a.
Therefore, we can take vy = p’¥s. This proves the “only if ” part of the
proposition.

Suppose now that vy — 0o if s — oo and for a,b € Z(p), m > 0,

aab—mmong(fKK’ ) =0

if a,b < vs and b/p™ < a. If in addition p™Vs > b then Qg p, mmOdNS(fKK/ )
does not depend on s and can be denoted by a9 Clearly, =0

if b/p™ < a. Let a € Z(p )and

d fKK’ur Z aab mD

beZ(p)
m=0

a,b,—m* a,b,—m

Let s > 0 and let ds € Mg, be the image of d under the natural projection
Mg — Mks. If s1 > s then the corresponding projection ds, € M,

is a linear combination of Dl()frll) with b > p™s1. Therefore, d, also does not

(

contain the terms Dbir)L for which b > p™s1. Because limg, oo Ns, = 00, this
implies that d; = 0 for all s > 0 and, therefore, d = 0. So, fxx/uw(MKoo) C
MK’oo
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Set ozgfb77m(fKK/) =00y and define frgroo : QloKur — Q%)K(u by
formula (3.1). It is easy to see that fx /o, satisfies the requirements Al-
A3 from the definition of admissible system in Subsection 3.3. This proves

the “if” part of our proposition.
O

Remark. Any special admissible fy s can be defined as a k(p)-linear iso-
morphism fr gy : Mioo — MEro such that

(1) frxre commutes with o;

(2) if a € Z(p) then

fKK’ur E Qg b, mD
beZ(p)
m=0

where o = 0 if b/p™ < a.

3.5. Analytic compatible systems. Suppose K, K’ C K(p). Then the
corresponding residue fields & and k' are subfields of the residue field
k(p) C Fy,. Therefore, if K ~ K’ then k = k' and we can introduce the
set Iso’ (K, K') of field isomorphisms 7 : K — K’ such that 7| = id. No-
tice that any 7 € Iso?(K, K') induces a k(p)-linear map Q' (n) : QIOK.H —
Q%)K.Sr'

For all s > 0, any 7 € Iso’(K, K’) can be naturally extended to 7, €
Is0%(K, K!). Then nier = {n}}s>0 is a compatible system and 7 x/oo =
Q1(n). Propositions 2.4 and 3.3 imply that Ny is a special admissible
System.

Consider the opposite situation. Choose a uniformiser ¢ in K and intro-
duce Fr(tx) € Aut(Ky,) such that Fr(ty) : tx = tx and Fr(tx)[pp) = o
Then for all s > 0, Fr(tx) induces an automorphism of K which will be
denoted by Fr(tx)s. Then Fr(tx)* = {Fr(tx)s}s>0 is a compatible system,
but this system is not admissible: the corresponding map Fr(tx )~ coincides
with the Cartier operator and, therefore, is not k(p)-linear.

More generally, consider a compatible system 0 = {0k ks }s>0 where
for all s > 0, Oxgrs = 0% and 05 € Iso(Ks, K.). Then after choosing a
uniformising element tgs in K’ we have 0; = nsFr(tg)", for all s > 0,
where 7, € Iso®(K,, K') and ngy1 = nsmod Ny. If 1 = limn, € @Z/NSZ

S S
then Ok g is the composite of the special admissible system {n?}s>¢ and the
system Fr(tx+)™ which is special admissible if and only if 7 = 0. Therefore,
O K is special admissible if and only if it comes from a compatible system
of field isomorphisms 7, € Iso?(Kj, K7).
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3.6. Locally analytic systems.
Definition. If fx g is an admissible system, then [ xran ::fKK/OO‘d(OK )

Remark. Notice the following similarity to the definition of f,, for f €
Aut M from n.2.3. If fxx = {fkKks}ts>0 is any admissible system then
9k K = {fKKsan}s>0 is also admissible and fxxan = 9K Kan-

Definition. An admissible system fxx = { fx ks }s>0 will be called locally
analytic if for any s > 0, there are v, € N and 7, € Iso’(K, K’) such that
vs — +00 as s — 00 and frgran = d(1s)@rk(p) mod /.

Proposition 3.4. Suppose that fxx = {fxks}s>0 is special admissible
and locally analytic. Then there is an n € Iso’ (K, K') such that frran =

d(n)&rk(p).
Proof. If s > 0 and a,b € Z(p) are such that v, /p™¥° < a,b < vg, then

Qabo (fxE") = Qapo(15) = aavo(fxK7s) = aavo(fxK70) € k-
Therefore, by Proposition 2.7, all conjugates of ns over K are congruent
modulo #"*s(=P"")/% "and n,(t) € k[[#']] mod #"*s1=P""*)/% where Op is
1if p# 2 and ¢, = 2 if p = 2. This implies that auo(fxk’s) € k if
a,b < vs(1 —p=N+)/6p.

If b < pNS then aabo(fKKls) = agio(fKK/). So, Oégio(fKK’) e kif b <
¢s = min {pNS,vs(l —p_NS)/dp}. But ¢s — oo if s — oo and, therefore,
asso(frkr) € k for all a,b € Z(p).

As we have already noticed, if b < min{p™s,v,} then

aabo (frK's) = Qavo(Ms) = agpo(frK?)-

Therefore, by Proposition 2.7 there exists limn, := 7 € Iso’ (K, K') and
S

fKK’an = d(n)®kk(p)
The proposition is proved. O

3.7. Comparability of admissible systems. With the above notation
suppose L, L’ are finite field extensions of K, resp. K’ in K(p). Let g =
{gr1's}s>0 be a compatible family of continuous field isomorphisms gy :
Ls — L. Then the natural embeddings I'z,(p) C T'k(p) and T'1/(p) C
I'x(p) induce embeddings I'r, (p) C 'k, (p) and ', (p) C 'k (p), for any
s > 0.

Definition. With the above assumptions the systems grr and fx g will
be called comparable if, for all s > 0, there is the following commutative
diagram
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g /
MLS LL's ML/S

148 L34
MKS _fK—KLL MK’S

where the vertical arrows js and j. are induced by the embeddings 'y, (p) C
Ik, (p) and, resp., 1IN (p) C FK‘;(p)-

If g1.1» and fix s are comparable then we have the following commutative
diagram

MLur M) ML’ur

_ Trcrcr _
MKur — MK’ur

where ju, = limj®y k(p) and jy, = limji&y k(p). Notice that ju, and
S S
Jie are epimorphic. Indeed, let Uy, Uk, be principal units in L, resp.

K,. Then My, = yLnULS/Ufs and Mg = @UKS/U;}S contain as dense

subsets the images osf the groups of principal usnits Ur,., resp. Uk,,, of the
fields Ly, resp. Ky By class field theory, ju. is induced by the norm map
N = N, /K, from L}, to K. By [6], Ch 2, N(UL,,) is dense in Uk,, and,
therefore, jur (together with j/,) is surjective.

Suppose L/K and L'/K' are Galois extensions. Denote their inertia
subgroups by Ir/x and I/ . Then we have identifications Iy /x =
Gal(Lur/Kur) and IL’/K’ = Gal(L{ll‘/K{lI‘)

Consider the following condition:

ur?

C. There is a group isomorphism k : IL/K — IL’/K’ such that for any
TE IL/K’ TzLurgLL'ur = gLL’urE(T)E/L/ur.

Proposition 3.5. Suppose grrr and fx i are comparable and gy, satisfies
the above condition C. If gr1/ is admissible then fi g is also admissible.

Proof. Because gy is admissible we have the following commutative dia-
gram
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(33) JTFLur lﬂ-L’ur
A1 ILL o 1
QOLM QOL/

ur

lftrelyx C Aut®(Ly,) then it follows from the definition of 7y, that

(3.4) T Lur = TLur§2(7T).

This means that 7z, transforms the natural action of Iy, /x on M into
the natural action of Iy x on QloL . Because jy, is induced by the norm

map of the field extension Ly, /Ky, this gives us the following commutative
diagram

MLUI‘ El&r_) QlOLur
(3.5) l ur iTr
MKur B‘uL’ Ql

where Tr is induced by the trace of the extension L,,/K,,. Similarly, we
have the commutative diagram

w TL/ur A1
Mpw —5 Qp

(3.6) lj{n" lTr’
MK’ur WK,ur’ QlO

We have already seen that Trur, Triur, jur and ji, are surjective. The
traces Tr and Tr’ are also surjective. Indeed, suppose tj, resp. tx, are
uniformising elements for L, resp. K. Then

Ob, ={fd(tr) | f€Op,}={gd(tx) | g € D(L/K)"'Op,}.

where D(L/K) is the different of the extension L/K. It remains to notice
that Tr(D(L/K)'Op,.) = Oxk.,,.

