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Modified proof of a local analogue of the
Grothendieck conjecture

par Victor ABRASHKIN

Résumé. L’analogue local de la conjecture de Grothendieck peut
être formulé comme une équivalence entre la catégorie des corps
K complets pour une valuation discrete à corps résiduel fini de
caractéristique p 6= 0 et la catégorie des groupes de Galois ab-
solus des corps K munis de la filtration de ramification. Le cas
des corps de caractéristique 0 a été étudié par Mochizuki il y a
quelques années. Ensuite, l’auteur de cet article a établi, par une
méthode différente l’analogue de la conjecture de Grothendieck
dans le cas p > 2 (mais K de caractéristique quelconque). Nous
proposons ici une modification de cette approche qui inclut le cas
p = 2 dans la preuve, contient des simplifications considérables
et remplace le groupe de Galois par son pro-p-quotient maximal.
Une attention particulière est accordée au procédé de la recons-
truction de l’isomorphisme de corps à partir d’un isomorphisme
de groupe de Galois compatible avec les filtrations de ramification
correspondantes.

Abstract. A local analogue of the Grothendieck Conjecture is
an equivalence between the category of complete discrete valua-
tion fields K with finite residue fields of characteristic p 6= 0 and
the category of absolute Galois groups of fields K together with
their ramification filtrations. The case of characteristic 0 fields
K was studied by Mochizuki several years ago. Then the author
of this paper proved it by a different method in the case p > 2
(but with no restrictions on the characteristic of K). In this paper
we suggest a modified approach: it covers the case p = 2, con-
tains considerable technical simplifications and replaces the Ga-
lois group of K by its maximal pro-p-quotient. Special attention
is paid to the procedure of recovering field isomorphisms coming
from isomorphisms of Galois groups, which are compatible with
the corresponding ramification filtrations.

Introduction
Throughout this paper p is a prime number. If E is a complete discrete

valuation field then we shall assume that its residue field has characteristic
Manuscrit reçu le 9 mars 2007, révisé le 13 juillet 2009.
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p. We will consider E to be a subfield of a fixed separable closure Esep.
Define ΓE = Gal(Esep/E). We denote by E(p) the maximal p-extension of
E in Esep and we let ΓE(p) = Gal(E(p)/E).

Assume that E and E′ are complete discrete valuation fields with finite
residue fields and there is a continuous field isomorphism µ : E −→ E′.
Then µ can be extended to a field isomorphism µ̄ : E(p) −→ E′(p). With
the conventions about compositions of morphisms which are described at
the end of this introduction, the correspondence τ 7→ µ̄−1τ µ̄ defines a
continuous group isomorphism µ̄∗ : ΓE(p) −→ ΓE′(p) such that for any
v > 0, µ̄∗(ΓE(p)(v)) = ΓE′(p)(v). Here ΓE(p)(v) is the ramification subgroup
of ΓE(p) in the upper numbering.

The principal result of this paper is the following theorem.

Theorem A. Suppose E and E′ are complete discrete valuation fields
with finite residue fields and there is a continuous group isomorphism g :
ΓE(p) −→ ΓE′(p) such that for all v > 0, g(ΓE(p)(v)) = ΓE′(p)(v). Then
there is a continuous field isomorphism µ̄ : E(p) −→ E′(p) such that
µ̄(E) = E′ and g = µ̄∗.

This theorem implies easily a corresponding statement, where the maxi-
mal p-extensions E(p) and E′(p) and their Galois groups ΓE(p) and ΓE′(p)
are replaced, respectively, by the separable closures Esep and E′sep and the
Galois groups ΓE and ΓE′ . Such a statement is known as a local analogue of
the Grothendieck Conjecture. Mochizuki [7] proved this local analogue for
local fields of characteristic 0. His method is based on an elegant application
of Hodge-Tate theory. Under the restriction p > 2 the case of local fields of
arbitrary characteristic was proved by another method by the author [3].
This proof is based on an explicit description of the ramification subgroups
ΓK(p)(v) modulo the subgroup C3(ΓK(p)) of commutators of order > 3 in
ΓK(p), where K = k((t)), and k is a finite field of characteristic p > 2.
The restriction p 6= 2 appears because the proof uses the equivalence of
the category of p-groups and of Lie Zp-algebras of nilpotent class 2, which
holds only under the assumption p > 2.

The statement of Theorem A is free from the restriction p 6= 2. Its proof
follows mainly the strategy from [3] but there are several essential changes.

Firstly, instead of working with the ramification subgroups ΓK(p)(v),
v > 0, we fix the simplest possible embedding of ΓK(p) into its Magnus’s
algebra A and study the induced fitration by the ideals A(v), v > 0, of A. As
a result, we obtain an explicit description of the ideals A(v) modJ 3, where
J is the augmentation ideal in A. This corresponds to the description of
the groups ΓK(p)(v) modC3(ΓK(p)) in [1] but it is easier to obtain and it
works for all prime numbers p including p = 2.
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Secondly, any continuous group automorphism of ΓK(p) which is com-
patible with the ramification filtration induces a continuous algebra auto-
morphism f of A such that for any v > 0, f(A(v)) = A(v). Similarly to
[3], the conditions f(A(v)) modJ 3 = A(v) modJ 3 imply non-trivial prop-
erties of the restriction of the original automorphism of ΓK(p) to the inertia
subgroup IK(p)ab of the Galois group of the maximal abelian extension of
K. These properties are studied in detail in this paper. This allows us to
give a more detailed and effective version of the final stage of the proof of
the local analogue of the Grothendieck Conjecture even in the case p 6= 2.
In particular, this clarifies why it holds with the absolute Galois groups
replaced by the Galois groups of maximal p-extensions.

The methods of this paper can be helpful for understanding the rela-
tions between fields and their Galois groups in the context of the global
Grothendieck Conjecture. For example, suppose F is an algebraic number
field, F̄ is its algebraic closure, ΓF = Gal(F̄ /F ), ℘ is a prime divisor in F ,
℘̄ is its extension to F̄ and F℘, F̄℘̄ are the corresponding completions of
F and F̄ , respectively. Then ΓF,℘̄ = Gal(F̄℘̄/F℘) ⊂ ΓF is the decomposi-
tion group of ℘̄. Suppose F is Galois over Q and g℘ : ΓF,℘̄ −→ ΓF,℘̄ is a
continuous group automorphism which is compatible with the ramification
filtration on ΓF,℘̄. By the local analogue of the Grothendieck Conjecture,
g℘ is induced by a field automorphism µ̄℘ : F̄℘̄ −→ F̄℘̄ such that µ̄ := µ̄℘̄|F̄
maps F̄ to F̄ (because µ̄(Q) = Q), and, therefore, F to F (because F is
Galois over Q). So, µ̄ induces a group automorphism g of ΓF , which extends
the automorphism g℘ of ΓF,℘̄, and we obtain the following criterion:

Criterion. A group automorphism g℘ ∈ AutΓF,℘̄ can be extended to a
group automorphism g ∈ AutΓF if and only if g℘ is compatible with the
ramification filtration on ΓF,℘̄.

It would be interesting to understand how “global” information about
the embedding of ΓF,℘ into ΓF is reflected in “local” properties of the
ramification filtration of ΓF,℘̄.

Everywhere in the paper we use the following agreement about compo-
sitions of morphisms: if f : A −→ B and g : B −→ C are morphisms
then their composition will be denoted by fg, in other words, if a ∈ A then
(fg)(a) = g(f(a)). One of the reasons is that when operating on morphisms
(rather than on their values in a ∈ A) the notation fg reflects much better
the reality that it is the composition of the first morphism f and the second
one g.

The author is very grateful to Ruth Jenni for very careful checking of
the final version of this paper and pointing out various inexactitudes and
misprints.
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1. An analogue of the Magnus algebra for Γ(p)

In this section K = k((tK)) is the local field of formal Laurent series with
residue field k = Fq0 , where q0 = pN0 , N0 ∈ N, and tK is a fixed uniformiser
of K (in most cases tK will be denoted just by t). We fix a choice of a
separable closure Ksep of K, denote by K(p) the maximal p-extension of K
in Ksep and set Γ = Gal(Ksep/K), Γ(p) = Gal(K(p)/K).

1.1. Liftings. Notice first, that the uniformiser tK of K can be taken as
a p-basis for any finite extension L of K in Ksep. For M ∈ N, set

OM (L) = WM (σM−1L)[tK,M ] ⊂WM (L),
where WM is the functor of Witt vectors of length M , σ is the p-th power
map and tK,M = [tK ] = (tK , 0, . . . , 0) ∈ WM (L) is the Teichmüller repre-
sentative of tK . Very often we shall use the simpler notation t for tK,M (as
well as for tK). OM (L) is a lifting of L modulo pM or, in other words, it is
a flat WM (Fp)-module such that OM (L) mod p = L. This is a special case
of the construction of liftings in [4].

Let OM (Ksep) be the inductive limit of all OM (L), where L ⊂ Ksep,
[L : K] < ∞. Then we have a natural action of Γ on OM (Ksep) and
OM (Ksep)Γ = OM (K) = WM (k)((t)). We shall use again the notation
σ for the natural extension of σ to OM (Ksep). Clearly, OM (Ksep)|σ=id =
WM (Fp). Introduce the absolute liftings O(K) = lim←−

M

OM (K) and O(Ksep) =

lim←−
M

OM (Ksep). Again we haveO(Ksep)Γ = O(K) andO(Ksep)|σ=id =W (Fp).

We can also consider the liftings OM (K(p)) and O(K(p)) with the natural
action of Γ(p) and similar properies.

Notice that for any j ∈ O(K(p)) there is an i ∈ O(K(p)) such that
σ(i)− i = j.

1.2. The algebra A. Set Z(p) = {a ∈ N | (a, p) = 1} and Z0(p) =
Z(p) ∪ {0}. Let Ak be the profinite associative W (k)-algebra with the set
of pro-free generators {Dan | a ∈ Z(p), n ∈ Z modN0} ∪ {D0}.

This means that Ak = lim←−
C,M

ACMk, where C,M ∈ N,

ACMk = WM (k)[[{Dan | a 6 C, n ∈ Z modN0}]]
and the connecting morphisms AC1M1k −→ AC2M2k are defined for C1 >
C2, M1 > M2 and induced by the correspondences Dan 7→ 0 if C2 < a 6 C1
and Dan 7→ Dan if a 6 C2, and by the morphism WM1(k) −→ WM2(k) of
reduction modulo pM2 .

Denote again by σ the extension of the automorphism σ of W (k) to
Ak via the correspondences σ : Dan 7→ Da,n+1, where a ∈ Z(p) , n ∈
Z modN0, and the correspondence D0 7→ D0. Then A := Ak|σ=id is a pro-
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free Zp-algebra: if β1, . . . , βN0 is a Zp-basis of W (k) and, for a ∈ Z(p) and
1 6 r 6 N0,

D(r)
a :=

∑
n∈Z modN0

σn(βr)Dan,

then {D(r)
a | a ∈ Z(p), 1 6 r 6 N0} ∪ {D0} is a set of pro-free generators

of A. Notice also that if α1, . . . , αN0 ∈W (k) is a dual basis for β1, . . . , βN0
(i.e. Tr(αiβj) = δij , where 1 6 i, j 6 N0 and Tr is the trace of the field
extension W (k)⊗Qp over Qp) then for any a ∈ Z(p) and n ∈ Z modN0, it
holds

Dan =
∑

16r6N0

σn(αr)D(r)
a .

Denote by J , resp. JCM , the augmentation ideal in A, resp. ACM . Set
AK := A⊗̂O(K), ACMK = ACM ⊗̂O(K), AK(p) = A⊗̂O(K(p)). We shall
also use similar notation in other cases of extensions of scalars, e.g. Jk =
J ⊗̂W (k), JK = J ⊗̂O(K), JK(p) = J ⊗̂O(K(p)).

1.3. The embeddings ψf . Take α0 ∈W (k) such that Tr(α0) = 1, where
again Tr is the trace of the field extension W (k) ⊗ Qp ⊃ Qp. For all n ∈
Z modN0, set D0n = σn(α0)D0 and introduce the element

e = 1 +
∑
a∈Z0(p)

t−aDa0 ∈ 1 + JK .

We shall use the same notation e for the projections of e to any of
ACMK modJ nCMK , where C,M, n ∈ N.

Proposition 1.1. There is an f ∈ 1 + JK(p) such that σ(f) = fe.

Proof. For C,M, n ∈ N, set

SCMn =
{
f ∈ 1 + JCMK(p) modJ nCMK(p) | σf = femodJ nCMK(p)

}
.

We use induction on n ∈ N to prove that for all C,M, n ∈ N, SCMn 6= ∅.
Clearly, SCM1 = {1} 6= ∅.
Suppose that SCMn 6= ∅ and f ∈ SCMn. Then σ(f) = femodJ nCMK(p).