Because gr1- and fr g’ are comparable, we have the following commu-
tative diagram
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MLur M) ML’ur
_ Tr i ar _
Mg Ahbor Mgy

Suppose wg € Q})K . As it has been proved there is an wy, € QloL such
that

Tr(wg) = Z Q1) (wr) = wk-

TGIL/K
Then
Jrreo(Wr) = Y. grree(QUr)(wr))
TEIL/K
(3.8) , , 1
= > A)9rree(wr)) = T (grrreo(wr)) € Q5
T’EIL//K/ e

because Q(T)grr/c0 = JLL/0oSUk(T)), for any 7 € I /k. This equality is
implied by the following computations (we use the commutative diagrams
(3.3), (3.4) and condition C)

7"'LurQ(T)gLL’oo = 7_*77-LurgLL/<>o = 7->'(g[/l/’ur'7'rL’u1"
= gLL/ur’{(T)*"TL’ur = gLL’urﬂL’urQ(H(T))
= TLwdLL 0oSUK(T)),
because 71, is surjective.
Let fx koo be the restriction of g1/ on Q%)K . Then formula (3.8) im-

plies that fKK/OO(Q})K ) C Q})K, and we have the following commutative

diagram
A1 ILL o 1
QoLur OL:H
(3.9) lTr lTr'
A1l TKK oo 1
QoKur OK’

We now verify that fx /oo satisfies the requirements A1-A3 from n.3.3.
Property A1 means that we have the following commutative diagram
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- Tk’ -
Mg, —— Mg,

lﬂ-Kur lﬂKlllr

A ekl A
QlOKur = QIOK(H

Its commutativity is implied by the following computations (we use com-
mutative diagrams (3.2), (3.5), (3.3) and (3.9))

juerK/urT‘-K’ur = gLL’urjlllrﬂ-K’ur = gLL’urTrL’urTr,
= 7TLurgLL’ooT‘r, = '/TLurTerK’oo = jurﬂ—KuerK’oo
because j,. is surjective.

Let Cx, Cgs, Cr, and Cp be the Cartier operators on, resp., QIOK ,
Q%)K(lr, QIOLM and QIOL(H‘ Clearly, C;Tr = TrCk and Cp/Tt' = TY'Ck.
Then it follows from the commutative diagram (3.9) and property A2 for
91 0o that

TrCk frkroo = CLTY fR K100 = CLgLL 00 IT
= 911/0cC'Tr = gr1/0c TrCrr = Tr fr k100 Crcr-
Property A2 for fxgis follows because Tr is surjective.
By condition C, the ramification indices e and e’ of the extensions
Ly /Ky and L /K], are equal. Then we use the condition A3 for g1/
to deduce that for any n > 0,

n A1 _ en®1 _pe'n@1 _m Hl
9rroo(tko,, ) = 9Lt o, ) =10 "Qo,, =1til0,, -
ur

ur

Therefore, it follows from the commutativity of diagram (3.9) that
TIl{lQlOKGr = t?(/Tr/(QloL(lr ) = TI‘/ (gLLIOO( TIL(QloLm. ))
= fKK,OO(Tr( TIL{QloLm)) = fKK/OO(t?(/QloKur)‘
The proposition is proved. O

Remark. Using the embeddings of the Galois groups I'z, (p) and 'k, (p)
into their Magnus’s algebras from n.1.3, one can prove in addition that if
grrs is special then fxg is also special. In other words, under condition

C, jur(MLoo) C MKoo-

Suppose gr; and fg i are comparable systems. Suppose also that gy
and fgir are special admissible, locally analytic and satisfy condition
C. Then there are 777 € Iso’(L,L') and ngg: € Iso®(K, K') such that

frKoolao,, = d(nk k' )®rk(p) and Irrslao,, = d(nLr) @k, kL (p).
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Proposition 3.6. With the above notation and assumptions, npp/|xk =
NKK'

Proof. Clearly, for any 7 € I/, condition C implies that 77, grrcc =

90100k (T) 5 1o Restricting this equality to d O, we obtain
d(r)d(nLr) = d(npr) d(s(7)).

Then it follows from proposition 2.7 that 705, = npp k(7). Therefore,

nrr |k induces a ring isomorphism from Of,, onto Ok .

Suppose a € Tr(Op,.) € Ok,,. If a = Tr(b) with b € O, then it follows
from diagram (3.9) and condition C that

d(nrxe(a)) = T'[@Anep () = Y d(™) (d(new (D))
T’EIL//K/
= > d(nep)(d(r(b)) = dnpr(da) = d(npw(a)).
TEIL/K
Therefore, for a sufficiently large M € N, d (np1/|x) and dnk g+ coincide
on t%OKur. Then proposition 2.7 implies that npr/|x = Nx K-
The proposition is proved. O

4. Explicit description of the ramification ideals .A(*) mod J3

We return to the notation from Section 1. In particular, A is
the Zp-algebra from Subsection 1.2, J 1is its augmentation ideal,
A = AW (k), Ty = T@W (k), Ak = A®O(K), etc. are the correspond-
ing extensions of scalars, e € Ag is the element introduced in Subsection
1.3. We fix an [ € A, such that of = fe and denote the embedding

vp:T(p) — (1+7J)" by ¢.

4.1. Ramification filtration on 4

For any v > 0, consider the ramification subgroup I'(p)(®) of T'(p) in the
upper numbering. Denote by A(®) the minimal 2-sided closed ideal in A con-
taining the elements ¢ (7)—1, for all 7 € T'(p)(®). Then {A® | v > 0} is a de-
creasing filtration by closed ideals of A. In particular, if Ag])w mod J5,, are
the projections of A® to Acy mod Iy, for C,M,n € N, then

AW = lim A(g])\/[ mod J#,,. Notice also that the ramification filtration
C,M,n
{T(p)™}y50 is left-continuous, i.e. T'(p)*) = N T(p)®), for any vy > 0.
v<vg

This implies a corresponding analogous property for the filtration
{A® | v > 0} on each finite level, i.e. for any C,M,n € N, we have
the following property.
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Proposition 4.1. For any C,M,n € N and vy > 0, there is a 0 < § < vy
such that Ag)])\/[ mod Ji,, = Ag)?\/)[ mod J&,,, for any v € (vg — 9§, vp).

Proof. This follows directly from the definition of the ramification filtration
and the fact that the field of definition of each projection fcas mod J5;,

of f to Aok (p) mod ngK(p) is a finite extension of K, cf. Subsection
1.3. O

Notice also that the class field theory implies the following property.

Proposition 4.2. Ifv > 0 and .AS)) = AW @ W(k) then Ag)) mod J7 is
topologically generated by all elements p®Dqyy,, for n € Zmod Ny, a € Z(p),
s =0 and p°a > v.

4.2. The filtration A(v), v > 0. For any v > 0, introduce F, € Ay, as
follows.
If v =0let F, = Dy.

Ifv>0let F, =
v n n
p ’ya'yDava* Z p alDalnDagn* Z D 1a1[Da1n17Da2n2]-
a1,a2€7Z(p) a1,a2€Z(p)
n>0 n120,na<nq
p"(a1taz)=y p"lai+p"2az=y

Here the first two terms appear only if v € N, and the corresponding v, €
Z>o and a~ € Z(p) are uniquely determined from the equality v = p”a,.
If v ¢ Z then the above formula for F, contains only the last sum.

For any v > 0, let A(v) be the minimal closed ideal in A such that
Fy € Ap(v) == A(v) @ W(k), for all v > v. Equivalently, Ay (v) is the
minimal o-invariant closed ideal of Ay, which contains all F, with v > v.

Remark. a) For any v > 0, A® mod J? = A(v) mod J2.
b) The filtration {A(v) | v > 0} is left-continuous.
c) If C,M € N and Acwy(v)modJf,, is the image of A(v) in
Aoy mod Jy, then A(v) mod J" = lim Aca(v) mod Jfy,-
c.M

If v > vy = 0, denote by ]37(1)0) the elements in Ay given by the same
expressions as JF, but with the additional restriction p"tai,p"tas < vg
for all degree 2 terms p™ a1 Dg,n, Dagny O p™ a1[Dayny s Dag ny|- Clearly, we
have the following property.

Proposition 4.3. a) A(vg) operatornamemodj~3 is the minimal ideal of
A such that Ay (vo) is generated by all elements F-(vy) with v = vy.
b) If v = 2o, then “7:7(7)0) = ’YDG’Y”’Y'

The following theorem is the main technical result about the structure
of the ramification filtration that we need in this paper.
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Theorem B. For any v > 0, A mod 73 = A(v) mod T3,

This theorem gives an explicit description of the ramification filtration
{A™},-o on the level of p-extensions of nilpotent class 2. (On the level
of abelian p-extensions such a description is given by the above Remark
a).) Theorem B can also be stated in the following equivalent form, where
we use the index M + 1 instead of M to simplify the notation in its proof
below.

Theorem B’. Suppose C € N, M € Z=¢ and vg > 0. If, for all v > vy,

'A(CU,)MH mod jcg‘,MH = Ac,p+1(v) mod ch*,MHa

then
AL 1 04 T g1 = Acar s (00) mod T .
Clearly, Theorem B’ follows from theorem B.
Conversely, notice first that, for a given C € N, M > 0 and v > 0,

A(CU,)MH mod *763‘,M+1 = Ac,m+1(v) mod jg’MH —0.

Indeed, this is obvious for the ideals Ac a(v), because they are generated
by the elements obtained from the above elements .7:"7(7)) by adding the
restrictions a1, az,a, < C and ni,n2,v, < M. But then, for v > 2MC,
the conditions p™aj + p"2ag = v (where ng < np) and p*~ @~ = 7y are never
satisfied. For the filtration {A()},>0, we notice, as earlier, that the field of
definition K¢ ar41,3(f) of the image of f in A pr41,k(p) mod Jg,MH’K(p) is
of finite degree over the basic field K. Therefore, for v > 0, the ramification
subgroup I'(p)®) acts trivially on K¢ ar413(f) and ./él(gf’)MJrl mod j&MH =
0.
Now we can apply descending transfinite induction on v > 0. Let

Semt1={v=0| Ag)MH mod J& yr1 = Aciar+1(v) mod T& pry 1}

Then Sc a1 # @. Let vy = inf Sc M+1-

Ifvg > 0 then ALY, mod J& 1,1 = Acar(vo) mod J& ;1 by Theorem
B’. By the left-continuity property of both filtrations, there is a § € (0, vp)
such that .,él(cli)M+1 mod J& yi 1 = Acmy1(v)mod 3 5, whenever v €
(vo — d,v0). So, vg = inf Scar41 < vo — 6. This is a contradiction, hence
vg = 0. In this case we have A(C(%)MH mod jg’MH = Ac, m+1mod j&MH =
Ac rv+1(0) mod jgw’MJrl. This implies that Sc ar+1 = Rxo, and Theorem B
is deduced from Theorem B’.

The rest of this section is concerned with a proof of Theorem B’
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4.3. Auxiliary results.

4.3.1. The field K(N*,r*). Suppose N* € N, ¢ = p¥" and r* =
m*/(q—1), where m* € Z(p). Then there is a field Ky := K(N*,r*) C Kyep
such that

a) [K1: K] =gq;

b) the Herbrand function g, /() has only one corner point (r*,r*);

c) K1 = k((tk,)), where t%(lE(—l,t}?j) = tx and E is the generalised
Artin-Hasse exponential introduced in n.1.4.

The field K (N*, r*) appears as a subfield of K(U), where U4—U = u~™
and u?~! = tg. It is of degree ¢ over K. Its construction is explained in all
detail in [2].

*

4.3.2. Relation between liftings of K and K, modulo pM+1, M >
0. Recall that we use the uniformiser tx in K to construct the liftings
modulo pM L of K, Onr41(K) = Wars1(k)((£)) and of K(p), Onrs1(K(p)),
where t = tx pr41. We use the uniformiser tg, from above n.4.3.1 c) to
construct analogous liftings for Ky, Oy, (K1) = Warg1(k)((t1)) and for
Ki(p) D K(p), Oy (K1(p)). (Here ty = tg, ar41 is the Teichmiiller repre-
sentative of tx, in Wiry1(K1(p)).)

Note that, with the above notation the field embedding K C K; does
not induce an embedding Opry1(K) C O)y,, (K1) for M > 1, because the
Teichmiiller representative t1 = tg, m+1 = [tk,] cannot be expressed in
terms of the Teichmiiller representative t = tx ar41 = [tx]. This difficulty

M
can be overcome as follows. Take th, as a uniformising element for oMK
and consider the corresponding liftings modulo p™*1, Opri1(cMK) =

W1 (B)(t7")) and Oprs1(eM K (p)) € Onrp1 (K (p)). From the definition
of liftings it follows that

OM+1(O’MK) C WM+1(UMK) C WM+1(O‘MK1)
C Ohy1 (K1) C W1 (K1),

On41(c K(p)) € War1 (o K(p)) € Warga (o™ Ki(p))
C Oy (K1(p)) C Wars1 (K1 (p)).

Lemma 4.4. With respect to the above embedding Opy1(cMK) C
Olyr41 (K1) we have

T T W U
Proof. If V' is the Verschiebung morphism on W41 (K7) then property c)
from n.4.3.1 is equivalent to the relation

t =t B(—1,6" ) mod VW1 (K1)
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Then, for any s > 0, we have
=t B(=1,7)" mod VT Wi (K)).

(Using that for any wi,ws € Wi (K1), (Vwr)(Vws) = V2(F(wiws)) and
pV (w1) = V2(Fwy).) For s = M we obtain the statement of the lemma. [J

4.3.3. A criterion. Consider cMe = 1 + 2aczo(p) t“’pMDayM €
A ® O(MK), where O(cMK) = @On(UMK). Then oMf €

A® O(c™M K (p)) satisfies the relation o(c™ f) = (6™ f)(c™e) and induces
the same morphism ¢ : I'(p) — A as f. Indeed, for any 7 € T'(p),

(oM )M )T =M (N) ) = oM (W(7) = w(r)

because o acts trivially on A.

This means that we can still study the structure of the ramification
filtration {.A® mod pM*+1},-¢ by working inside the lifting Olyr1(K1(p)) D
Onr+1(cM K (p)) associated with our auxiliary field K7 and its uniformiser
ti, -

Set B = Ac, a1 mod jg,MH and for any rational number v > 0, B(") =
Agj’)MH mod Jc pr+1. We shall also use the notation By, = B ® Wyr41(k),
Br, = B® O}y (K1), and By, () = B® O}y, 1(Ki1(p)). Denote again by
J the augmentation ideal in B. Its extensions of scalars will be denoted
similarly by Ji, Tk, and Jk, p)-

Consider an abstract continuous field isomorphism « : K — Kj, which
is the identity on the residue fields and sends tx to tx,. Consider its ex-
tension to the field isomorphism & : K(p) — Kji(p). Then we have an
induced isomorphism of liftings & : Opr41(K(p)) — Ofy (K1(p)). Use it
to define the morphism

id® & : Ac,M+1,K(p) B BK1(P)

and set f1 := (id ® &)(f) € Bg,(p)- Then o(f1) = fie1, where e; =
(id®@a)(e) =1+ 3 qezop) th “Dao-
If N* = 0mod Ny, then e™*+¥" (D) = 0M(D,9) = Dy and we can
M

relate the elements cMe = 1 + ZanO(p) 7% Dy n and oMAN"e =1 +

M
Yaezop t1 Y “Da,m by the use of the relation between ¢ and t; from lemma

4.4. So, it will be natural to compare the elements o™ f and o™M*N" £, in
B, (p) by introducing X € By, (,) such that (M1 + X) = oMV £,
This element will be used for the characterisation of the ideal B(*0) in
proposition 4.5 below.

Notice first, that B() is the minimal 2-sided ideal in B such that the
field of definition of f mod ngfgp) is invariant under the action of the group
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['(p)(*0). In other words, if I is a 2-sided ideal in B and K (f,I) is the field

of definition of f mod Ik, (;), then I contains B0) if and only if the largest

upper ramification number v(K(f,I)/K) (= the 2nd coordinate of the last

vertex of the graph of the Herbrand function ¢ (s 1) k) is less than vo.
With the above notation we have the following criterion.

Proposition 4.5. Suppose r* = v(K/K) < vy. Then B is the minimal
element in the set of all 2-sided ideals I such that if K1(X,I) is the field
of definition of X mod Iy, ) over Ky then its largest upper ramification
number satisfies v(K1(X,I)/K1) < qug —r*(q¢ — 1).
Proof. We must prove that for any 2-sided ideal I in B,
v:=v(K(f,I)/K) <vy & un(X):=v(EK(X,I)/K1)<quyo—1"(q—1).
The following proof is similar to the proof of the corresponding statement
from [1, 2].

Suppose v < vg. The existence of the field isomorphism & implies that

v(K1(f1,1)/K1) = v. Then
(4.1) vy = v(K1(f1,1)/K) = max{r*, o, /k(v)}

Indeed, it is sufficient to look at the maximal vertex of the Herbrand
function for the extension K;p(fi,I)/K and to use the composition
property for the corresponding Herbrand functions ¢, (s, /() =
O k(PR (11,1 K, () This implies that v1 = r* if r* > v and v; < v
if v > 7%, where we have used that ¢ /k(v) = 7" + (v —7%)/q < v if
v > r*. Therefore, the largest upper ramification number of the compos-
ite K(f,I) and Ki(f1,I) over K is max{r*,v} < vg. Clearly, K;(X,I) is
contained in this composite and, therefore, v(X) := v(K1(X,I)/K) < vo.
Similarly to formula (4.1) we obtain that v(X) = max{r*, g, /x(v1(X))}.
Therefore, pg, /x(v1(X)) <wvo and v1(X) < quo —7*(g — 1).

Conversely, assume that v1(X) < qug — (¢ — 1). Then
v(X) = max{r*,ngl/K(vl(X))} < vg.