Let
π : 1 + JCMK(p) modJ n+1

CMK(p) −→ 1 + JCMK(p) modJ nCMK(p)

be the natural projection. If f1 ∈ 1 + JCMK(p) modJ n+1
CMK(p) is such that

π(f1) = f then σ(f1) = f1e + jmodJ n+1
CMK(p), where j ∈ J nCMK(p). There

is an i ∈ J nCMK(p) such that σ(i)− i = j, cf. n.1.1. Therefore,

σ(f1 − i) = f1e+ j − (i+ j) = (f1 − i)emodJ n+1
CMK(p),

using that ie = imodJ n+1
CMK(p), and SCM,n+1 6= ∅ because it contains f1−i.
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Notice that each SCMn is a finite set and each f ∈ SCMn has a fi-
nite field of definition. This follows from the fact that for any C,M, n ∈ N,
the Zp-module ACM modJ nCM has finitely many free generators and, there-
fore, the equation σf = fe is equivalent to finitely many usual polynomial
equations. Also notice that {SCMn | C,M, n ∈ N} has a natural structure
of projective system. Therefore, lim←−

C,M,n

CMn 6= ∅, and any element f of this

projective limit satisfies f ∈ 1 + JK(p) and σ(f) = fe.
The proposition is proved. �

For any f ∈ 1 + JK(p) such that σ(f) = fe and τ ∈ Γ(p), set ψf (τ) =
(τf)f−1. Clearly, σ(ψf (τ)) = τ(σf)(σf)−1 = (τf)ee−1f = ψf (τ). There-
fore, ψf (τ) ∈ (1 + JK(p))|σ=id = 1 + J .

Proposition 1.2. a) ψf is a closed group embedding of Γ(p) into (1+J )×.
b) ψf induces an isomorphism ψab

f of the topological groups Γ(p)ab and
(1 + J )×modJ 2.
c) If f1 ∈ 1 + JK(p) is such that σ(f1) = f1e then there is an element
c ∈ 1 + J such that for any τ ∈ Γ(p), ψf1(τ) = cψf (τ)c−1.
d) ψf induces an embedding of the group of all continuous automorphisms
AutΓ(p) into the group AutA of continuous automorphisms of the
Zp-algebra A.

Proof. a) Clearly, ψf can be treated as a pro-p-version of the embed-
ding of the group Γ(p) into its Magnus algebra. Therefore, by [8], Ch
1, Sec 6, ψf induces, for all n ∈ N, the closed embeddings of the quo-
tients Cn(Γ(p))/Cn+1(Γ(p)) of commutator subgroups in Γ(p) into 1 +
J nmodJ n+1. This implies that ψf induces, for all n > 1, the closed group
embeddings of Γ(p)/Cn(Γ(p)) into 1 + J modJ n, and therefore, ψf is a
closed group monomorphism.

b) Consider the profinite Zp-basis {D(r)
a | a ∈ Z(p), 1 6 r 6 N0 } ∪ {D0}

for J modJ 2 from n.1.2. For 1 6 r 6 N0, as earlier, consider αr ∈ W (k),
which form the dual basis of the basis {βr | 1 6 r 6 N0} chosen in n.1.2 to
define the generators D(r)

a . Then

e = 1 +
∑

16r6N0a∈Z(p)
αrt
−aD(r)

a + α0D0

and
f = 1 +

∑
16r6N0a∈Z(p)

f (r)
a D(r)

a + f0D0 modJ 2
K(p),

where for 1 6 r 6 N0 and a ∈ Z(p), f (r)
a and f0 belong to O(K(p)) ⊂

W (K(p)) and satisfy the equations σf (r)
a −f (r)

a = αrt
−a and σf0−f0 = α0.
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Then for any τ ∈ Γ(p),

ψf (τ) = 1 +
∑
a,r

(τf (r)
a − f (r)

a )D(r)
a + (τf0 − f0)D0 modJ 2

K(p)

and the identification ψf : Γ(p)ab ' (1 + J )×modJ 2 is equivalent to the
identifications of Witt-Artin-Schreier theory

⊕a∈Z(p)W (k)t−a⊕W (Fp)α0 = O(K)/(σ−id)O(K) = Homcts(Γ(p),W (Fp)).

c) Clearly, σ(f1f
−1) = σ(f1)σ(f)−1 = f1ee

−1f−1 = f1f
−1. Therefore,

f1f
−1 = c ∈ (1 + JK(p)) ∩ A = 1 + J

and for any τ ∈ Γ(p),

ψf1(τ) = τ(f1)f−1
1 = τ(cf)(cf)−1 = c(τf)f−1c−1 = cψf (τ)c−1.

d) This also follows from the above mentioned interpretation of A as a
profinite analogue of the Magnus algebra for Γ(p). �

1.4. The identification ψab
f . As it was already mentioned in the proof

of proposition 1.2 the identification ψab
f comes from the isomorphism of

Witt-Artin-Schreier theory

Γ(p)ab = Hom(O(K)/(σ − id)O(K),W (Fp))

and does not depend on the choice of t = tK and f ∈ 1 + JK(p). Suppose
τ0 ∈ Γ(p)ab is such that ψab

f (τ0) = 1+D0 and for a ∈ Z(p) and 1 6 r 6 N0,
the elements τ (r)

a ∈ Γ(p)ab are such that ψab
f (τ (r)

a ) = 1+D
(r)
a modJ 2. Then

the element
e = 1 + α0D0 +

∑
a,r

αrt
−aD(r)

a

corresponds to the diagonal element α0⊗τ0+
∑
a,r αrt

−a⊗τ (r)
a from O(K)⊗

Γ(p)ab =

O(K)⊗Hom(O(K)/(σ−id)O(K),Zp) = Hom(O(K)/(σ−id)O(K), O(K)),

which comes from the following natural embedding

O(K)/(σ − id)O(K) = ⊕a∈Z(p)W (k)t−a ⊕W (Fp)α0 ⊂ O(K).

The above elements τ0, resp. τ (r)
a , correspond to t, resp. E(βr, ta)1/a, by

the reciprocity map of local class field theory. (Here β1, . . . , βN0 ∈ W (k)
were chosen in n.1.2 and for β ∈W (k),

E(β,X) = exp(βX + (σβ)Xp/p+ · · ·+ (σnβ)Xpn/pn + . . . ) ∈W (k)[[X]]
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is the generalisation of the Artin-Hasse exponential introduced by Shafare-
vich [9].) This fact follows from the Witt explicit reciprocity law, cf. [5].
Then the elements Dan, where a ∈ Z(p) and n ∈ Z modN0, correspond to∑

16r6N0

σn(αr)⊗ E(βr, ta)1/a ∈W (k)⊗Zp Ga,

where the (multiplicative) group Ga := {E(γ, ta) | γ ∈ W (k)} is identified
with the Zp-module of Witt vectors W (k) via the map E(γ, ta)1/a 7→ γ.
Consider the identification

W (k)⊗Zp W (k) = ⊕m∈Z modN0W (k)m
given by the correspondence α ⊗ β 7→ {σ−m(α)β}m∈Z modN0 . Under this
identification the element Dan corresponds to the vector δn ∈ ⊕mW (k)m,
which has n-th coordinate 1 and all remaining coordinates 0. This interpre-
tation of the generators Dan will be applied below in the following situation.
Suppose [k′ : k] <∞, k′ ' Fq′0 with q′0 = pN

′
0 . Clearly, N ′0 ≡ 0 modN0. For

a ∈ Z(p) and n ∈ Z modN ′0 denote by D′an an analogue of Dan constructed
for K ′ = k′((tK′)) with tK′ = t. Let Γ′ = Gal(Ksep/K

′) and let Γ′(p) be
the Galois group of the maximal p-extension K ′(p) of K ′ in Ksep. With the
above notation we have the following property:

Proposition 1.3. For any a ∈ Z(p) and n ∈ Z modN ′0, D′an is mapped
to Da,nmodN0 under the map Γ′(p)ab −→ Γ(p)ab, which is induced by the
natural embedding Γ′ ⊂ Γ.

2. Action of analytic automorphisms on Iab(p)

As earlier, K = k((t)), k ' Fq0 with q0 = pN0 and Γ(p) = Gal(K(p)/K).
Let I(p) be the inertia subgroup of Γ(p) and let I(p)ab be its image in the
maximal abelian quotient Γ(p)ab of Γ(p).

2.1. Consider the group AutK of continuous field automorphisms of K.
Let Fr(t) ∈ AutK be such that Fr(t)|k = σ and Fr(t) : t 7→ t. Then any
element of AutK is the composition of a power Fr(t)n, where n ∈ Z modN0,
and a field automorphism from Aut0(K) := {η ∈ AutK | η|k = id}. Notice
that any η ∈ Aut0K is uniquely determined by the image η(t) of t, which
is again a uniformizer in K.

Let AutKK(p) be the group of continuous automorphisms η̄ of K(p)
such that η̄|K ∈ AutK. Then AutKK(p) acts on Γ(p): if η̄ ∈ AutKK(p)
and τ ∈ Γ(p) then the action of η̄ is given by the correspondence τ 7→
η̄∗(τ) = η̄−1τ η̄, i.e. η̄∗(τ) : K(p) η̄

−1
−→ K(p) τ−→ K(p) η̄−→ K(p), cf. the

introduction for the agreement about compositions of maps. The action
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induced by η̄∗ ∈ AutKK(p) on Γ(p)ab depends only on η := η̄|K and will
be denoted simply by η∗.

2.2. Let M = I(p)ab ⊗ Fp. If UK is the group of principal units in K
then we shall use the identification M = UK/U

p
K , which is given by the

reciprocity map of local class field theory. Notice that, with respect of this
identification, for any η ∈ AutK, the action η∗ comes from the natural
action of η on K. We shall denote the k-linear extension of the action of η
to Mk :=M⊗Fp k by the same symbol η∗.

Use the map m 7→ (ψab
f (m) − 1) mod p to identify Mk with a submod-

ule of Jkmod(p,J 2
k ). For a ∈ Z(p) and n ∈ Z modN0, consider the im-

ages of the elements Dan, where a ∈ Z(p) and n ∈ Z modN0 (cf. n.1), in
Jkmod(p,J 2

k ). Denote these images by same symbols. Then they give a set
of free topological generators of the k-moduleMk. The action of η ∈ AutK
on Mk in terms of these generators is as follows.

Proposition 2.1. 1) Fr(t)∗(Dan) = Da,n−1;
2) if η ∈ Aut0K, then∑

a∈Z(p)
t−aη∗(Da0) ≡

∑
a∈Z(p)

η−1(t)−aDa0 mod(k + (σ − id)K)⊗M.

Proof. 1) Consider the generators αrD
(r)
a of A from n.1.2, where a ∈

Z(p), 1 6 r 6 N0. Note that the residue of the corresponding element e− 1
modulo (σ − id)K ⊗ (J modJ 2) does not depend on the choice of t or of
the elements α1, α2, . . . , αN0 , because this is the diagonal element of Artin-
Schreier duality. Therefore, if Fr(t)∗(D(r)

a ) = D
′(r)
a and Fr(t)∗(D0) = D′0

then
e− 1 ≡ σ(α0)⊗D′0 +

∑
a,r

σ(αr)t−a ⊗D′(r)a

≡ α0 ⊗D0 +
∑
a,r

αrt
−a ⊗D(r)

a mod(σ − id)K ⊗ (J modJ 2).
(2.1)

So, for any a ∈ Z(p), we see that in k ⊗FpM =Mk

Da0 =
∑
r

αr ⊗D(r)
a =

∑
r

σ(αr)⊗D′(r)a .

Denoting the k-linear extension of Fr(t)∗ by the same symbol, as usual, we
have

Fr(t)∗(Da0) =
∑
r

αr ⊗ Fr(t)∗(D(r)
a ) =

∑
r

αr ⊗D′(r)a = σ−1Da0 = Da,−1.

Therefore, for any a ∈ Z(p) and n ∈ Z modN0, Fr(t)∗(Dan) = Da,n−1.
Notice also that congruence (2.1) implies that Fr(t)∗D0 = D0.
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2) Using that η is a k-linear automorphism of K and proceeding similarly
to the above part 1) we obtain that∑

a∈Z(p)0

η(t)−aη∗(Da0) ≡
∑
a∈Z(p)0

t−aDa0 mod(σ − id)K ⊗M.

Now apply (η−1⊗id) to both sides of this congruence and notice that we can
omit the terms with index a = 0 when working modulo (k+(σ−id)K)⊗M,
because they belong to Mk. The lemma is proved. �

2.3. If f is a continuous automorphism of the Fp-moduleM, we agree to
use the same notation f for its k-linear extension to an automorphism of
Mk. For any a ∈ Z(p), set

f(Da0) =
∑
b∈Z(p)

n∈Z modN0

αabn(f)Dbn.

Then all coefficients αabn(f) are in k. Sometimes we shall use the notation
αabn(f) if a or b are divisible by p, then it is assumed that αabn(f) = 0.
Notice that for any m ∈ Z modN0,

f(Dam) =
∑
b∈Z(p)

n∈Z modN0

σm(αabn(f))Db,n+m.

Definition. For any v ∈ N, let M(v) be the minimal closed Fp-submodule
in M such that M(v)

k :=M(v) ⊗ k is topologically generated over k by all
Dan, where a ∈ Z(p), a > v and n ∈ Z modN0. (Notice that M =M(1).)

Definition. AutadmM is the subset in the group AutM, consisting of
all continuous Fp-linear automorphisms f satifying αa,b,mmodN0(f) = 0 if
bpm < a, for any a, b ∈ Z(p) and −N0 < m 6 0.

It is easy to see that:
(1) AutadmM is a subgroup of AutM;

(2) if f ∈ AutadmM then for any a ∈ N, f(M(a)) ⊂ M(a), i.e. f is
compatible with the image of the ramification filtration in M;

(3) if f ∈ AutadmM then for any a ∈ Z(p), αaa0 ∈ k∗ and αaan(f) = 0
if n 6= 0.