Suppose v = v(K(f,1)/K) > vg. As earlier, the existence of & implies that
v(K1(f1,1)/ K1) = v and similarly to (4.1) we have

v(K1(f1, 1)/ K) = max{r*, o,k (v)} = ¢k, /x (v) <.

Therefore, the largest upper ramification number of the composite of
K1(X,I) and K1(f1,1) over K equals

max{v(K1(X, I)/K), v(K1(f1,1)/K)} = max{v(X), ¢k, /k (v)}-

Because K (f,I) is contained in this composite, we have

v < max{v(X), gk, /x(v)}.
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But v > vo > v(X) and v > ¢k, /k(v). This contradiction proves the
proposition. . Il

4.3.4. Choosing N* and r*. In order to apply the criterion from Propo-
sition 4.5 we shall use the special choice of K1 = K(N*,r*), where N* € N
and r* < vg are specified as follows.

Introduce &1 := min{vy — p*a | p°a < vo,a < C,a € Z°(p)}, and & :=

min{vy — (p**a; + p*?as)|
p*lal + p*2az < v, a1, a2 < C,a1,az € Z°(p), 51,52 € Z}.

One can see that for a sufficiently large natural number N* = 0 mod Ny,
there exists r* = m*/(q — 1) < vo with ¢ = p¥~ and m* € Z(p) such that

a) —(vo — 81)g +7*(¢— 1) > CpM

b) —(vp — 52)(] + T*(q —1)>0;

c) voq < 2r*(q —1).

So, we may assume that Ky = K(N*,r*) where N* = 0mod Ny and the
above inequalities a)-c) hold.

4.4. A recurrence formula for X. Set O* = tg*(q_l). Then

w:UMe—UM+N* Z t_ap q E(a,0%)P —1)DaM€jK1-
a€Z0(p)

The relation 1 + X = (oM f)~1(eM+N" f1) implies that
14+0X = (eMe) 11 + X)(cM NV ¢))

and

(4.2) X-0X=w+(Me-1)0X - X(cM™N ¢, —1).

If X := X mod ‘712<1(p)’ then the above relation (4.2) gives X — 0X =
w mod jfgﬁ ()" We shall use this relation in Subsection 4.5 below to study

X. Now (4.2) can be rewritten as

(4.3) X —0X =w—w(@MNe —1)—[oX, oM N ¢ — 1] + wo(X),

using that X = w4+ 0X mod .7]%1 () We shall use this relation in nn.4.6-4.7
below to study the field of definition of X.
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4.5. The study of X. For 0 < < M and b € Z,, introduce &.(b,T) €
Zp|[T]] as follows:

Eo(b,T) = E(b,T) — 1, where E(b,T) is the generalisation of the Artin-
Hasse exponential from n.1.4;

E1(b,T)=ED,T)? — E(b,TP) = (exp(pbT) — 1)E(b, T?),
En(b.T) = EQ.T)" — E(Q,T7)""" = (exp(p™bT) = DE(b,TP)" .
Notice the following simple properties:

(1) E®b, TP —1==E0B, TP ) + & (b, TP" ) + -+ + E (b, T);

(2) &(b,T)=p"T+p'T?g,(T), where 0 < r < M and g, € Z[[T]).

Consider the decomposition w = 3,1, 0"ws (cf. Subsection 4.4 for
the definition of w), where

W 1= Z t77" €, (a,0") Dys,
a€ZO(p)

for 0 < s < M. Note that p°Dys € B,gvo)modjlf, whenever p°a > vy,
cf. proposition 4.2. Also, if p*a < vg then —apq + r*(q¢ — 1) > CpM, cf.
Subsubsection 4.3.4, and we have tfapsqé's(a, 0%) € tlcpMml, where m; =
tiWar (k) [[ta]].

So, for0 < s < M,
M
(4.4) ws € B 47 T+ TR
where Jy, = J @ mj.

For 0 < s < M, consider X € By, (») such that X; — 0 X = w,. Because
of (4.4), we may assume that X, =, - 0"ws mod(Bgfgp) +\7]2(1 (p))- Notice
that

X = Z O'T(XS) mod ‘7[2{1(17)’
r+s=M

and after replacing the infinite sum - by its first (N* — s) terms in the
above congruence for X, we obtain

_ . M
(4.5) X = Z o wg mod(Bg(logp) + j;z(l(p) + t?p Ty
u—i—s]}VM
u<N*
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4.6. The study of X. From the above formulas (4.4) it follows that X
— M
and o(X) belong to Bgfgp) + t?p Jm, + \7[2(1(1)). This implies that

wo(X) € B Tiea) + Tomr-

Therefore, when solving equation (4.3) for X, this term will not have any
influence on the field of definition of X m?d Bgfgp) N (p)-

For a similar reason, we may replace X in (4.3) by the right hand side
from (4.5) without affecting the field of definition of X mod Bgfgp) Tk (p)-
The new right hand side will be then equal to

M M—s
—ap - q *
Z ty Es(a, O )
acZ%(p)
0<ss<M
—(a14a2)pMq wpM—s
- > 4 Es(a1,0"" ) DaymDaymt
a1,a2€Z°(p)
0<s<M
—a1p*1tig—asp™q *ptt
- Z t 551(611,@ P )[Da1781+u7Da2,M]‘
0<S1<M,a1,a2620(p)
N*>u>M—s1

Finally we can apply the Witt-Artin-Schreier equivalence to the last formula
to deduce that modulo any ideal containing the ideal Bg?gp)jm(p), the
elements X and X', where X' — o X' =

Z tl_apsqgs(ah@*)Das_ Z t;(alJraQ)psqgs(ala8*)Da1sDa25

0<s<M 0<s<M

- Y g (0,07) [ Dasy, Dases]
0<s1 <M
M—N*<s2<s1
have the same field of definition.

We can use this relation to find the minimal ideal I in B such that
X mod I, () is defined over an extension of K; with upper ramification
number less than quy — 7*(¢ — 1). Indeed, we know that ImodJ? =
B®0) mod 72 and therefore, we may always assume that I D Bo) 7. As
before, we are also allowed to change the right hand side of (4.6) by any
element of B ® Jm,. We may always assume that I D B(v) for any v > v,
because I must contain all B(*) with v > vy and, by the inductive assump-
tion, B( coincides with B(v). So, we can assume that I contains the ideal
B(0t) generated by B0 7 and all BY) with v > vg.
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4.7. Final simplification of (4.6). For 0 < s < M, consider the identity
Es(a, ©%) = piat] (a=1) —i—pst? (q_l)gr(tl) from Subsection 4.5.

Lemma 4.6. pstl_(aﬁ@)psqﬂr*(q_l)DalsDazs € ngf)j[(l + T, -

Proof. Indeed, if p*a; > vg (resp. if p®as > vg) then p*Dy,s (resp. p®Da,s)
belongs to B,(CUO) mod j,f.
If both p®aq, p®as are less than vy then we use the fact that
—(a1 + az)p*q+2r* (g — 1) > CpM + CpM > 0,

cf. Subsubsection 4.3.4, to conclude that the corresponding term belongs
t0 Jm, -
The lemma, is proved O

The following lemma deals with the terms coming from the third sum
and can be proved similarly.

Lemma 4.7. psltl—(Psla1+ps2a2)(I+2r*(q—1)[Dals“Da282] c Bg?)jKl + jml'
The next lemma deals with the terms coming from the first sum.
Lemma 4.8. pstfapqurQT*(q*l)Das € ngfﬂ + Jm, -

Proof. There is nothing to prove if —ap®q + 2r*(¢ — 1) > 0.

Assume now that ap®q > 2r*(q — 1). Consider the expression for Fgs,
cf. Subsection 4.2. Notice that ap® > vy (use estimate c) from n.4.3.4) and,
therefore, Fops € Bi(ap®) = Bliaps).

It will be sufficient to show that any term of degree 2 in the expression
of Fups belongs to B,(gvo)jk. Indeed, it then follows that the linear term
p*aDys of Faps belongs to B,gaps) + B,(Cvo)jk C B,({voﬂ and the statement of
our lemma is proved.

In order to prove this property of degree 2 terms notice that all of
them contain as a factor either a product p®'Dg,s, Da,s, Or a product
P°'DgysoDays,, Where s; > so and p®la; + p*2as = p°a. Then we have
the following two cases:

(1) if either pla; > vg or p*lay > vo then this product belongs to
B,S}O)jk;

(2) if both p®la; and p*lay are less than vy, then p*la; < vy — 01 and
p*2a9 < p*lag < vg — 01. Therefore,

2r*(¢ — 1) < pPag = (p™ a1 + p™az)q < 2q(vo — 61).
This contradicts the assumption a) from Subsubsection 4.3.4.

The lemma is completely proved. O
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By the above three lemmas, we can everywhere replace the factors
Es(a, ©*) by pat; (¢=1) and, therefore, the right hand side of (4.6) is con-
gruent modulo B%ﬁ) + Jm, to the sum 3 -, tl_wrr (q_l)}'é, where F is
given by the same formula as F,,, cf. Subsection 4.2, but with the additional
restriction ny > M — N* in the last sum.