Definition. For f ∈ AutM, let fan ∈ EndM be such that for all a ∈ Z(p),

fan(Da0) =
∑
b∈Z(p)

αab0(f)Db0.
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Proposition 2.2. If f, g ∈ AutadmM then for any a, b ∈ Z(p) such that
a 6 b < apN0,

αab0(fg) =
∑
c

αac0(f)αcb0(g).

Corollary 2.3. If v < pN0 then the correspondence f 7→ fan is a group
homomorphism from AutadmM to AutadmMmodM(v).
Proof. We have αab0(fg) =∑

m+n≡0 modN0
0>n,m>−N0

αa,c,nmodN0(f)σn(αc,b,mmodN0(g))Db,(m+n) modN0 .

Then αa,c,nmodN0(f) 6= 0 implies that cpn > a and αc,b,mmodN0(g) 6= 0
implies that bpm > c. So, if the corresponding coefficient for Db,(m+n) modN0

is not zero then bpm+n > a, i.e. m+n > −N0 and, therefore, m = n = 0. �

The following proves that Aut0K ⊂ AutadmM.
Proposition 2.4. If η ∈ Aut0K then η∗ ∈ AutadmM.
Proof. For a ∈ Z(p), set

η−1(t)−a ≡
∑
b∈Z(p)
s>0

γabst
−bps mod k[[t]].

Clearly, γabs = 0 if bps > a. It follows from part 2) of proposition 2.1 that

η∗(Db0) =
∑
a∈Z(p)
s>0

σ−s(γabs)Da,−smodN0 .

Therefore, for 0 6 m < N0,
αb,a,−mmodN0(η∗) =

∑
s≡mmodN0
s>0

σ−s(γabs)

and a/pm < b implies for s ≡ mmodN0, s > 0, that a/ps < b. So, bps > a,
γabs = 0 and αb,a,−mmodN0(η∗) = 0.

The proposition is proved. �

2.4. In this subsection we prove three technical propositions. Notice that
in proposition 2.5 we treat the case of fields of characteristic p 6= 2 and
in proposition 2.6 the characteristic of K is 2. Propositions 2.5-2.7 will be
used later in section 5. If a, b ∈ N then δab is the Kronecker symbol.
Proposition 2.5. Suppose p 6= 2, w0 ∈ N, w0+1 6 pN0 and f ∈ AutadmM
is such that α1a0(f) = δ1a if 1 6 a < w0 and α2a0(f) = 0 if a ≡ 1 mod p
and a 6 w0. Then there is an η ∈ Aut0K such that η(t) ≡ tmod tw0,
α1a0(fη∗) = δ1a if 1 6 a < w0 + 1, and α2a0(fη∗) = 0 if a ≡ 1 mod p and
a 6 w0 + 1.
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Proof. Take η ∈ Aut0K such that η−1(t) = t(1 + γtw0−1) with γ ∈ k. Then
for any a ∈ Z(p), η−1(t−a) = t−a(1 − aγtw0−1) mod t−a+w0 , and part 2) of
proposition 2.1 implies that αaa0(η∗) = 1, αab0(η∗) = 0 if a < b < a+w0−1,
αa,a+w0−1,0(η∗) = −(a+ w0 − 1)γ.

Therefore, by proposition 2.2 α1a0(fη∗) = δ1a if 1 6 a < w0 and
α2a0(fη∗) = 0 if a ≡ 1 mod p, a 6 w0.

Suppose w0 6≡ 0 mod p. Then by proposition 2.2

α1w00(fη∗) = −w0γ + α1w00(f) = 0

if γ = w−1
0 α1w00(f). This proves the proposition in the case w0 6≡ 0 mod p,

because w0 +1 6≡ 1 mod p and no conditions are required for α2,w0+1,0(fη∗).
Suppose w0 ≡ 0 mod p. Then there are no conditions for α1w00(fη∗) and

by proposition 2.2

α2,w0+1,0(fη∗) = α220(f)α2,w0+1,0(η∗) + α2,w0+1,0(f)αw0+1,w0+1,0(η∗)
= −α220(f)γ + α2,w0+1,0(f) = 0

if γ = α2,w0+1,0(f)α220(f)−1. (Using that f ∈ AutadmM hence α220(f) ∈
k∗.)

The proposition is proved. �

Proposition 2.6. Let M ∈ N, p = 2, w0 = 4M and w0 + 1 < 2N0.
Suppose f ∈ AutadmM is such that α1a0(f) = δ1a if 1 6 a 6 w0 − 3 and
α3a0(f) = δ3a if 3 6 a 6 w0 − 1. Then there is an η ∈ Aut0K such that
α1a0(fη∗) = δ1a and α3a0(fη∗) = δ3a if a 6 w0 + 1.

Proof. 1st step.
Take η1 ∈ Aut0K such that η−1

1 (t) = t(1 + γ1t
4M−2) with γ1 ∈ k. Then

for a ∈ Z(2), η−1
1 (t−a) ≡ t−a(1 + γ1t

4M−2) mod t−a+4M and by part 2) of
proposition 2.1, αaa0(η∗1) = 1, αab0(η∗1) = 0 if a < b < a + 4M − 2, and
αa,a+4M−2,0(η∗1) = γ1.

So by proposition 2.2, α1a0(fη∗1) = α1a0(f) if a 6 4M − 3 = w0 − 3,
α3a0(fη∗1) = α3a0(f) if a 6 4M−1 = w0−1, α1,w0−1,0(fη∗1) = α1,w0−1,0(f)+
α1,w0−1,0(η∗1) = 0 if γ1 = α1,w0−1,0(f).

2nd step.
By the above first step we can now assume that α1,w0−1,0(f) = 0.
Take η2 ∈ Aut0K such that η−1

2 (t) = t(1 + γ2t
2M−1). Then for a ∈ Z(2),

η−1
2 (t−a) ≡ t−a(1 + γ2t

2M−1 + δ(a)γ2
2t

4M−2) mod t−a+4M , where δ(a) =
a(a+ 1)/2.

So by part 2) of proposition 2.1, αaa0(η∗2) = 1, αab0(η∗2) = 0 if a < b <
a + 4M − 2 (notice that −a + 2M − 1 ≡ 0 mod 2), and αa,a+4M−2,0(η∗2) =
δ(a + 4M − 2)γ2

2 (notice that δ(a + 4M − 2) = 0 if a ≡ 1 mod 4 and
δ(a+ 4M − 2) = 1 if a ≡ 3 mod 4).
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Again by proposition 2.2, α1a0(fη∗2) = α1a0(f) if a 6 4M − 1 = w0 − 1
(use that α1,w0−1,0(f) = α1,w0−1,0(η∗2) = 0), α3a0(fη∗2) = α3a0(f) if a 6
4M − 1 = w0 − 1, α3,w0+1,0(fη∗2) = α3,w0+1,0(f) + α3,w0+1,0(η∗2) = 0 if
γ2 ∈ k is such that γ2

2 = α3,w0+1,0(f).

3rd step.
Now we can assume that α1,w0−1,0(f) = α3,w0+1,0(f) = 0.
Take η3 ∈ Aut0K such that η−1

3 (t) = t(1 + γ3t
4M ). Then for a ∈ Z(2),

η−1
3 (t−a) ≡ t−a(1 + γ3t

4M ) mod t−a+4M+2, αaa0(η∗3) = 1, αab0(η∗3) = 0 if
a < b < a+ 4M , and αa,a+4M,0(η∗3) = γ3.

This implies that α1a0(fη∗3) = α1a0(f) if a 6 4M − 1 = w0 − 1,
α1,w0+1,0(fη∗3) = α1,w0+1,0(f) + α1,w0+1,0(η∗3) = 0 if γ3 = α1,w0+1,0(f) and
α3a0(fη∗3) = α3a0(f) if a 6 w0 + 1.

The proposition is proved. �

Proposition 2.7. Suppose a ∈ Z(p), w0 6 apN0, where w0 ∈ pN, w0 > a+
1 if p 6= 2 and w0 ∈ 4N, w0 > a+2 if p = 2. Suppose η, η1 ∈ Aut0K are such
that for any b, c ∈ Z(p) satisfying the restrictions a 6 c 6 b < w0 6 apN0,
we have the equality

αcb0(η∗) = αcb0(η∗1).
Then η(t) ≡ η1(t) mod tv0, where v0 = w0 − a + 1 if p 6= 2 and v0 =
(w0 − a+ 1)/2 if p = 2.

Remark. With notation from Subsection 2.3 this proposition implies that
if η1

∗
an ≡ η∗an modM(w0) then η(t) ≡ η1(t) mod tv0 .

Proof. Use proposition 2.2 to reduce the proof to the case η1(t) = t.
Suppose, first, that η−1(t) = αtmod t2. Then

(2.2) αcc0(η∗) = α−c = 1.

If a+ 1 ∈ Z(p) then p 6= 2 and we can use formula (2.2) for c = a, a+ 1 to
prove that α = 1. Suppose a+1 /∈ Z(p). If p = 2 use (2.2) for c = a, a+2 <
w0, and if p 6= 2 use (2.2) for c = a + 2, a + 3 < w0 to prove again that
α = 1.

Assume now that p 6= 2.
Suppose η−1(t) ≡ t+αtv−1 mod tv with v > 3 and α ∈ k∗. If a+ v− 2 ∈

Z(p) then by part 2) of proposition 2.1 αa,a+v−2,0(η∗) 6= 0. This implies that
a+ v − 2 > w0 + 1, i.e. v > w0 − a+ 1, as required. If a+ v − 2 ≡ 0 mod p
then by part 2) of proposition 2.1 αa+1,a+v−1,0(η∗) 6= 0.This implies that
a + v − 1 > w0 + 1 and v > w0 − a + 2 > w0 − a + 1. The case p 6= 2 is
considered.

Assume now that p = 2.
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Suppose that M ∈ N is such that

η−1(t) = t

1 +
∑

r>2M−1
γrt
r

 ≡ tmod t2M

with either γ2M−1 6= 0 or γ2M 6= 0.
Therefore, if r ≡ 0 mod 2, r > 2M − 1 and a + r < apN0 then by part

2) of proposition 2.1 αa,a+r,0(η∗) = γr. This implies that either 2M > w0
(and the proposition is proved) or 2M 6 w0 − 2, γ2M = 0 and γ2M−1 6= 0.

Suppose a+ 4M < w0. Then with the notation from the second step in
the proof of proposition 2.6, we have

αa,a+4M−2,0(η∗) = γ4M−2 + γ2
2M−1δ(a+ 4M − 2)

αa+2,a+4M,0(η∗) = γ4M−2 + γ2
2M−1δ(a+ 4M).

The sum of the right hand sides of the above two equalities is γ2
2M−1 6= 0,

because δ(a+ 4M −2) + δ(a+ 4M) = 1. Therefore, at least one of their left
hand sides is not zero. This means that the assumption about a+4M < w0
was wrong. Therefore, 4M > w0 − a and 2M > (w0 − a+ 1)/2.

The proposition is proved. �

3. Compatible systems of group morphisms
For any s ∈ Z>0, let Ks be the unramified extension of K in K(p) of

degree ps. Then Ks = ks((t)), where t = tK is a fixed uniformiser, k ⊂ ks,
[ks : k] = ps, ks ' Fqs , qs = pNs with Ns = N0p

s.
Let Kur be the union of all Ks, s > 0. This is the maximal unramified

extension of K in K(p) and its residue field coincides with the residue field
k(p) of K(p). Let IKur(p)ab, resp. IKs(p)ab, for s ∈ Z>0, be the images
of the inertia subgroups of Gal(K(p)/Kur), resp. Gal(K(p)/Ks), in the
corresponding maximal abelian quotients. Then IKur(p)ab = lim←−

s

IKs(p)ab.

3.1. For s > 0, introduce the Fp-modules MKs = IKs(p)ab ⊗ Fp and
MKur = IKur(p)ab ⊗ Fp with the corresponding k(p)-modules M̄Ks =
MKs⊗̂Fpk(p) and M̄Kur =MKur⊗̂Fpk(p). Then for all s > 0, we have natu-
ral connecting morphisms js :MK,s+1 −→MKs and ̄s : M̄K,s+1 −→ M̄Ks
(both are induced by the natural group embeddings ΓKs+1 −→ ΓKs). There-
fore, we have projective systems {MKs, js} and {M̄Ks, ̄s} and natural
identifications MKur = lim←−

s

MKs and M̄Kur = lim←−
s

M̄Ks .

Let MK∞ be the k(p)-submodule in M̄Kur which is topologically gen-
erated by all D∞an := lim←−

s

D
(s)
a,nmodNs , where a ∈ Z(p) and n ∈ Z. Here for
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a ∈ Z(p) and n ∈ Z modNs, D(s)
an are generators for M̄Ks, which are ana-

logues of the generators Dan introduced in Section 2 for the k-moduleMk.
Notice that the generators D(s)

an depend on the choice of the uniformising
element t in K.

Proposition 3.1. The k(p)-submodule MK∞ of M̄Kur does not depend
on the choice of t.

Proof. Let t1 be another uniformiser in K. Introduce η ∈ Aut0(Kur) such
that η(t) = t1. The proposition will be proved if we show that η∗(MK∞) =
MK∞.

For s > 0, let ηs = η|Ks ∈ Aut0Ks. Then for a ∈ Z(p) and n ∈ Z modNs,

η∗s(D(s)
an ) =

∑
b∈Z(p)

m∈Z modNs

σnαabm(η∗s)D
(s)
b,m+n,

where the coefficients αabm(η∗s) ∈ ks satisfy the following compatibility
conditions (using that js(D(s)

an ) = D
(s−1)
a,nmodNs−1

):

if a, b ∈ Z(p) and m ∈ Z modNs−1 then∑
nmodNs−1=m

αabn(η∗s) = αabm(η∗s−1).

By proposition 2.4, if 0 6 m < Ns and b/pm < a then
αa,b,−mmodNs(η∗s) = 0. Therefore, if s is such that b/pNs < a then
α∞a,b,−m(η∗) := αa,b,−mmodNs(η∗s) does not depend on s and for any a ∈ Z(p)
and n ∈ Z>0,

η∗(D∞an) =
∑

b∈Z(p),m>0
σnα∞a,b,−m(η∗)D∞b,n−m ∈MK∞.

The proposition is proved. �

3.2. Consider the identification of class field theory IKs(p)ab = UKs ,
where UKs is the group of principal units of Ks. Define the continuous
morphism of topological k(p)-modules

πKs : M̄Ks = IKs(p)ab⊗̂k(p) −→ Ω̂1
OKur

,

by πKs(u ⊗ α) = α d(u)/u for u ∈ UKs and α ∈ k(p). Here Ω̂1
OKur

is the
completion of the module of differentials of the valuation ring OKur with
respect to the t-adic topology. Notice that for any a ∈ Z(p) and 0 6 n < Ns,

D
(s)
a,nmodNs =

∑
06i<Ns

ui ⊗ (σnαimod p).
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Here {αi | 1 6 i 6 Ns} is a Zp-basis of W (ks). If {βi | 1 6 i 6 Ns} is
its dual basis then for 1 6 i 6 Ns, ui = E(βi, ta)1/a, cf. Subsection 1.4.
Therefore,

πKs(D(s)
a,nmodNs) =

∑
i>0

tap
n+iNs

 d(t)
t
.

It is easy to see that πKur := lim←−πKs is a continuous map from M̄Kur to
Ω̂1
OKur

.
Notice that if n̄ = lim←−(nsmodNs) ∈ lim←−

s

Z/NsZ, where all ns ∈ [0, Ns)

and if D∞an̄ = lim←−
s

D
(s)
a,nsmodNs , for a ∈ Z(p), then πKur(D∞an̄) = 0 if n̄ /∈

Z>0 ⊂ lim←−Z/NsZ, and πKur(D∞an) = tap
n−1 d(t) if n̄ = n ∈ Z>0.

Let πK∞ := πKur|MK∞ . Then one can easily prove the following propo-
sition.

Proposition 3.2. 1) πK∞ :MK∞ −→ Ω̂1
OKur

is a continuous epimorphism
of k(p)-modules;
2) kerπK∞ is the k(p)-submodule in MK∞ topologically generated by all
D∞an with n < 0.

3.3. Admissible systems of group morphisms. Suppose K ′ =
k((t′)) ⊂ K(p) has the same residue field as K. Using K ′ instead of K we
can introduce analoguesMK′s, M̄K′s,MK′∞, etc. ofMKs, M̄Ks,MK∞,
etc.

Definition. fKK′ = {fKK′s}s>0 is a family of continuous morphisms of
Fp-modules fKK′s :MKs −→MK′s which are always assumed to be com-
patible, i.e. for all s > 0, fKK′,s+1j

′
s = jsfKK′s. Here js :MK,s+1 −→MKs

and j′s :MK′,s+1 −→MK′s are connecting morphisms.

We shall denote the k(p)-linear extension of fKK′s by the same symbol
fKK′s. Set

fKK′ur := lim←−
s

fKK′s : M̄Kur −→ M̄K′ur.

Definition. With the above notation fKK′ is called admissible if:
A1. There is a continuous k(p)-linear isomorphism fKK′∞ : Ω̂1

OKur
−→

Ω̂1
OK′ur

such that fKK′urπK′ur = πKurfKK′∞;

A2. fKK′∞ commutes with the Cartier operators C and C ′ on Ω̂1
OKur

and,
resp., Ω̂1

OK′ur
;

A3. For all m ∈ N, fKK′∞
(
tmΩ̂1

OKur

)
⊂ t′mΩ̂1

OK′ur
.
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Remark. Recall that the Cartier operator C : Ω̂1
OKur

−→ Ω̂1
OKur

is uniquely
determined by the following properties:
a) C(d(ÔKur)) = 0;
b) if f ∈ tÔKur then C(fp d(t)/t) = f d(t)/t.
It can be shown that the definition of C does not depend on the choice of
the uniformiser t, C is σ−1-linear and KerC = d(ÔKur).

The following properties of admissible systems fKK′ = {fKK′s}s>0 follow
directly from the above definition:

(1) the map fKK′∞ is uniquely determined by fKK′ur;

(2) if K ′′ = k((t′′)) ⊂ K(p) and gK′K′′ = {gK′K′′s}s>0 is admissible
then so is the composition (fg)KK′′ := {fKK′sgK′K′′s}s>0 and it
holds (fg)KK′′∞ = fKK′∞gK′K′′∞;

(3) fKK′∞(d ÔKur) ⊂ d ÔK′ur ;

(4) for all a, b ∈ Z(p) and m ∈ Z>0, there are unique α∞a,b,−m(fKK′) ∈
k(p) such that if n > 0 then

(3.1) fKK′∞

(
tap
n d(t)
t

)
=
∑
b∈Z(p)
06m6n

σnα∞a,b,−m(fKK′)t′bp
n−m d(t′)

t′
;

(5) the above coefficients α∞a,b,−m(fKK′) satisfy the following property:
if b/pm < a then α∞a,b,−m(fKK′) = 0.

Definition. With the above notation an admissible compatible system
fKK′ will be called special admissible if fKK′ur(MK∞) ⊂MK′∞.

Notice that the composition of special admissible systems is again special
admissible.

3.4. Characterisation of special admissible systems. Let fKK′ =
{fKK′s}s>0 be a compatible system. Then for any s > 0, the k(p)-linear
morphism fKK′s : M̄Ks −→ M̄K′s is defined over Fp, i.e. it comes from
a Fp-linear morphism fKK′s : MKs −→ MK′s. Therefore, in terms of the
standard generators D(s)

an and D
′(s)
an (which correspond to the uniformisers

t = tK and, resp., t′ = tK′), we have for any s > 0 and a ∈ Z(p) that

fKK′s(D
(s)
a0 ) =

∑
b∈Z(p)

m∈Z modNs

αabm(fKK′s)D
′(s)
bm ,
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where all αabm(fKK′s) ∈ ks ⊂ k(p). Notice that for all n ∈ Z modNs, it
holds

fKK′s(D(s)
an ) =

∑
b∈Z(p)

m∈Z modNs

σnαabm(fKK′s)D
′(s)
b,m+n.

Proposition 3.3. Suppose fKK′ = {fKK′s}s>0 is a compatible system.
Then it is special admissible if and only if for any s > 0, there are vs ∈ N
such that vs → ∞ if s → ∞, and if a, b < vs, m > 0 and b/pm < a then
αa,b,−mmodNs(fKK′s) = 0.

Proof. Suppose fKK′ is special admissible. Then fKK′ur(MK∞) ⊂ MK′∞
and for all a ∈ Z(p) and n ∈ Z,

fKK′ur(D∞an) =
∑
b∈Z(p)
m∈Z

βanbmD
′∞
b,n+m.

Here all coefficients βanbm ∈ k(p) and because fKK′ur commutes with σ,
there are γabm ∈ k(p) such that βanbm = σn(γabm). Therefore, if a, b ∈ Z(p),
m ∈ Z and γabm 6= 0 then m 6 0 and α∞abm(fKK′) = γabm.

If s > 0, a ∈ Z(p),

fKK′s(D
(s)
a0 ) =

∑
b∈Z(p)

m∈Z modNs

αa,b,−m(fKK′s)D
′(s)
b,−m

and b/pNs < a then for any m > 0, αa,b,−mmodNs(fKK′s) = α∞a,b,−m(fKK′).
This implies that αa,b,−mmodNs(fKK′s) = 0 if a, b < pNs and b/pm < a.
Therefore, we can take vs = pNs . This proves the “only if ” part of the
proposition.

Suppose now that vs →∞ if s→∞ and for a, b ∈ Z(p), m > 0,
αa,b,−mmodNs(fKK′s) = 0

if a, b < vs and b/pm < a. If in addition pNs > b then αa,b,−mmodNs(fKK′s)
does not depend on s and can be denoted by α∞a,b,−m. Clearly, α∞a,b,−m = 0
if b/pm < a. Let a ∈ Z(p) and

d = fKK′ur(D∞a0)−
∑
b∈Z(p)
m>0

α∞a,b,−mD
′∞
b,−m.

Let s > 0 and let ds ∈ M̄Ks be the image of d under the natural projection
M̄Kur −→ M̄Ks. If s1 > s then the corresponding projection ds1 ∈ M̄Ks1
is a linear combination of D(s1)

bm with b > pNs1 . Therefore, ds also does not
contain the terms D(s)

bm for which b > pNs1 . Because lims1→∞Ns1 =∞, this
implies that ds = 0 for all s > 0 and, therefore, d = 0. So, fKK′ur(MK∞) ⊂
MK′∞.
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Set α∞a,b,−m(fKK′) := α∞a,b,−m and define fKK′∞ : Ω̂1
OKur

−→ Ω̂1
OK′ur

by
formula (3.1). It is easy to see that fKK′∞ satisfies the requirements A1-
A3 from the definition of admissible system in Subsection 3.3. This proves
the “if” part of our proposition.

�

Remark. Any special admissible fKK′ can be defined as a k(p)-linear iso-
morphism fKK′ur :MK∞ −→MK′∞ such that

(1) fKK′ur commutes with σ;

(2) if a ∈ Z(p) then

fKK′ur(D∞a0) =
∑
b∈Z(p)
m>0

αa,b,−mD
′∞
b,−m

where αa,b,−m = 0 if b/pm < a.

3.5. Analytic compatible systems. Suppose K,K ′ ⊂ K(p). Then the
corresponding residue fields k and k′ are subfields of the residue field
k(p) ⊂ F̄q0 . Therefore, if K ' K ′ then k = k′ and we can introduce the
set Iso0(K,K ′) of field isomorphisms η : K −→ K ′ such that η|k = id. No-
tice that any η ∈ Iso0(K,K ′) induces a k(p)-linear map Ω1(η) : Ω̂1

OKur
−→

Ω̂1
OK′ur

.
For all s > 0, any η ∈ Iso0(K,K ′) can be naturally extended to ηs ∈

Iso0(Ks,K ′s). Then η∗KK′ = {η∗s}s>0 is a compatible system and ηKK′∞ =
Ω1(η). Propositions 2.4 and 3.3 imply that η∗KK′ is a special admissible
system.

Consider the opposite situation. Choose a uniformiser tK in K and intro-
duce Fr(tK) ∈ Aut(Kur) such that Fr(tK) : tK 7→ tK and Fr(tK)|k(p) = σ.
Then for all s > 0, Fr(tK) induces an automorphism of Ks which will be
denoted by Fr(tK)s. Then Fr(tK)∗ = {Fr(tK)s}s>0 is a compatible system,
but this system is not admissible: the corresponding map Fr(tK)∞ coincides
with the Cartier operator and, therefore, is not k(p)-linear.

More generally, consider a compatible system θKK′ = {θKK′s}s>0 where
for all s > 0, θKK′s = θ∗s and θs ∈ Iso(Ks,K ′s). Then after choosing a
uniformising element tK′ in K ′ we have θs = ηsFr(tK′)ns , for all s > 0,
where ηs ∈ Iso0(Ks,K ′s) and ns+1 ≡ nsmodNs. If n̄ = lim←−

s

ns ∈ lim←−
s

Z/NsZ

then θKK′ is the composite of the special admissible system {η∗s}s>0 and the
system Fr(tK′)n̄∗ which is special admissible if and only if n̄ = 0. Therefore,
θKK′ is special admissible if and only if it comes from a compatible system
of field isomorphisms ηs ∈ Iso0(Ks,K ′s).
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3.6. Locally analytic systems.

Definition. If fKK′ is an admissible system, then fKK′an :=fKK′∞|d(ÔKur ).

Remark. Notice the following similarity to the definition of fan for f ∈
AutM from n.2.3. If fKK = {fKKs}s>0 is any admissible system then
gKK := {fKKsan}s>0 is also admissible and fKKan = gKKan.

Definition. An admissible system fKK′ = {fKK′s}s>0 will be called locally
analytic if for any s > 0, there are vs ∈ N and ηs ∈ Iso0(K,K ′) such that
vs → +∞ as s→∞ and fKK′an ≡ d(ηs)⊗̂kk(p) mod t′vs .

Proposition 3.4. Suppose that fKK′ = {fKK′s}s>0 is special admissible
and locally analytic. Then there is an η ∈ Iso0(K,K ′) such that fKK′an =
d(η)⊗̂kk(p).

Proof. If s > 0 and a, b ∈ Z(p) are such that vs/pN0 < a, b < vs, then

α∞ab0(fKK′) = αab0(η∗s) = αab0(fKK′s) = αab0(fKK′0) ∈ k.
Therefore, by Proposition 2.7, all conjugates of ηs over K are congruent
modulo t′vs(1−p

−N0 )/δp , and ηs(t) ∈ k[[t′]] mod t′vs(1−p−Ns )/δp , where δp is
1 if p 6= 2 and δp = 2 if p = 2. This implies that αab0(fKK′s) ∈ k if
a, b < vs(1− p−Ns)/δp.