Lemma 4.9. If v > vy then .’FIY = F,mod B,(:O)jk.

Proof. Suppose the term p™ a1 [Dqy,n,, Dayn,] enters into the formula for F,
but does not enter into the formula for ‘7:'/7'
Then ay,as < C, p™a; +p™ag =v > vy and no < M — N*. Then

pay =5 —p"ag = vo — pMg IO > (1 — ¢ = pMgTIO > vy — 4y
(use 4.3.2 a)). Therefore, p™a; > wvo, P Dan, € B,(:O)jlf and

pnlal[DaﬂLl ) Dagnz] S B](:O)jk
The lemma, is proved. O

Now notice that:

e if v > g, then the term tl_(”JrT*(q_l).7:7 belongs to Bk, (v) = B;}’l);

e if v < v, then the term t1—q7+r*(q—1)]_.4 belongs to Jm, -

So, the ideal B(*0) appears as the minimal ideal I of B such that I contains
the ideal B(*o*) and such that the largest upper ramification number of the
field of definition over K7 of the solution X" € By, () mod Ik, ) of the
equation

X" _ X" = ]_-votl—qvo—&-r*(q_l) mod IKl(p)

is less than qug — r*(q¢ — 1).

It only remains to notice that pF,, € B,(CUOH, and if F,, ¢ Ij then the
upper ramification number of the field of definition K;(X”,I) over K; is
equal to qug — 7*(q — 1).

The theorem is proved.

5. Compatibility with ramification filtration

In this section with the notation from Section 1, A = Amod J3, Aj =
A ® W(k). For any v > 0, A® = A® mod 73, A,(CU) = AW @ W(k).
We also set J = Jmod J? with the corresponding extension of scalars
Jiy = J@W (k). Suppose f is a continuous automorphism of the Z,-algebra
A such that, for any v > 0, f(A®) = A®). Consider the identification
J mod J? = T'(p)*" from part b) of proposition 1.2 and denote again by f
the continuous automorphism of M = I(p)?® mod p induced by f. Consider
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the standard topological generators Dy, a € Z(p),n € Zmod Ny, for M
and set, for any a € Z(p),

f(DaO) = Zaabm(f)Dbmv

b,m

where the coefficients agp, (f) € k. With the above notation, the principal
results of this section are:

if a110(f) # 0 and Ny > 3 then

e thereis an 1 € Aut’K such that for any a,b € Z(p) and a < b < p™No—3,
it holds aapo(f) = aapo(n*);

e ifa < b < p"3 and m € N is such that b/p™ < a then
Qq.b,—m mod Ny (f) =0.

5.1. The elements F,(v). By Theorem B, cf. Subsection 4.2, for any

v 2 0, the ideal A,(f) is the minimal closed o-invariant ideal in Ay, containing
the explicitly given elements ., for all v > v. For any a € Z(p) and n €
Zmod Ny, set Ao = (1/a)F, and Ay, = 0™ Ago. Then Ay, = Dgy mod j,?
and {Ag, | @ € Z(p),n € Zmod Ny} U {Dp} is a new system of topological
generators for Ai. The elements of this new set of generators together with
their pairwise products form a topological basis of the W (k)-module Ay.

For any v > v > 0, consider the following elements F (v) (these elements
have already been mentioned in Subsection 4.2):

If v = ap™ with a € Z(p) and m € Z=q set

‘7:’)/(”) = pmaAam - Z pnalAalnAazn;
n>0,a1,a2€Z(p)

p"(a1+az2)=y
p"ai,p"az<v

‘7:7(@) = - Z pnlal [Aa1n17Aa2n2]-

n12>0,a1,a2€%Z(p)
p"l ai +p"2 as=y
p"lai,p"taz<v

Similarly to Subsection 4.2, we have the following property.

Proposition 5.1. For any v > 0, A,(Cv) is the minimal o-invariant closed

ideal of Ay, containing the elements F.(v) for all v > v.
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5.2. The submodules A(v) and A‘,(id)]m Suppose v = 0.

Let AET) be the W (k)-submodule in Ay generated by the following ele-
ments:

tr1) p*Ag, with s > 0 and p®a > 2v;

tra) p*Agyn, Dagny, With ag, a2 € Z(p), s > 0 and ny,ny € Zmod Ny such
that max{p®a1, p*as} > v.

Let Agé)m be the minimal closed W (k)-submodule in Ay containing Aéf )
and the following elements:

admi) p*Agp, with s > 0, a € Z(p) and p®a > v
adma) p*Agin, Dagny, Where ay,as € Z(p), ni,ne € Zmod Ny and s =
s(ay,a2) € Z=o are such that:
(1) v/p < max{p’ai,pas} < v;
(2) max {p (a1 + nu) ,ps( i —|—a2>} > v, where 0 < nyg,n9p <

0, n12 = n1 — ngymod Ny and no; = ngy — nqy mod No;
(3) if ny = ng then a; + az = Omodp.

Proposition 5.2. For any v > 0,
1) F(AR) = AR ;

trf
)Agﬁ)mDA,(c)DA()DpA()

adm’

3) the elements from admi) and adms) form a k-basis of Agé)m mod AE;}).

Proof. 1) It is sufficient to notice that AE? is the minimal o-invariant W (k)-
submodule in A containing 3> o, Fr (V)W (k) + 30,5, Fr (v) J-

2) From the above n.1) it follows that A,(f) > AEf). The embedding

A,(f) C Agé)m follows from the definition of Agé)m: as a matter of fact, Agf) is
spanned by all summands of elements o°F, with s € Zmod Ny and v > v.

The embedding pAgé)m C Aéf) follows from the fact that each element listed
in adm;) and admgy) belongs to Agf) after multiplication by p.

3) It is easy to see that any k-linear combination of the elements from
admy) and adms) does not belong to AEr) modpA( V) O

adm*

Proposition 5.3. Suppose v > 0 and p*Ag n,Aayn, @ one of elements
listed in adms). Let n = min{nia,na1}. If

v/pNoT < d(v) :=min{v —a | a € Z,a < v}

then there are unique m € Zmod Ny and v > v such that p®ai1Agn, Dagny
appears (with non-zero coefficient) in the expression of o™ F,(v).

Remark. We are going to apply this proposition in the following situations:
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(1) veN,v<po, ny =ny=0;
(2) v=c+1/p,n1 =0, n9=—1, where ¢c € N and ¢ < p"o~2.

Proof. By symmetry we may assume that n = nqo.
If n1o # 0 we have p* (a1 + ;—%) = v > v, because of property adms)(2),
and

ai v
ps <pN0 - + (12> pNO—’VL +p5a2 < d(v) + (’U — d(’[})) = < 5.

Therefore, the term p*Aq,n, Ag,n, appears in the expression of "1 =5 F, (v).
This term will appear in the expression of another J”/}"V/(v), where v/ > v,
if and only if p* (al + n+mN0> > vorp’ (% + ag) > v, where m € N.

But the condition v/pNo~" < d(v) implies that all such numbers are less
than v.

If n1o = 0 then v = p*(a; + az) > v and p°*Ay,n, Agyn, appears in the
expression of ¢™~*F, (v). This element can appear in the expression of

another ¢” F v (v), where o/ > v, if and only if 4/ = p° (al + mNo> > v or

v = p® ( kg T az) v, where m € N. As earlier, v/ < v in both cases.
The proposition is proved. U

Remark. If v/pNo/2 < d(v), then elements of the set
{0‘9]—'(” modA | 0< s < No,v >0}

are linear combinations of dlSJOlnt groups of elements listed in adm;) and
ade).

5.3. Denote by the same symbol f the morphism of W (k)-modules
A® mod Aéf) — A® mod AV

tr »
which is induced by f: A — A. As earlier, denote again by f the k-linear
extension of the automorphism of M, which is induced by f. Because the
images of D, and A, coincide in My, we have, for any a € Z(p),

f(AaO) = E aabm(f)Abm~
bEZ(p)
me€Z mod Ny

It will be convenient sometimes to set agpo(f) = 0 if a or b are divisible by
P.
Proposition 5.4. Suppose a110(f) = o € k*. Then auao(f) = a?, for any

a € Z(p) such that a < pNo=t if p #2 and Ny > 2, and such that a < 2™V
ifp=2 and Ny > 3.
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Proof. By proposition 5.3, for any v < p™° such that v = Omodp, the

formula for f(F,(v)) mod Agf) must contain all terms a1 A4, 0A4,0, for which
a1 + az = v, and the term p®al,s, where p’a = v and a € Z(p), with the
same coefficient. In other words, for such indices ai, az,a € Z(p),

(5.1) a1a,0(f)¥azaz0(f) = 0°aao(f)-
For a € Z(p), a < p™°, set v(a) = auao(f)a110(f)~'. Then v(1) = 1 and
y(a1)y(az) = (@) if a1 + a2 = p°a.

Suppose p # 2.