If b < pNs then αab0(fKK′s) = α∞ab0(fKK′). So, α∞ab0(fKK′) ∈ k if b <
cs := min

{
pNs , vs(1− p−Ns)/δp

}
. But cs → ∞ if s → ∞ and, therefore,

α∞ab0(fKK′) ∈ k for all a, b ∈ Z(p).
As we have already noticed, if b < min{pNs , vs} then

αab0(fKK′s) = αab0(η∗s) = α∞ab0(fKK′).

Therefore, by Proposition 2.7 there exists lim←−
s

ηs := η ∈ Iso0(K,K ′) and

fKK′an = d(η)⊗̂kk(p).
The proposition is proved. �

3.7. Comparability of admissible systems. With the above notation
suppose L,L′ are finite field extensions of K, resp. K ′, in K(p). Let gLL′ =
{gLL′s}s>0 be a compatible family of continuous field isomorphisms gLL′s :
Ls −→ L′s. Then the natural embeddings ΓL(p) ⊂ ΓK(p) and ΓL′(p) ⊂
ΓK′(p) induce embeddings ΓLs(p) ⊂ ΓKs(p) and ΓL′s(p) ⊂ ΓK′s(p), for any
s > 0.

Definition. With the above assumptions the systems gLL′ and fKK′ will
be called comparable if, for all s > 0, there is the following commutative
diagram
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MLs
gLL′s−−−→ ML′syjs yj′s

MKs
fKK′s−−−−→ MK′s

where the vertical arrows js and j′s are induced by the embeddings ΓLs(p) ⊂
ΓKs(p) and, resp., ΓL′s(p) ⊂ ΓK′s(p).

If gLL′ and fKK′ are comparable then we have the following commutative
diagram

(3.2)

M̄Lur
gLL′ur−−−−→ M̄L′uryjur

yj′ur

M̄Kur
fKK′ur−−−−→ M̄K′ur

where jur := lim←−
s

js⊗̂ksk(p) and j′ur := lim←−
s

j′s⊗̂ksk(p). Notice that jur and

j′ur are epimorphic. Indeed, let ULs , UKs be principal units in Ls, resp.
Ks. ThenMLur = lim←−

s

ULs/U
p
Ls

andMKur = lim←−
s

UKs/U
p
Ks

contain as dense

subsets the images of the groups of principal units ULur , resp. UKur , of the
fields Lur, resp. Kur. By class field theory, jur is induced by the norm map
N = NLur/Kur from L∗ur to K∗ur. By [6], Ch 2, N(ULur) is dense in UKur and,
therefore, jur (together with j′ur) is surjective.

Suppose L/K and L′/K ′ are Galois extensions. Denote their inertia
subgroups by IL/K and IL′/K′ . Then we have identifications IL/K =
Gal(Lur/Kur) and IL′/K′ = Gal(L′ur/K

′
ur).

Consider the following condition:

C. There is a group isomorphism κ : IL/K −→ IL′/K′ such that for any
τ ∈ IL/K , τ∗LLurgLL′ur = gLL′urκ(τ)∗L′L′ur.

Proposition 3.5. Suppose gLL′ and fKK′ are comparable and gLL′ satisfies
the above condition C. If gLL′ is admissible then fKK′ is also admissible.

Proof. Because gLL′ is admissible we have the following commutative dia-
gram
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(3.3)

M̄Lur
gLL′ur−−−−→ M̄L′uryπLur

yπL′ur

Ω̂1
OLur

gLL′∞−−−−→ Ω̂1
OL′ur

If τ ∈ IL/K ⊂ Aut0(Lur) then it follows from the definition of πLur that

(3.4) τ∗πLur = πLurΩ(τ).

This means that πLur transforms the natural action of IL/K on M̄Lur into
the natural action of IL/K on Ω̂1

OLur
. Because jur is induced by the norm

map of the field extension Lur/Kur, this gives us the following commutative
diagram

(3.5)

M̄Lur
πLur−−−→ Ω̂1

OLuryjur
yTr

M̄Kur
πKur−−−→ Ω̂1

OKur

where Tr is induced by the trace of the extension Lur/Kur. Similarly, we
have the commutative diagram

(3.6)

M̄L′ur
πL′ur−−−→ Ω̂1

OL′uryj′ur

yTr′

M̄K′ur
πK′ur−−−→ Ω̂1

OK′ur

We have already seen that πLur, πL′ur, jur and j′ur are surjective. The
traces Tr and Tr′ are also surjective. Indeed, suppose tL, resp. tK , are
uniformising elements for L, resp. K. Then

Ω̂1
OLur

= {f d(tL) | f ∈ ÔLur} = {g d(tK) | g ∈ D(L/K)−1ÔLur},

where D(L/K) is the different of the extension L/K. It remains to notice
that Tr(D(L/K)−1ÔLur) = ÔKur .

Because gLL′ and fKK′ are comparable, we have the following commu-
tative diagram
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(3.7)

M̄Lur
gLL′ur−−−−→ M̄L′uryjur

yj′ur

M̄Kur
fKK′ur−−−−→ M̄K′ur

Suppose ωK ∈ Ω̂1
OKur

. As it has been proved there is an ωL ∈ Ω̂1
OLur

such
that

Tr(ωL) =
∑
τ∈IL/K

Ω(τ)(ωL) = ωK .

Then

gLL′∞(ωK) =
∑
τ∈IL/K

gLL′∞(Ω(τ)(ωL))

=
∑

τ ′∈IL′/K′
Ω(τ ′)(gLL′∞(ωL)) = Tr′(gLL′∞(ωL)) ∈ Ω̂1

OK′ur

(3.8)

because Ω(τ)gLL′∞ = gLL′∞Ω(κ(τ)), for any τ ∈ IL/K . This equality is
implied by the following computations (we use the commutative diagrams
(3.3), (3.4) and condition C)

πLurΩ(τ)gLL′∞ = τ∗πLurgLL′∞ = τ∗gLL′urπL′ur

= gLL′urκ(τ)∗πL′ur = gLL′urπL′urΩ(κ(τ))
= πLurgLL′∞Ω(κ(τ)),

because πLur is surjective.
Let fKK′∞ be the restriction of gLL′∞ on Ω̂1

OKur
. Then formula (3.8) im-

plies that fKK′∞(Ω̂1
OKur

) ⊂ Ω̂1
OK′ur

and we have the following commutative
diagram

(3.9)

Ω̂1
OLur

gLL′∞−−−−→ Ω̂1
OL′uryTr
yTr′

Ω̂1
OKur

fKK′∞−−−−→ Ω̂1
OK′ur

We now verify that fKK′∞ satisfies the requirements A1-A3 from n.3.3.
Property A1 means that we have the following commutative diagram
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M̄Kur
fKK′ur−−−−→ M̄K′uryπKur

yπK′ur

Ω̂1
OKur

fKK′∞−−−−→ Ω̂1
OK′ur

Its commutativity is implied by the following computations (we use com-
mutative diagrams (3.2), (3.5), (3.3) and (3.9))

jurfKK′urπK′ur = gLL′urj
′
urπK′ur = gLL′urπL′urTr′

= πLurgLL′∞Tr′ = πLurTrfKK′∞ = jurπKurfKK′∞

because jur is surjective.
Let CK , CK′ , CL and CL′ be the Cartier operators on, resp., Ω̂1

OKur
,

Ω̂1
OK′ur

, Ω̂1
OLur

and Ω̂1
OL′ur

. Clearly, CLTr = TrCK and CL′Tr′ = Tr′CK′ .
Then it follows from the commutative diagram (3.9) and property A2 for
gLL′∞ that

TrCKfKK′∞ = CLTrfKK′∞ = CLgLL′∞Tr
= gLL′∞CL′Tr = gLL′∞TrCK′ = TrfKK′∞CK′ .

Property A2 for fKK′∞ follows because Tr is surjective.
By condition C, the ramification indices e and e′ of the extensions

Lur/Kur and L′ur/K
′
ur are equal. Then we use the condition A3 for gLL′∞

to deduce that for any n > 0,

gLL′∞(tnKΩ̂1
OLur

) = gLL′∞(tenL Ω̂1
OLur

) = t′e
′n
L Ω̂1

OL′ur
= tnK′Ω̂1

OL′ur
.

Therefore, it follows from the commutativity of diagram (3.9) that

tnK′Ω̂1
OK′ur

= tnK′Tr′(Ω̂1
OL′ur

) = Tr′(gLL′∞(tnKΩ̂1
OLur

))

= fKK′∞(Tr(tnKΩ̂1
OLur

)) = fKK′∞(tnK′Ω̂1
OKur

).

The proposition is proved. �

Remark. Using the embeddings of the Galois groups ΓLs(p) and ΓKs(p)
into their Magnus’s algebras from n.1.3, one can prove in addition that if
gLL′ is special then fKK′ is also special. In other words, under condition
C, jur(ML∞) ⊂MK∞.

Suppose gLL′ and fKK′ are comparable systems. Suppose also that gLL′
and fKK′ are special admissible, locally analytic and satisfy condition
C. Then there are ηLL′ ∈ Iso0(L,L′) and ηKK′ ∈ Iso0(K,K ′) such that
fKK′∞|d ÔKur

= d(ηKK′)⊗̂kk(p) and gLL′∞|d ÔLur
= d(ηLL′)⊗̂kLkL(p).
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Proposition 3.6. With the above notation and assumptions, ηLL′ |K =
ηKK′.

Proof. Clearly, for any τ ∈ IL/K , condition C implies that τ∗LL∞gLL′∞ =
gLL′∞κ(τ)∗L′L′∞. Restricting this equality to d ÔLur , we obtain

d(τ) d(ηLL′) = d(ηLL′) d(κ(τ)).

Then it follows from proposition 2.7 that τηLL′ = ηLL′κ(τ). Therefore,
ηLL′ |K induces a ring isomorphism from ÔKur onto ÔK′ur .

Suppose a ∈ Tr(ÔLur) ⊂ ÔKur . If a = Tr(b) with b ∈ ÔLur then it follows
from diagram (3.9) and condition C that

d(ηKK′(a)) = Tr′(d(ηLL′(b))) =
∑

τ ′∈IL′/K′
d(τ ′) (d(ηLL′(b)))

=
∑
τ∈IL/K

d(ηLL′)(d(τ(b))) = d ηLL′(d a) = d(ηLL′(a)).

Therefore, for a sufficiently large M ∈ N, d (ηLL′ |K) and d ηKK′ coincide
on tMK ÔKur . Then proposition 2.7 implies that ηLL′ |K = ηKK′ .

The proposition is proved. �

4. Explicit description of the ramification ideals A(v) mod J3

We return to the notation from Section 1. In particular, A is
the Zp-algebra from Subsection 1.2, J is its augmentation ideal,
Ak = A⊗W (k), Jk = J ⊗W (k), AK = A⊗O(K), etc. are the correspond-
ing extensions of scalars, e ∈ AK is the element introduced in Subsection
1.3. We fix an f ∈ AK(p) such that σf = fe and denote the embedding
ψf : Γ(p) −→ (1 + J )× by ψ.

4.1. Ramification filtration on A
For any v > 0, consider the ramification subgroup Γ(p)(v) of Γ(p) in the

upper numbering. Denote by A(v) the minimal 2-sided closed ideal in A con-
taining the elements ψ(τ)−1, for all τ ∈ Γ(p)(v). Then {A(v) | v > 0} is a de-
creasing filtration by closed ideals of A. In particular, if A(v)

CM modJ nCM are
the projections of A(v) to ACM modJ nCM , for C,M, n ∈ N, then
A(v) = lim←−

C,M,n

A(v)
CM modJ nCM . Notice also that the ramification filtration

{Γ(p)(v)}v>0 is left-continuous, i.e. Γ(p)(v0) =
⋂
v<v0

Γ(p)(v), for any v0 > 0.

This implies a corresponding analogous property for the filtration
{A(v) | v > 0} on each finite level, i.e. for any C,M, n ∈ N, we have
the following property.
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Proposition 4.1. For any C,M, n ∈ N and v0 > 0, there is a 0 < δ < v0
such that A(v)

CM modJ nCM = A(v0)
CM modJ nCM , for any v ∈ (v0 − δ, v0).

Proof. This follows directly from the definition of the ramification filtration
and the fact that the field of definition of each projection fCM modJ nCM
of f to ACMK(p) modJ nCMK(p) is a finite extension of K, cf. Subsection
1.3. �

Notice also that the class field theory implies the following property.

Proposition 4.2. If v > 0 and A(v)
k := A(v) ⊗W (k) then A(v)

k modJ 2
k is

topologically generated by all elements psDan, for n ∈ Z modN0, a ∈ Z(p),
s > 0 and psa > v.

4.2. The filtration A(v), v > 0. For any γ > 0, introduce Fγ ∈ Ak as
follows.

If γ = 0 let Fγ = D0.
If γ > 0 let Fγ =

pvγaγDaγvγ−
∑

a1,a2∈Z(p)
n>0

pn(a1+a2)=γ

pna1Da1nDa2n−
∑

a1,a2∈Z(p)
n1>0,n2<n1
pn1a1+pn2a2=γ

pn1a1[Da1n1 , Da2n2 ].

Here the first two terms appear only if γ ∈ N, and the corresponding vγ ∈
Z>0 and aγ ∈ Z(p) are uniquely determined from the equality γ = pvγaγ .
If γ /∈ Z then the above formula for Fγ contains only the last sum.

For any v > 0, let A(v) be the minimal closed ideal in A such that
Fγ ∈ Ak(v) := A(v) ⊗ W (k), for all γ > v. Equivalently, Ak(v) is the
minimal σ-invariant closed ideal of Ak, which contains all Fγ with γ > v.

Remark. a) For any v > 0, A(v) modJ 2 = A(v) modJ 2.
b) The filtration {A(v) | v > 0} is left-continuous.
c) If C,M ∈ N and ACM (v) modJ nCM is the image of A(v) in

ACM modJ nCM , then A(v) modJ n = lim←−
C,M

ACM (v) modJ nCM .

If γ > v0 > 0, denote by F̃γ(v0) the elements in Ak given by the same
expressions as Fγ but with the additional restriction pn1a1, p

n1a2 < v0
for all degree 2 terms pn1a1Da1n1Da2n2 or pn1a1[Da1n1 , Da2,n2 ]. Clearly, we
have the following property.

Proposition 4.3. a) A(v0) operatornamemodJ 3 is the minimal ideal of
A such that Ak(v0) is generated by all elements F̃γ(v0) with γ > v0.
b) If γ > 2v0, then F̃γ(v0) = γDaγvγ .

The following theorem is the main technical result about the structure
of the ramification filtration that we need in this paper.
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Theorem B. For any v > 0, A(v) modJ 3 = A(v) modJ 3.

This theorem gives an explicit description of the ramification filtration
{A(v)}v>0 on the level of p-extensions of nilpotent class 2. (On the level
of abelian p-extensions such a description is given by the above Remark
a).) Theorem B can also be stated in the following equivalent form, where
we use the index M + 1 instead of M to simplify the notation in its proof
below.

Theorem B’. Suppose C ∈ N, M ∈ Z>0 and v0 > 0. If, for all v > v0,

A(v)
C,M+1 modJ 3

C,M+1 = AC,M+1(v) modJ 3
C,M+1,

then
A(v0)
C,M+1 modJ 3

C,M+1 = AC,M+1(v0) modJ 3
C,M+1.

Clearly, Theorem B’ follows from theorem B.
Conversely, notice first that, for a given C ∈ N, M > 0 and v � 0,

A(v)
C,M+1 modJ 3

C,M+1 = AC,M+1(v) modJ 3
C,M+1 = 0.

Indeed, this is obvious for the ideals AC,M (v), because they are generated
by the elements obtained from the above elements F̃γ(v) by adding the
restrictions a1, a2, aγ < C and n1, n2, vγ 6 M . But then, for γ > 2pMC,
the conditions pn1a1 + pn2a2 = γ (where n2 6 n1) and pvγaγ = γ are never
satisfied. For the filtration {A(v)}v>0, we notice, as earlier, that the field of
definition KC,M+1,3(f) of the image of f in AC,M+1,K(p) modJ 3

C,M+1,K(p) is
of finite degree over the basic field K. Therefore, for v � 0, the ramification
subgroup Γ(p)(v) acts trivially on KC,M+1,3(f) and A(v)

C,M+1 modJ 3
C,M+1 =

0.
Now we can apply descending transfinite induction on v > 0. Let

SC,M+1 = {v > 0 | A(v)
C,M+1 modJ 3

C,M+1 = AC,M+1(v) modJ 3
C,M+1}.

Then SC,M+1 6= ∅. Let v0 = inf SC,M+1.
If v0 > 0 then A(v0)

C,M+1 modJ 3
C,M+1 = ACM (v0) modJ 3

C,M+1 by Theorem
B’. By the left-continuity property of both filtrations, there is a δ ∈ (0, v0)
such that A(v)

C,M+1 modJ 3
C,M+1 = AC,M+1(v) modJ 3

C,M+1 whenever v ∈
(v0 − δ, v0). So, v0 = inf SC,M+1 6 v0 − δ. This is a contradiction, hence
v0 = 0. In this case we have A(0)

C,M+1 modJ 3
C,M+1 = AC,M+1 modJ 3

C,M+1 =
AC,M+1(0) modJ 3

C,M+1. This implies that SC,M+1 = R>0, and Theorem B
is deduced from Theorem B’.

The rest of this section is concerned with a proof of Theorem B’.
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4.3. Auxiliary results.

4.3.1. The field K(N∗, r∗). Suppose N∗ ∈ N, q = pN
∗ and r∗ =

m∗/(q−1), where m∗ ∈ Z(p). Then there is a field K1 := K(N∗, r∗) ⊂ Ksep
such that

a) [K1 : K] = q;
b) the Herbrand function ϕK1/K(x) has only one corner point (r∗, r∗);
c) K1 = k((tK1)), where tqK1

E(−1, tm∗K1
) = tK and E is the generalised

Artin-Hasse exponential introduced in n.1.4.
The field K(N∗, r∗) appears as a subfield of K(U), where U q−U = u−m

∗

and uq−1 = tK . It is of degree q over K. Its construction is explained in all
detail in [2].

4.3.2. Relation between liftings of K and K1 modulo pM+1, M >
0. Recall that we use the uniformiser tK in K to construct the liftings
modulo pM+1 of K, OM+1(K) = WM+1(k)((t)) and of K(p), OM+1(K(p)),
where t = tK,M+1. We use the uniformiser tK1 from above n.4.3.1 c) to
construct analogous liftings for K1, O′M+1(K1) = WM+1(k)((t1)) and for
K1(p) ⊃ K(p), O′M+1(K1(p)). (Here t1 = tK1,M+1 is the Teichmüller repre-
sentative of tK1 in WM+1(K1(p)).)

Note that, with the above notation the field embedding K ⊂ K1 does
not induce an embedding OM+1(K) ⊂ O′M+1(K1) for M > 1, because the
Teichmüller representative t1 = tK1,M+1 = [tK1 ] cannot be expressed in
terms of the Teichmüller representative t = tK,M+1 = [tK ]. This difficulty
can be overcome as follows. Take tp

M

K as a uniformising element for σMK
and consider the corresponding liftings modulo pM+1, OM+1(σMK) =
WM+1(k)((tpM )) and OM+1(σMK(p)) ⊂ OM+1(K(p)). From the definition
of liftings it follows that

OM+1(σMK) ⊂WM+1(σMK) ⊂WM+1(σMK1)
⊂ O′M+1(K1) ⊂WM+1(K1),

OM+1(σMK(p)) ⊂WM+1(σMK(p)) ⊂WM+1(σMK1(p))
⊂ O′M+1(K1(p)) ⊂WM+1(K1(p)).

Lemma 4.4. With respect to the above embedding OM+1(σMK) ⊂
O′M+1(K1) we have

tp
M = tqp

M

1 E(−1, tm∗1 )pM .

Proof. If V is the Verschiebung morphism on WM+1(K1) then property c)
from n.4.3.1 is equivalent to the relation

t ≡ tqp
M

1 E(−1, tm∗1 ) modVWM+1(K1).
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Then, for any s > 0, we have

tp
s ≡ tqp

s

1 E(−1, tm∗1 )ps modV s+1WM+1(K1).

(Using that for any w1, w2 ∈ WM (K1), (V w1)(V w2) = V 2(F (w1w2)) and
pV (w1) = V 2(Fw1).) For s = M we obtain the statement of the lemma. �

4.3.3. A criterion. Consider σMe = 1 +
∑
a∈Z0(p) t

−apMDa,M ∈
A ⊗ O(σMK), where O(σMK) = lim←−

n

On(σMK). Then σMf ∈

A⊗O(σMK(p)) satisfies the relation σ(σMf) = (σMf)(σMe) and induces
the same morphism ψ : Γ(p) −→ A as f . Indeed, for any τ ∈ Γ(p),

τ(σMf)(σMf)−1 = σM (τ(f)f−1) = σM (ψ(τ)) = ψ(τ)

because σ acts trivially on A.
This means that we can still study the structure of the ramification

filtration {A(v) mod pM+1}v>0 by working inside the lifting O′M+1(K1(p)) ⊃
OM+1(σMK(p)) associated with our auxiliary field K1 and its uniformiser
tK1 .

Set B = AC,M+1 modJ 3
C,M+1 and for any rational number v > 0, B(v) =

A(v)
C,M+1 modJC,M+1. We shall also use the notation Bk = B ⊗WM+1(k),
BK1 = B ⊗ O′M+1(K1), and BK1(p) = B ⊗ O′M+1(K1(p)). Denote again by
J the augmentation ideal in B. Its extensions of scalars will be denoted
similarly by Jk,JK1 and JK1(p).

Consider an abstract continuous field isomorphism α : K −→ K1, which
is the identity on the residue fields and sends tK to tK1 . Consider its ex-
tension to the field isomorphism α̂ : K(p) −→ K1(p). Then we have an
induced isomorphism of liftings α̂ : OM+1(K(p)) −→ O′M+1(K1(p)). Use it
to define the morphism

id⊗ α̂ : AC,M+1,K(p) −→ BK1(p)

and set f1 := (id ⊗ α̂)(f) ∈ BK1(p). Then σ(f1) = f1e1, where e1 =
(id⊗ α̂)(e) = 1 +

∑
a∈Z0(p) t

−a
1 Da0.

If N∗ ≡ 0 modN0, then σM+N∗(Da0) = σM (Da0) = DaM and we can
relate the elements σMe = 1 +

∑
a∈Z0(p) t

−apMDa,M and σM+N∗e1 = 1 +∑
a∈Z0(p) t

−apM q
1 Da,M by the use of the relation between t and t1 from lemma

4.4. So, it will be natural to compare the elements σMf and σM+N∗f1 in
BK1(p) by introducing X ∈ BK1(p) such that (σMf)(1 + X) = σM+N∗f1.
This element will be used for the characterisation of the ideal B(v0) in
proposition 4.5 below.

Notice first, that B(v0) is the minimal 2-sided ideal in B such that the
field of definition of f modB(v0)

K1(p) is invariant under the action of the group
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Γ(p)(v0). In other words, if I is a 2-sided ideal in B and K(f, I) is the field
of definition of f mod IK1(p), then I contains B(v0) if and only if the largest
upper ramification number v(K(f, I)/K) (= the 2nd coordinate of the last
vertex of the graph of the Herbrand function ϕK(f,I)/K) is less than v0.

With the above notation we have the following criterion.

Proposition 4.5. Suppose r∗ = v(K1/K) < v0. Then B(v0) is the minimal
element in the set of all 2-sided ideals I such that if K1(X, I) is the field
of definition of X mod IK1(p) over K1 then its largest upper ramification
number satisfies v(K1(X, I)/K1) < qv0 − r∗(q − 1).

Proof. We must prove that for any 2-sided ideal I in B,

v := v(K(f, I)/K) < v0 ⇔ v1(X) := v(K1(X, I)/K1) < qv0 − r∗(q − 1).

The following proof is similar to the proof of the corresponding statement
from [1, 2].

Suppose v < v0. The existence of the field isomorphism α̂ implies that
v(K1(f1, I)/K1) = v. Then

(4.1) v1 := v(K1(f1, I)/K) = max{r∗, ϕK1/K(v)}

Indeed, it is sufficient to look at the maximal vertex of the Herbrand
function for the extension K1(f1, I)/K and to use the composition
property for the corresponding Herbrand functions ϕK1(f1,I)/K(x) =
ϕK1/K(ϕK1(f1,I)/K1(x)). This implies that v1 = r∗ if r∗ > v and v1 < v
if v > r∗, where we have used that ϕK1/K(v) = r∗ + (v − r∗)/q < v if
v > r∗. Therefore, the largest upper ramification number of the compos-
ite K(f, I) and K1(f1, I) over K is max{r∗, v} < v0. Clearly, K1(X, I) is
contained in this composite and, therefore, v(X) := v(K1(X, I)/K) < v0.
Similarly to formula (4.1) we obtain that v(X) = max{r∗, ϕK1/K(v1(X))}.
Therefore, ϕK1/K(v1(X)) < v0 and v1(X) < qv0 − r∗(q − 1).

Conversely, assume that v1(X) < qv0 − r∗(q − 1). Then

v(X) = max{r∗, ϕK1/K(v1(X))} < v0.

Suppose v = v(K(f, I)/K) > v0. As earlier, the existence of α̂ implies that
v(K1(f1, I)/K1) = v and similarly to (4.1) we have

v(K1(f1, I)/K) = max{r∗, ϕK1/K(v)} = ϕK1/K(v) < v.

Therefore, the largest upper ramification number of the composite of
K1(X, I) and K1(f1, I) over K equals

max{v(K1(X, I)/K), v(K1(f1, I)/K)} = max{v(X), ϕK1/K(v)}.

Because K(f, I) is contained in this composite, we have

v 6 max{v(X), ϕK1/K(v)}.
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But v > v0 > v(X) and v > ϕK1/K(v). This contradiction proves the
proposition. . �

4.3.4. Choosing N∗ and r∗. In order to apply the criterion from Propo-
sition 4.5 we shall use the special choice of K1 = K(N∗, r∗), where N∗ ∈ N
and r∗ < v0 are specified as follows.

Introduce δ1 := min{v0 − psa | psa < v0, a 6 C, a ∈ Z0(p)}, and δ2 :=

min{v0 − (ps1a1 + ps2a2)|
ps1a1 + ps2a2 < v0, a1, a2 6 C, a1, a2 ∈ Z0(p), s1, s2 ∈ Z}.