First, we prove that for n € Z(p) satisfying 1 <n <p
(5:2) y(n) =~(2)"

This is obviously true for n =1 and n = 2.

Assume that n > 2 and that v(m) = v(2)™ ! holds for all m € Z(p)
such that m < n. Consider a special case of relation (5.1) with n € Z(p)

(5:3) Y(Wy(np = 1) =y ().
If n # —1modp then use the relation v(p — 1)y(p + 1) = ~(2)P, which is
again a special case of (5.1), to deduce from (5.3) that

Y+ 1) =y(y(n+1) =v(n)y(2) = v(2)".

If n = —1modp and p # 3 then n > 4 and by the inductive assumption
7(3) = 7(2)2. Apply the relation v(p — 1)y(2p + 1) = ¥(3)? = v(2)?" to
deduce from (5.3) that

Y(n+1) = y(1r(n+2) =(n)y(2)* = (2)" .
If p = 3 then v(p — 1)v(2p + 1) = 7(1)?* and we obtain from (5.3) that

y(n+1) = y(1)y(n+2) = 5(n) = (2)" " =~(2)"",
because v(2) = 1 (using that (1)y(2) = v(1)3).

So, relation (5.2) is proved.

Still assuming that p # 2 prove that 7(2) = 1. The relation y(1)y(p—1) =
v(1)P implies that v(2)P~2 = v(p — 1) = 1. The equality v(1)y(p? — 1) =
~v(1)P* implies that v(2)P*~2 = ~v(p? — 1) = 1. Then v(2) = 1 because p? — 2
and p — 2 are coprime. This completes the case p # 2.

Consider now the case p = 2.

Notice that for any n € Z(2) such that 1 < n < 2V0, we have n+1 = 2%a,
where a € Z(2), s € N and a < n. Therefore, v(1)y(n) = v(a)?" and the
equality v(n) = 1 follows by induction on n > 1 for all n < 2o, O

No—1 "we have

Corollary 5.5. If a110(f) = 1 then agao(f) = 1 whenever a < pMNo—1,
p#2ora< 2N, p=2,

Proposition 5.6. Suppose Ny > 3, a110(f) € k*, a,b € Z(p), a,b < pNo=2,
If 0 <m < Ny and b/p™ < a then aqp —mmod N, (f) = 0.
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Proof. For a given b € Z(p), b < p™°=2 and 1 < m < Ny, let a € Z(p) be
the minimal integer such that oy p —m(f) = 0 if @’ > a. If such an a does
not exist then agp, —pm(f) = 0 for all @ and there is nothing to prove.

If p# 2 put v = p™o~! and consider f(F,(v)) mod(Agf) + pAgz)m).

We prove that the term A,_q 0Ap —p, enters in f(F,(v)) with the coeffi-
cient

(54) (U - a)av—a v—a O(f)aa b fm(f) = _aav—a,v—a,o(f)aa,b,fm(.]q-
Indeed, F,(v) mod(A( o) 4 pA() ) is a sum of the terms of the form

adm

a10q,000,0 With a1,a2 € Z(p) such that a3 + ag = wv. Therefore,
f(a1Aq,004,0) contains Ay_q 0Ap .y, with coefficient

alaal,vfa,o(f)aag,b,—m(f)'

Now notice that ag, p—m (f) = 0if a2 > a, and a4, v—a,0(f) =0if a1 > v—a
or, equivalently, if as < a. So, a1 = v — a and the coefficient is given by
formula (5.4).

By the choice of a, the coefficient (5.4) is not zero. Therefore,

Ay_a0ly_m € ALY Notice that

b v—a b
max{v—a+p —i—b}zv—cH-

pNO m pm
and b/p™ > a. Indeed, we can use that
_ No—1 b
v—a
R R e e

pho=m p p
Therefore, v —a+b/p™ > v, i.e. b/p™ > a and the proposition is proved in
the case p # 2.

If p = 2 we can take v = 20 and repeat the above arguments by using
in the last step the inequality

v—a 2o No—2 _ aN. 1 b
2N m+b< 5 + 2770 <20—a<1—2m><v—a+2m
The proposition is completely proved. O

5.4. Suppose r € N is such that auqo(f) = 0 for any a,a’ € Z(p) such
that a < a’ < a+r < pNo—2,

Let 0(p) be pif p# 2 and d(p) =4 if p = 2.
Proposition 5.7. Assume that a110(f) = 1. If b,b1 € Z(p), by = b+1r and
b1+ 0(p) < pNo=2 then awp,0(f) = Ap—s(p) p1—s(p).0(f)-
Proof. Let ag = pNo=2 —1,vg = ag+1/p, v = ag+ %. We need the following
lemma.

Lemma 5.8. Ifa’,b/,c < ag and o' +V' /p = v then ag —1(f) = 0.
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Proof. 1t follows from the inequalities

ao agn b, ’

c
- {—<qg——<v——=a
p p p p
and proposition 5.6. U
We continue the proof of proposition 5.7. Consider
.7:1) (’Uo) = — Z a'[Aa/O, Ab’,fl] mOdpASél)m.
a’'+b /p=v
a’,b'<ag

Using that vo/po~ < d(vg) = 1/p, cf. proposition 5.3, we can find
now the coefficient for [Agg0, Ap,,—1] in f(Fy(vo)). By the above lemma
aa p—1(f) = 0, therefore the image of the term a'[Ayg, Ay _1] gives a
coefficient

d'agrago(F)o™ (anio(f))-
If o' < apand aga.0(f) # 0thena’ < ag—r, b = b+rp > by and ayp,o(f) =
0. So, the coefficient is non-zero only for a’ = ag. Then by Corollary 5.5
Qarapo(f) = 1 and the coefficient will be equal to ago ™! (app,0(f))-

If p # 2 we can proceed similarly to find the coefficient for
[Aag-1,0, Dby 1p—1] 0 f(Fovo)). It equals (a0 — 1)o (@hspp1p0(f))-
Therefore, by proposition 5.3

b 0(f) = Qbtp by +p0(f)
and the case p # 2 is completely considered.
If p = 2, we similarly find similarly the coefficient for [Agg—2,0, Ap,44,—1]
in f(Fu(vo)). It equals (ap — 2)0~  (p+a,6,+4,0(f)) and we obtain

b 0(f) = Qptap+40(f).
The proposition is proved. O

5.5. Now we come to the central point of this section.

Proposition 5.9. Suppose a110(f) # 0 and Ny > 3. Then there is an n €
Aut’ K such that oy (fn*) = 64, for any a,b € Z(p) with a < b < pNo=3,
where dqp 15 the Kronecker symbol.

Proof. Proposition 5.4 together with part 2) of proposition 2.1 imply that
after replacing f by fn* for some n € Aut’K such that n(t) = ai10(f)t, we
can assume that agq(f) =1 if a < pNo—L.

Let r = r(f) € N be the maximal subject to the condition that agpo(f) =
0, for any a,b € Z(p) with a,b < p™ 2 anda<b<a+r.

If » > pNo=3 —1 then there is nothing to prove. Therefore, we can assume
that r < po=3 — 2. For 1 < a < pVo72, set au(r) = agatro(f) if a € Z(p)
and aq(r) = 0, otherwise.
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By proposition 5.7 «a4(r) depends only on the residue amodd(p) and
by the choice of r the function a +— ay,(r) is not identically zero. The
proposition will be proved if we show the existence of n € Aut’ K such that
r(fn*) >r(f)-

In the case p # 2 apply proposition 2.5 with wg = 1+7. Let n will be the
corresponding character. If r(fn*) > r(f), then the proposition is proved.
So, assume that r(fn*) = r(f). Therefore, by replacing f by fn* we can
assume the following normalisation conditions:

a) ai(r)=0if r # —1mod p;
b) ag(r) =0 if r = —1mod p.

In the case p = 2, apply proposition 2.6 with either wg = r + 2 if r =
2mod 4 or wg = r if r = O0mod 4. In the first case we have the normalisation
condition

c) aq(r) = ag(r) = 0;
in the second case we obtain only that
d) ay(r) =0.

The case p #£ 2.

If 7 = po=3 — 2 then oy (r) = ago(f) = 0if a = 1,b = p™o=3 — 1. For
all other couples a,b € Z(p) such that a < b < p™o~3, we have ago(f) =0
because b — a < r. Therefore, we can assume that r < pNo=3 — 3

Let ¢; = p(r+1)+j forj = 1,2,...,p—1. Then ¢; < p(pN0=3-2)+p—1 <
p™o=2 for all j. Set v; = ¢; + 1/p and consider the coefficient for 7, 1, (v;)

in the image f(F,,(v;)) € ASZ{& mod Agfj) +pAgz]&.