One can see that for a sufficiently large natural number N∗ ≡ 0 modN0,
there exists r∗ = m∗/(q − 1) < v0 with q = pN

∗ and m∗ ∈ Z(p) such that
a) −(v0 − δ1)q + r∗(q − 1) > CpM ;
b) −(v0 − δ2)q + r∗(q − 1) > 0;
c) v0q < 2r∗(q − 1).
So, we may assume that K1 = K(N∗, r∗) where N∗ ≡ 0 modN0 and the

above inequalities a)-c) hold.

4.4. A recurrence formula for X. Set Θ∗ = t
r∗(q−1)
1 . Then

ω = σMe− σM+N∗e1 =
∑
a∈Z0(p)

t−ap
M q

1 (E(a,Θ∗)pM − 1)DaM ∈ JK1 .

The relation 1 +X = (σMf)−1(σM+N∗f1) implies that

1 + σX = (σMe)−1(1 +X)(σM+N∗e1)

and

(4.2) X − σX = ω + (σMe− 1)σX −X(σM+N∗e1 − 1).

If X̄ := X modJ 2
K1(p), then the above relation (4.2) gives X̄ − σX̄ =

ωmodJ 2
K1(p). We shall use this relation in Subsection 4.5 below to study

X̄. Now (4.2) can be rewritten as

(4.3) X − σX = ω − ω(σM+N∗e1 − 1)− [σX̄, σM+N∗e1 − 1] + ωσ(X̄),

using that X ≡ ω+σX modJ 2
K1(p). We shall use this relation in nn.4.6-4.7

below to study the field of definition of X.
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4.5. The study of X̄. For 0 6 r 6 M and b ∈ Zp, introduce Er(b, T ) ∈
Zp[[T ]] as follows:

E0(b, T ) = E(b, T )− 1, where E(b, T ) is the generalisation of the Artin-
Hasse exponential from n.1.4;

E1(b, T ) = E(b, T )p − E(b, T p) = (exp(pbT )− 1)E(b, T p),

.............................................

EM (b, T ) = E(b, T )pM − E(b, T p)pM−1 = (exp(pMbT )− 1)E(b, T p)pM−1
.

Notice the following simple properties:
(1) E(b, T )pM − 1 = E0(b, T pM ) + E1(b, T pM−1) + · · ·+ EM (b, T );

(2) Er(b, T ) = prT + prT 2gr(T ), where 0 6 r 6 M and gr ∈ Zp[[T ]].

Consider the decomposition ω =
∑
r+s=M σrωs (cf. Subsection 4.4 for

the definition of ω), where

ωs :=
∑
a∈Z0(p)

t−ap
sq

1 Es(a,Θ∗)Das,

for 0 6 s 6 M . Note that psDas ∈ B(v0)
k modJ 2

k , whenever psa > v0,
cf. proposition 4.2. Also, if psa < v0 then −apsq + r∗(q − 1) > CpM , cf.
Subsubsection 4.3.4, and we have t−ap

sq
1 Es(a,Θ∗) ∈ tCp

M

1 m1, where m1 :=
t1WM (k)[[t1]].

So, for 0 6 s 6 M ,

(4.4) ωs ∈ B(v0)
K1

+ tCp
M

1 Jm1 + J 2
K1 ,

where Jm1 = J ⊗m1.
For 0 6 s 6 M , consider Xs ∈ BK1(p) such that Xs−σXs = ωs. Because

of (4.4), we may assume that Xs ≡
∑
u>0 σ

uωsmod(B(v0)
K1(p)+J 2

K1(p)). Notice
that

X̄ ≡
∑
r+s=M

σr(Xs) modJ 2
K1(p),

and after replacing the infinite sum
∑
u>0 by its first (N∗− s) terms in the

above congruence for Xs, we obtain

(4.5) X̄ =
∑
u+s>M
u<N∗

σuωsmod(B(v0)
K1(p) + J 2

K1(p) + tCp
M q

1 Jm1).
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4.6. The study of X. From the above formulas (4.4) it follows that X̄
and σ(X̄) belong to B(v0)

K1(p) + tCp
M

1 Jm1 + J 2
K1(p). This implies that

ωσ(X̄) ∈ B(v0)
K1(p)JK1(p) + Jm1 .

Therefore, when solving equation (4.3) for X, this term will not have any
influence on the field of definition of X modB(v0)

K1(p)JK1(p).
For a similar reason, we may replace X̄ in (4.3) by the right hand side

from (4.5) without affecting the field of definition of X modB(v0)
K1(p)JK1(p).

The new right hand side will be then equal to∑
a∈Z0(p)
06s6M

t−ap
M q

1 Es(a,Θ∗p
M−s)

−
∑

a1,a2∈Z0(p)
06s6M

t
−(a1+a2)pM q
1 Es(a1,Θ∗p

M−s)Da1MDa2M

−
∑

06s16M,a1,a2∈Z0(p)
N∗>u>M−s1

t−a1ps1+uq−a2pM q
1 Es1(a1,Θ∗p

u)[Da1,s1+u, Da2,M ].

Finally we can apply the Witt-Artin-Schreier equivalence to the last formula
to deduce that modulo any ideal containing the ideal B(v0)

K1(p)JK1(p), the
elements X and X ′, where X ′ − σX ′ =∑

06s6M

t−ap
sq

1 Es(a1,Θ∗)Das −
∑

06s6M

t
−(a1+a2)psq
1 Es(a1,Θ∗)Da1sDa2s

−
∑

06s16M
M−N∗<s2<s1

t
−(a1ps1 +a2ps2 )q
1 Es1(a,Θ∗)[Da1s1 , Da2s2 ]

have the same field of definition.
We can use this relation to find the minimal ideal I in B such that

X mod IK1(p) is defined over an extension of K1 with upper ramification
number less than qv0 − r∗(q − 1). Indeed, we know that I modJ 2 =
B(v0) modJ 2 and therefore, we may always assume that I ⊃ B(v0)J . As
before, we are also allowed to change the right hand side of (4.6) by any
element of B ⊗ Jm1 . We may always assume that I ⊃ B(v) for any v > v0,
because I must contain all B(v) with v > v0 and, by the inductive assump-
tion, B(v) coincides with B(v). So, we can assume that I contains the ideal
B(v0+) generated by B(v0)J and all B(v) with v > v0.
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4.7. Final simplification of (4.6). For 0 6 s 6 M , consider the identity
Es(a,Θ∗) = psat

r∗(q−1)
1 + pst

2r∗(q−1)
1 gr(t1) from Subsection 4.5.

Lemma 4.6. pst−(a1+a2)psq+2r∗(q−1)
1 Da1sDa2s ∈ B

(v0)
K1
JK1 + Jm1.

Proof. Indeed, if psa1 > v0 (resp. if psa2 > v0) then psDa1s (resp. psDa2s)
belongs to B(v0)

k modJ 2
k .

If both psa1, p
sa2 are less than v0 then we use the fact that

−(a1 + a2)psq + 2r∗(q − 1) > CpM + CpM > 0,

cf. Subsubsection 4.3.4, to conclude that the corresponding term belongs
to Jm1 .

The lemma is proved �

The following lemma deals with the terms coming from the third sum
and can be proved similarly.

Lemma 4.7. ps1t−(ps1a1+ps2a2)q+2r∗(q−1)
1 [Da1s1 , Da2s2 ] ∈ B(v0)

K1
JK1 + Jm1.

The next lemma deals with the terms coming from the first sum.

Lemma 4.8. pst−ap
sq+2r∗(q−1)

1 Das ∈ B(v0+)
K1

+ Jm1.

Proof. There is nothing to prove if −apsq + 2r∗(q − 1) > 0.
Assume now that apsq > 2r∗(q − 1). Consider the expression for Faps ,

cf. Subsection 4.2. Notice that aps > v0 (use estimate c) from n.4.3.4) and,
therefore, Faps ∈ Bk(aps) = B(aps)

k .
It will be sufficient to show that any term of degree 2 in the expression

of Faps belongs to B(v0)
k Jk. Indeed, it then follows that the linear term

psaDas of Faps belongs to B(aps)
k + B(v0)

k Jk ⊂ B
(v0+)
k and the statement of

our lemma is proved.
In order to prove this property of degree 2 terms notice that all of

them contain as a factor either a product ps1Da1s1Da2s2 or a product
ps1Da2s2Da1s1 , where s1 > s2 and ps1a1 + ps2a2 = psa. Then we have
the following two cases:

(1) if either ps1a1 > v0 or ps1a2 > v0 then this product belongs to
B(v0)
k Jk;

(2) if both ps1a1 and ps1a2 are less than v0, then ps1a1 < v0 − δ1 and
ps2a2 6 ps1a2 < v0 − δ1. Therefore,

2r∗(q − 1) 6 psaq = (ps1a1 + ps2a2)q < 2q(v0 − δ1).

This contradicts the assumption a) from Subsubsection 4.3.4.

The lemma is completely proved. �
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By the above three lemmas, we can everywhere replace the factors
Es(a,Θ∗) by psatr

∗(q−1)
1 and, therefore, the right hand side of (4.6) is con-

gruent modulo B(v0+)
K1

+ Jm1 to the sum
∑
γ>0 t

−qγ+r∗(q−1)
1 F ′γ , where F ′γ is

given by the same formula as Fγ , cf. Subsection 4.2, but with the additional
restriction n2 > M −N∗ in the last sum.

Lemma 4.9. If γ > v0 then F ′γ ≡ Fγ modB(v0)
k Jk.

Proof. Suppose the term pn1a1[Da1n1 , Da2n2 ] enters into the formula for Fγ
but does not enter into the formula for F ′γ .

Then a1, a2 6 C, pn1a1 + pn2a2 = γ > v0 and n2 6 M −N∗. Then

pn1a1 = γ − pn2a2 > v0 − pMq−1C > r∗(1− q−1)− pMq−1C > v0 − δ1

(use 4.3.2 a)). Therefore, pn1a1 > v0, pn1Da1n1 ∈ B(v0)
k J 2

k and
pn1a1[Da1n1 , Da2n2 ] ∈ B(v0)

k Jk.
The lemma is proved. �

Now notice that:

• if γ > v0, then the term t
−qγ+r∗(q−1)
1 Fγ belongs to BK1(γ) = B(γ)

K1
;

• if γ < v0, then the term t
−qγ+r∗(q−1)
1 F ′γ belongs to Jm1 .

So, the ideal B(v0) appears as the minimal ideal I of B such that I contains
the ideal B(v0+) and such that the largest upper ramification number of the
field of definition over K1 of the solution X ′′ ∈ BK1(p) mod IK1(p) of the
equation

X ′′ − σX ′′ = Fv0t
−qv0+r∗(q−1)
1 mod IK1(p)

is less than qv0 − r∗(q − 1).

It only remains to notice that pFv0 ∈ B
(v0+)
k , and if Fv0 /∈ Ik then the

upper ramification number of the field of definition K1(X ′′, I) over K1 is
equal to qv0 − r∗(q − 1).

The theorem is proved.

5. Compatibility with ramification filtration
In this section with the notation from Section 1, A = AmodJ 3, Ak =

A ⊗ W (k). For any v > 0, A(v) = A(v) modJ 3, A(v)
k := A(v) ⊗ W (k).

We also set J = J modJ 3 with the corresponding extension of scalars
Jk = J⊗W (k). Suppose f is a continuous automorphism of the Zp-algebra
A such that, for any v > 0, f(A(v)) = A(v). Consider the identification
J modJ 2 = Γ(p)ab from part b) of proposition 1.2 and denote again by f
the continuous automorphism ofM = I(p)ab mod p induced by f . Consider
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the standard topological generators Dan, a ∈ Z(p), n ∈ Z modN0, for M
and set, for any a ∈ Z(p),

f(Da0) =
∑
b,m

αabm(f)Dbm,

where the coefficients αabm(f) ∈ k. With the above notation, the principal
results of this section are:

if α110(f) 6= 0 and N0 > 3 then

• there is an η ∈ Aut0K such that for any a, b ∈ Z(p) and a 6 b < pN0−3,
it holds αab0(f) = αab0(η∗);

• if a 6 b < pN0−3 and m ∈ N is such that b/pm < a then
αa,b,−mmodN0(f) = 0.

5.1. The elements Fγ(v). By Theorem B, cf. Subsection 4.2, for any
v > 0, the ideal A(v)

k is the minimal closed σ-invariant ideal in Ak containing
the explicitly given elements Fγ , for all γ > v. For any a ∈ Z(p) and n ∈
Z modN0, set ∆a0 = (1/a)Fa and ∆an = σn∆a0. Then ∆an ≡ DanmodJ 2

k
and {∆an | a ∈ Z(p), n ∈ Z modN0} ∪ {D0} is a new system of topological
generators for Ak. The elements of this new set of generators together with
their pairwise products form a topological basis of the W (k)-module Ak.

For any γ > v > 0, consider the following elements Fγ(v) (these elements
have already been mentioned in Subsection 4.2):

If γ = apm with a ∈ Z(p) and m ∈ Z>0 set

Fγ(v) = pma∆am −
∑

n>0,a1,a2∈Z(p)
pn(a1+a2)=γ
pna1,pna2<v

pna1∆a1n∆a2n;

If γ /∈ Z set

Fγ(v) = −
∑

n1>0,a1,a2∈Z(p)
pn1a1+pn2a2=γ
pn1a1,pn1a2<v

pn1a1[∆a1n1 ,∆a2n2 ].

Similarly to Subsection 4.2, we have the following property.