Similarly to the proof of proposition 5.7, we see that the term
[A¢;0, A14rp,—1] from the expression of F,, 4 (v;) can appear with non-zero
coefficient only as image of one of the following two terms from 7, (v;):

(cj —1)[Ac; 1,0, A1yrp,—1] and ¢j[A¢0, A1,-1]. This coefficient is equal to

(Cj - T)QCj—r(T) + cjal,l-i-rp,ﬂ(f)‘

Similarly, the term [Ac 10, A4 41)p—1] from the expression of
Fuo;+r(vj) can appear with non-zero coefficient only in the image of either
(cj—=1=7)[A-1-r0, A1t (rs1)p,—1] OF (¢j —1)[A¢;—1,0, A14p,—1]. Therefore,
this coefficient will be equal to

(Cj -1- T)Oécj—1—r(7“) + (Cj - 1)0_1a1+p,1+(r+1)p,0(f)
and we obtain the following relation

cj — cg—1-—r

r
Q. —p\T) =
Cj € r( ) Cj -1

(5.5) Qej—1-r(r) + X,

where X = 0_1(a1+p,1+(r+1)p,0(f)) - ‘7_1(041,1+rp,0(f))-
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Forj=1,...,p—1,set §; = %aj,r(r). Then the above relation (5.5)
implies that Bo =01+ X, B3 =02+ X, ..., p—1 :,Bp_g—l-X.

The case r Z 0mod p, p # 2.
In this case the normalisation conditions imply that

— if r # —1modp then G,11 = 0;

— if r = —1modp then §,410 = 0.

In both cases 3, = 0. This implies that 8; = --- = 3,1 = 0. Therefore,
aq(r) =0, for all a. This is a contradiction.

So, in the case r Z Omod p, p # 2 the proposition is proved.

The case r = 0modp, p # 2

In this case we only have the normalisation condition $; = 0. Therefore,
fori=1,...,p—1, we have §; = (i — 1) X and a,(r) = (a — 1)X for any
a € Z(p), a < p™No=3,

Let v = (p — 1)r + p and consider the coefficient for F,,(v) in the
image f(F,(v)). Following the images of terms of degree 2 we see that
this coefficient equals —2X. Now notice that the linear terms in F,(v)
(resp. Fy4r(v)) have coefficients with p-adic valuation v,((p—1)r+p) (resp.
vp(pr + p)). Clearly, if 1 = v,(pr +p) and if 1 < v,((p — 1)r + p) then the
linear term of F,4,(v) cannot appear in the image f(F,(v)). Therefore,
1 = vp(pr +p) = vp((p — 1)r + p) and the linear terms in F,(v) (resp.
Fuotr(v)) are multiples of A, 1,/ (vesp. Apyq1). But then (r+1) — (r+
1—r/p) =r/p < r and by the definition of , A, ; will not appear in the
image F'(A,41_y/p1). This contradiction proves the proposition in the case
r =0modp, p # 2.

The case p = 2.

Here r = 0mod 2. If r = 2mod 4 then the normalisation conditions imply
that a4 (r) = 0 for all a and the proposition is proved.

If » = 0mod 4 then we only have one normalisation condition a4 (r) =0
if @ = 1mod4. Let a,(r) = o where a = 3mod 4. Consider

Fraalr+4)=(r+ 4)AT2%4,5 + Z Agolpg € Ag:;f) mod A§:+4),
a+b=r+4da,b<r+4
where s = va(r +4) > 2. Then f(F,14(r +4)) contains A, 41 0A,430 with
coefficient
a1,41,0(f) + azzro(f) = o,

and therefore it contains Fa,4(r+4) with coefficient . Similarly to the case
p # 2, we obtain the equality vo(r + 4) = v2(2r + 4) = 2 and consequently
the fact that f(A,p412) cannot contain A, /4119 with non-zero coefficient
because (r/2 + 1) — (r/4+ 1) = r/4 < r. The proposition is completely
proved. O
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6. Proof of the main theorem — the characteristic p case

Suppose E is a field of characteristic p.

Then E’ is also a field of characteristic p, because the topological groups
I'z(p)*® and I' g/ (p)?P are isomorphic. Looking at the ramification filtrations
of these groups we deduce that the residue fields of F and E’ are isomorphic.
Therefore, E and E’ are isomorphic complete discrete valuation fields and
we can identify the maximal p-extensions E(p) of E and E'(p) of E'.

Let K be a finite Galois extension of E in F(p). Then E(p) is a maximal
p-extension of K and 'k (p) = Gal(E(p)/K). Let K’ be the extension of £’
in E(p) such that g(I'x (p)) = I'x(p) (recall that ¢ is a group isomorphism).
If s > 0 and K is the unramified extension of K in E(p) such that [Kj :
K] = p® then g(I'k,(p)) = T'k:(p), where K is the unramified extension
of K’ in E(p) of degree p®. Therefore, with the notation from Section 3
we have a compatible system gxr' = {gxK’s}s>0 of Fp-linear continuous
automorphisms grx’s : Mis — Mgrs.

Now choose uniformising elements tx and tgs in K and, resp., K'.

Consider the corresponding standard generators Dgfﬁ) (resp. D:z(f{)), where

a € Z(p) and n € Zmod Ny, of Mg, = MgsQrk(p) (resp., Mgrs =
M s@ik(p)). Here, as usual, k ~ F,, is the residue field of K, g¢o = p™°,
Ng = Ngp®. Then

gKK’s(D(%)) = Z aabm(gKK’s)Dé(ysn)
bEZ(p)
meZmod Ny

with aabm(gKK’s) eks C k(p)

For each s > 0, choose ng € Zmod Ny such that ai1n, (9xK7s) 7# 0: ns
exists, because g+, induces a k(p)-linear isomorphism of M g, mod M%
and M g mod Mﬁ?)s

Let Fr(tg:) € AutK,, be such that Fr(tx:) : tg = trr and Fr(tg:)|pp) =
o. Let ¢ € Iso’(K!,, Ky) be such that &(tx/) = tk.

For any s > 0, Fr(tx/) (resp. £) induces a continuous field isomorphism

K! — K/ (resp. K, — Kj). It will be denoted by Fr(tx/)s (resp. &).
With notation from n.3, we introduce continuous group isomorphisms

g?(K’s = gKK/sFr(tK’)?S* : ./\;le — MK/S'

Clearly, hs := g% 1 £} is induced by an automorphism of I' ¢, (p) which is
compatible with the ramification filtration. Notice also that, by proposition
2.1, if a € Z(p), n € Zmod N, and

hs(D[(zf))) = Z aabm(hs)Dlgfr)Ly
bm
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then agpm—n,(hs) = 0" Qabm (9K K’s). In particular, a19(hs) # 0. There-
fore, applying proposition 5.6, we obtain that for all s > 0,

N372)

hs € AutaqmMis mOdM?{D )

S
the residues ng € Zmod N, are unique, and ng1 mod Ny = ng. Here we use

that D((lf;rl) — D((;Z) under the natural morphism from M K,s+1 to M Ks-
Then hgg = {hs}s>0 and 9?(1(' = {g%K,s}5>0 are compatible systems
and, by propositions 3.3 and 5.9, they are special admisible locally ana-
lytic systems. By proposition 3.4 there is an ng g € Iso® (K, K') such that
g%K,an = d(nx ' )@rk(p). Notice also that if fig e := liﬁlns € @Z/NSZ

S S
then gxxr = g% Frtr ) "xx'* where Fr(tx:)* = {Fr(tg/)s}ss0 is the
compatible system from Subsection 3.5.

Suppose L is a finite Galois extension of F in E(p) containing K. Proceed
similarly to obtain L’ C E(p) such that g induces an isomorphism of I'z (p)
and I'z/(p), the corresponding compatible system gr1r = {grr/s }s>0 and the
special admissible locally analytic system g% = {g% s }s>0, Where grp =
g% Fr(tr,)~"cr’*, together with the corresponding 77 € Iso®(L, L') such
that g%L,an = d(nLr)®k, kL(p). Here ky, is the residue field of L, ky, ~ F g
andnpy € @1 7./p™MoP° 7, Notice that all these maps depend on some choice
of uniformising elements ¢7, and ¢;, in, respectively, L and L’.

The systems gy and gg i are comparable because both come from the
group isomorphisms I'r(p) — I'p/(p) and I'x(p) — T'g/(p) which are
induced by g. If Ik is the inertia subgroup of Gal(L/K) then there is
a natural group embedding I,/ C Aut’(L) ¢ Aut®(Ly,). Similarly, we
have a group embedding for the inertia subgroup Iy, ks of Gal(L'/K') into
Aut®(L).

Let x : Ik — I/ be the group isomorphism induced by g. Then
T'9r1s = grusk(T)*, for any 7 € Iy i and any s > 0. This implies that

T*gLL’ur = gLL’urﬁ(T)*a
i.e. condition C from Subsection 3.7 holds in this case.

Let pugg = nKK/FI‘(tK/)fﬁKK/ € ISO(I(7 K/) and purp =

nLL/FI“(tK/>7ﬁLLI S ISO(L,L/>.

Proposition 6.1. With the above notation:
a) pLr|Kk = KK
b) for any T € I i, Trr = pLo k(7).

Proof. Let a = Fr(ty,)"ct’. Consider K/, as a subfield in L, and set K/, =
a(K,) € Li,. Then K] is the maximal unramified p-extension of the
complete discrete valuation field K" := «(K’) C E(p) in E(p).



46 Victor ABRASHKIN

Let 8 = a|g; . Consider the following commutative diagram

*
- 9L ur = aL’L’ur w
MLur ? ML’ur ? ML’ur

= 9K K'ur = ;(’K”ur =
MKur ? MK’ur ’ MK”ur

where the vertical arrows come from natural embeddings of the correspond-
ing Galois groups.

The systems g% = 9rLror and fxgr = g B gn are comparable,
because they come from the compatible group isomorphisms I'z(p) —

I'y/(p) and T'k(p) N I'kr(p). In this situation, condition C is auto-
matically satisfied and, by proposition 3.5, the admissibility of g%L, im-
plies the admissibility of fx . Because the group homomorphism f is
compatible with ramification filtrations, we can apply the results of sec-
tion 5 to deduce that fx i~ is special admissible locally analytic and that
there is an 7k € Iso? (K, K") such that frxran = d(nkn)@kk(p) and
mlic = Tl
Consider ¢ := nrnrr |k € Iso®(K', K”). Then

-1 1 0 —1
%n =Nk K'anTKK"an = (gKK’an) (gKK’ﬁ?{’K”)KK”an

71 = ,
= (99{1{/ QKK'@(/KN) KK (Fl"(tK') KK ﬁ)
an an

Therefore by proposition 2.7,
77[_{1[{/77[/[/ ’K = Fr(tK’>7ﬁKK/FI‘<tL/)ﬁLL' ‘K

or urp|K = HKK!-

Part a) of our proposition is proved.

Consider the inertia subgroups Ik C Gal(Lu/Kuw), Iy /g C
Gal(Ly,/Ky,) and I g C Gal(Ly,/KY,). As it was noticed earlier, the
correspondence

* /% —1 *
T — T =0ra’ 9LL'ur
induces a group isomorphism  : I, g — I/ i such that s(7) = 7'.
We use the correspondence
1

o7 =a

to define the group isomorphism kg : I1//xr — I gn such that kg (") =
7”. With this notation we have the following equality of compatible systems

* 0 _ 0 "ok
TrLL9Ly = 9L7LL s

where as earlier, g% = 9L
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Therefore, the equality (7nrr)an = (777.9%)an = (20700 Van =
(Mpp'7")an together with proposition 2.7 and the definition of 7/ imply
that Tnrp = nppt” = o ra, e, T = prp T

The proposition is proved. O

Let p := limugg : E(p) — E(p). Clearly, it is a continuous field
isomorphism and u(F) = E'.

Proposition 6.2. u* = g.

Proof. As earlier, let K and K’ be Galois extensions of F and FE’, respec-
tively, such that g(T'x(p)) = 'k (p).

By part b) of the above proposition 6.1, the correspondences p* : 7 +—
p i and g : 7+ g(7) induce the same isomorphism of the inertia sub-
groups Ix(p) — Ir/(p). Consider the induced isomorphism I (p)* —
I (p)2P. With respect to the identifications of class field theory I (p)*> =
Ug and I/ (p)*P = Ugr, where U and Uy are groups of principal units in
K and K', respectively, this homomorphism is induced by the restriction of
the field isomorphism px i on Uk . In addition, pg g transforms the natu-
ral action of any 7 € I'g(p) on Uk into the natural action of g(7) € I'p/(p)
on Ug:. Therefore, the two field automorphisms pu~'7u|g and g(7)|x of
K’ become equal after restricting on Ugs. This implies that they coincide
on the whole field K', i.e. p~tru = g(r) mod 'k (p), for any 7 € T'g(p).
Because K is an arbitrary Galois extension of E in E(p) this implies that
g=p".

So, proposition 6.2 together with the characteristic p case of the Main
Theorem are completely proved. O

7. Proof of the main theorem — the mixed characteristic case

In this section we assume that F is a field of characteristic 0. Clearly,
this implies that the field E’ is also of charactersitic 0.

7.1. Following the paper [10] introduce the categories U, ¥ and the func-
tor & : U — 0.

The objects of W are the field extensions L/K, where [K : Q,] < oo, L
is an infinite Galois extension of K in a fixed maximal p-extension K (p)
of K and I', /i = Gal(L/K) is a p-adic Lie group. A morphism from L/K
to an object L'/K’ in V¥ is a continuous field embedding f : L — L’ such
that [L': f(L)] < oo and f|f is a field isomorphism of K and K.

The objects of U are couples (K,G) where K is a complete discrete
valuation field of characteristic p with finite residue field and G is a closed
subgroup of the group of all continuous automorphisms of . In addition,
with respect to the induced topology G, is a compact finite dimensional
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p-adic Lie group. A morphism from (K, G) to an object (K/,G’) in ¥ is
a closed field embedding f : K — K’ such that K’ is a finite separable
extension of f(K). In addition, f(K) is G’-invariant and the corrspondence
T — T|(x) induces a group epimorphism from G’ to G.

Let X be the Fontaine-Wintenberger field-of-norm functor, cf. [11]. Then
the correspondence L/K +— (X(L),Gr k), where Gr i = {X(7) | 7 €
['z/k}, induces the functor @ : ¥ — U,

One of main results in [10] states that the functor @ is fully faithful.

7.2. Let {Ey/E,iqp}7 be an inductive system of objects in the category
V. From now on Z is a set of indices a with a suitable partial ordering. The
connecting morphisms i,g € Homy(E,, Eg) are the natural field embed-
dings defined for suitable couples a, 3 € Z. We can choose this inductive
system to be large enough to satisfy the requirement liLnEa = E(p).

By applying the functor @, we obtain the inductive system
{(€a,Ga),iap}7 in the category W, where (Eq,Gqo) = ®(Ey/E) and iag =
®(iqg), for all o € 7. Then limé, =& (p) is a maximal p-extension for each
field &y, a € 7.

Notice that the field embeddings 7,5 induce group epimorphisms j,g :
Gg — G, with corresponding projective system {Gq,jas}z such that
lim G, is identified via the functor X with I'g(p). For any a € I, we
then have the identifications I'g, (p) = T's,(p). These identifications are
compatible with the ramification filtrations. This means that one can define
the Herbrand function ¢, for the infinite extension F,/E as the limit of
Herbrand functions of all finite subextensions in E,, over E and

Tu(p)) NTg, (p) = Te, (p) ™),
for all v > 0.

7.3. Consider the group isomorphism g : I'g(p) — T'p/(p) from the
statement of the Theorem. For a € Z, let E/, C E’(p) be such that
9(T'e,(p)) = e, (p). Then we have the corresponding injective system
(B}, 7}z and linE, = E'(p).

Clearly, for any o € Z,

e E! /E’is an object of U;

® Jo = gamodl'g,(p) : g, /g — Tg /e is a group isomorphism
which is compatible with the ramification filtrations; in particular, this
implies that the Herbrand functions for the infinite extensions E,/FE and
E! /E’ are equal;

e for any v > 0, go := ¢g|r 5, (p) induces a continuous group isomorphism
of Tp(p)™ NTg, (p) and T (p)*) NT g, (p).
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For a € 7, set ®(E,/E') = (€,,Gy) and ®(ij,5) = 7,5. Then we have
an inductive system {(&,,G,),%g}tz and lim&, := £’(p) is a maximal p-
extension for each £,. As earlier, we obtain the projective system {G},, J, 5}z
and the field-of-norms functor allows us to identify the topological groups
lim GY, and I'gr(p). Therefore, for any a € Z, we have an identification of
the groups I'gr (p) and Tg/ (p).

This implies that for all & € Z, we have the following isomorphisms of
topological groups:

® Jo = X(g9a) : T'e,(p) — Tg (p) such that, for any rational number
v 20, §a(Te,(p)™)) = Ler ()™

e X(go) : Go — G, which maps the projective system {Ga, Jag}z to
the projective system {GY,,7,5}7-

7.4. By the characteristic p case of the Main Theorem for all o« € Z, there
are continuous field isomorphisms fiy : &, — &/, such that

o {[ia}aer maps the inductive system {4, 73}z to the inductive system
{5&75;,8}1'5

e X(go) is induced by fia, i.e. if 7 € Gy and 77 = X(ga) € G, then
Tha = flaT .

Because ® is a fully faithful functor, for all indices o € Z, there is a
to € Homy(E,/E, E!,/E") such that

e {/ta}acz transforms the inductive system {E,/FE,i4g}7 into the in-
ductive system {E/E', i, 5}7;

o if r€ly, /pand 7' = go(r) € Tpy /gy then Tpa = pa7’.
Therefore, p := limpu, is a continuous field isomorphism from E(p) to

E'(p) such that 7y = pug(7), i.e. g(7) = p~tru, for 7 € UimTg, g =TE(p)
and g(T) S l&an&/E/ = PE/(p).
The Main Theorem is completely proved.
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