Proposition 5.1. For any v > 0, A(v)
k is the minimal σ-invariant closed

ideal of Ak containing the elements Fγ(v) for all γ > v.
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5.2. The submodules A(v)
tr and A

(v)
adm. Suppose v > 0.

Let A(v)
tr be the W (k)-submodule in Ak generated by the following ele-

ments:

tr1) ps∆an with s > 0 and psa > 2v;

tr2) ps∆a1n1∆a2n2 with a1, a2 ∈ Z(p), s > 0 and n1, n2 ∈ Z modN0 such
that max{psa1, p

sa2} > v.

Let A(v)
adm be the minimal closed W (k)-submodule in Ak containing A(v)

tr
and the following elements:

adm1) ps∆an, with s > 0, a ∈ Z(p) and psa > v;

adm2) ps∆a1n1∆a2n2 , where a1, a2 ∈ Z(p), n1, n2 ∈ Z modN0 and s =
s(a1, a2) ∈ Z>0 are such that:

(1) v/p 6 max{psa1, p
sa2} < v;

(2) max
{
ps
(
a1 + a2

pn12

)
, ps
(
a1
pn21 + a2

)}
> v, where 0 6 n12, n21 <

N0, n12 ≡ n1 − n2 modN0 and n21 ≡ n2 − n1 modN0;
(3) if n1 = n2 then a1 + a2 ≡ 0 mod p.

Proposition 5.2. For any v > 0,
1) f(A(v)

tr ) = A
(v)
tr ;

2) A(v)
adm ⊃ A

(v)
k ⊃ A

(v)
tr ⊃ pA

(v)
adm;

3) the elements from adm1) and adm2) form a k-basis of A(v)
adm modA(v)

tr .

Proof. 1) It is sufficient to notice that A(v)
tr is the minimal σ-invariant W (k)-

submodule in A containing
∑
γ>2v Fγ(v)W (k) +

∑
γ>v Fγ(v)Jk.

2) From the above n.1) it follows that A(v)
k ⊃ A

(v)
tr . The embedding

A
(v)
k ⊂ A

(v)
adm follows from the definition of A(v)

adm: as a matter of fact, A(v)
tr is

spanned by all summands of elements σsFγ with s ∈ Z modN0 and γ > v.
The embedding pA(v)

adm ⊂ A
(v)
tr follows from the fact that each element listed

in adm1) and adm2) belongs to A(v)
tr after multiplication by p.

3) It is easy to see that any k-linear combination of the elements from
adm1) and adm2) does not belong to A(v)

tr mod pA(v)
adm. �

Proposition 5.3. Suppose v > 0 and ps∆a1n1∆a2n2 is one of elements
listed in adm2). Let n = min{n12, n21}. If

v/pN0−n 6 d(v) := min{v − a | a ∈ Z, a < v}

then there are unique m ∈ Z modN0 and γ > v such that psa1∆a1n1∆a2n2
appears (with non-zero coefficient) in the expression of σmFγ(v).

Remark. We are going to apply this proposition in the following situations:
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(1) v ∈ N, v < pN0 , n1 = n2 = 0;
(2) v = c+ 1/p, n1 = 0, n2 = −1, where c ∈ N and c < pN0−2.

Proof. By symmetry we may assume that n = n12.
If n12 6= 0 we have ps

(
a1 + a2

pn

)
= γ > v, because of property adm2)(2),

and

ps
(

a1
pN0−n + a2

)
<

v

pN0−n + psa2 6 d(v) + (v − d(v)) = v 6 γ.

Therefore, the term ps∆a1n1∆a2n2 appears in the expression of σn1−sFγ(v).
This term will appear in the expression of another σn′Fγ′(v), where γ′ > v,
if and only if ps

(
a1 + a2

pn+mN0

)
> v or ps

(
a1

pmN0−n + a2
)

> v, where m ∈ N.
But the condition v/pN0−n < d(v) implies that all such numbers are less
than v.

If n12 = 0 then γ = ps(a1 + a2) > v and ps∆a1n1∆a2n2 appears in the
expression of σn1−sFγ(v). This element can appear in the expression of
another σn′Fγ′(v), where γ′ > v, if and only if γ′ = ps

(
a1 + a2

pmN0

)
> v or

γ′ = ps
(
a1
pmN0 + a2

)
> v, where m ∈ N. As earlier, γ′ < v in both cases.

The proposition is proved. �

Remark. If v/pN0/2 < d(v), then elements of the set

{σsF (v)
γ modA(v)

adm | 0 6 s < N0, γ > v}
are linear combinations of disjoint groups of elements listed in adm1) and
adm2).

5.3. Denote by the same symbol f the morphism of W (k)-modules

A(v) modA(v)
tr −→ A(v) modA(v)

tr ,

which is induced by f : A −→ A. As earlier, denote again by f the k-linear
extension of the automorphism of M, which is induced by f . Because the
images of Dan and ∆an coincide in Mk, we have, for any a ∈ Z(p),

f(∆a0) =
∑
b∈Z(p)

m∈Z modN0

αabm(f)∆bm.

It will be convenient sometimes to set αab0(f) = 0 if a or b are divisible by
p.

Proposition 5.4. Suppose α110(f) = α ∈ k∗. Then αaa0(f) = αa, for any
a ∈ Z(p) such that a < pN0−1 if p 6= 2 and N0 > 2, and such that a < 2N0

if p = 2 and N0 > 3.
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Proof. By proposition 5.3, for any v 6 pN0 such that v ≡ 0 mod p, the
formula for f(Fv(v)) modA(v)

tr must contain all terms a1∆a10∆a20, for which
a1 + a2 = v, and the term psa∆as, where psa = v and a ∈ Z(p), with the
same coefficient. In other words, for such indices a1, a2, a ∈ Z(p),
(5.1) αa1a10(f)αa2a20(f) = σsαaa0(f).
For a ∈ Z(p), a < pN0 , set γ(a) = αaa0(f)α110(f)−1. Then γ(1) = 1 and
γ(a1)γ(a2) = γ(a)ps if a1 + a2 = psa.

Suppose p 6= 2.
First, we prove that for n ∈ Z(p) satisfying 1 6 n < pN0−1, we have

(5.2) γ(n) = γ(2)n−1.

This is obviously true for n = 1 and n = 2.
Assume that n > 2 and that γ(m) = γ(2)m−1 holds for all m ∈ Z(p)

such that m 6 n. Consider a special case of relation (5.1) with n ∈ Z(p)
(5.3) γ(1)γ(np− 1) = γ(n)p.
If n 6≡ −1 mod p then use the relation γ(p − 1)γ(p + 1) = γ(2)p, which is
again a special case of (5.1), to deduce from (5.3) that

γ(n+ 1) = γ(1)γ(n+ 1) = γ(n)γ(2) = γ(2)n.
If n ≡ −1 mod p and p 6= 3 then n > 4 and by the inductive assumption

γ(3) = γ(2)2. Apply the relation γ(p − 1)γ(2p + 1) = γ(3)p = γ(2)2p to
deduce from (5.3) that

γ(n+ 1) = γ(1)γ(n+ 2) = γ(n)γ(2)2 = γ(2)n+1.

If p = 3 then γ(p− 1)γ(2p+ 1) = γ(1)p2 and we obtain from (5.3) that
γ(n+ 1) = γ(1)γ(n+ 2) = γ(n) = γ(2)n−1 = γ(2)n+1,

because γ(2) = 1 (using that γ(1)γ(2) = γ(1)3).
So, relation (5.2) is proved.
Still assuming that p 6= 2 prove that γ(2) = 1. The relation γ(1)γ(p−1) =

γ(1)p implies that γ(2)p−2 = γ(p − 1) = 1. The equality γ(1)γ(p2 − 1) =
γ(1)p2 implies that γ(2)p2−2 = γ(p2− 1) = 1. Then γ(2) = 1 because p2− 2
and p− 2 are coprime. This completes the case p 6= 2.

Consider now the case p = 2.
Notice that for any n ∈ Z(2) such that 1 < n < 2N0 , we have n+1 = 2sa,

where a ∈ Z(2), s ∈ N and a < n. Therefore, γ(1)γ(n) = γ(a)2s and the
equality γ(n) = 1 follows by induction on n > 1 for all n < 2N0 . �

Corollary 5.5. If α110(f) = 1 then αaa0(f) = 1 whenever a < pN0−1,
p 6= 2 or a < 2N0, p = 2.

Proposition 5.6. Suppose N0 > 3, α110(f) ∈ k∗, a, b ∈ Z(p), a, b < pN0−2.
If 0 6 m < N0 and b/pm < a then αa,b,−mmodN0(f) = 0.
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Proof. For a given b ∈ Z(p), b < pN0−2 and 1 6 m < N0, let a ∈ Z(p) be
the minimal integer such that αa′,b,−m(f) = 0 if a′ > a. If such an a does
not exist then αa,b,−m(f) = 0 for all a and there is nothing to prove.

If p 6= 2 put v = pN0−1 and consider f(Fv(v)) mod(A(v)
tr + pA

(v)
adm).

We prove that the term ∆v−a,0∆b,−m enters in f(Fv(v)) with the coeffi-
cient
(5.4) (v − a)αv−a,v−a,0(f)αa,b,−m(f) = −aαv−a,v−a,0(f)αa,b,−m(f).

Indeed, Fv(v) mod(A(v)
tr + pA

(v)
adm) is a sum of the terms of the form

a1∆a10∆a20 with a1, a2 ∈ Z(p) such that a1 + a2 = v. Therefore,
f(a1∆a10∆a20) contains ∆v−a,0∆b,−m with coefficient

a1αa1,v−a,0(f)αa2,b,−m(f).
Now notice that αa2,b,−m(f) = 0 if a2 > a, and αa1,v−a,0(f) = 0 if a1 > v−a
or, equivalently, if a2 < a. So, a1 = v − a and the coefficient is given by
formula (5.4).

By the choice of a, the coefficient (5.4) is not zero. Therefore,
∆v−a,0∆b,−m ∈ A

(v)
adm. Notice that

max
{
v − a+ b

pm
,
v − a
pN0−m + b

}
= v − a+ b

pm

and b/pm > a. Indeed, we can use that
v − a
pN0−m + b <

pN0−1

p
+ pN0−2 < 2pN0−2 < pN0−1 − pN0−2 < v − a+ b

pm
.

Therefore, v− a+ b/pm > v, i.e. b/pm > a and the proposition is proved in
the case p 6= 2.

If p = 2 we can take v = 2N0 and repeat the above arguments by using
in the last step the inequality

v − a
2N0−m + b <

2N0

2
+ 2N0−2 < 2N0 − a

(
1− 1

2m

)
6 v − a+ b

2m
.

The proposition is completely proved. �

5.4. Suppose r ∈ N is such that αaa′0(f) = 0 for any a, a′ ∈ Z(p) such
that a < a′ < a+ r < pN0−2.

Let δ(p) be p if p 6= 2 and δ(p) = 4 if p = 2.

Proposition 5.7. Assume that α110(f) = 1. If b, b1 ∈ Z(p), b1 = b+ r and
b1 + δ(p) < pN0−2 then αbb10(f) = αb−δ(p),b1−δ(p),0(f).

Proof. Let a0 = pN0−2−1, v0 = a0 +1/p, v = a0 + bp . We need the following
lemma.

Lemma 5.8. If a′, b′, c 6 a0 and a′ + b′/p = v then αa′,c,−1(f) = 0.
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Proof. It follows from the inequalities
c

p
6
a0
p

6 a0 −
a0
p
< v − b′

p
= a′

and proposition 5.6. �

We continue the proof of proposition 5.7. Consider

Fv(v0) = −
∑

a′+b′/p=v
a′,b′6a0

a′[∆a′0,∆b′,−1] mod pA(v)
adm.

Using that v0/p
N0−1 < d(v0) = 1/p, cf. proposition 5.3, we can find

now the coefficient for [∆a00,∆b1,−1] in f(Fv(v0)). By the above lemma
αa′,b,−1(f) = 0, therefore the image of the term a′[∆a′0,∆b′,−1] gives a
coefficient

a′αa′a00(f)σ−1(αb′b10(f)).
If a′ < a0 and αa′a00(f) 6= 0 then a′ 6 a0−r, b′ > b+rp > b1 and αb′b10(f) =
0. So, the coefficient is non-zero only for a′ = a0. Then by Corollary 5.5
αa′a00(f) = 1 and the coefficient will be equal to a0σ

−1(αbb10(f)).
If p 6= 2 we can proceed similarly to find the coefficient for

[∆a0−1,0,∆b1+p,−1] in f(Fv(v0)). It equals (a0 − 1)σ−1(αb+p,b1+p,0(f)).
Therefore, by proposition 5.3

αbb10(f) = αb+p,b1+p,0(f)
and the case p 6= 2 is completely considered.

If p = 2, we similarly find similarly the coefficient for [∆a0−2,0,∆b1+4,−1]
in f(Fv(v0)). It equals (a0 − 2)σ−1(αb+4,b1+4,0(f)) and we obtain

αbb10(f) = αb+4,b1+4,0(f).
The proposition is proved. �

5.5. Now we come to the central point of this section.

Proposition 5.9. Suppose α110(f) 6= 0 and N0 > 3. Then there is an η ∈
Aut0K such that αab0(fη∗) = δab, for any a, b ∈ Z(p) with a 6 b < pN0−3,
where δab is the Kronecker symbol.

Proof. Proposition 5.4 together with part 2) of proposition 2.1 imply that
after replacing f by fη∗ for some η ∈ Aut0K such that η(t) = α110(f)t, we
can assume that αaa0(f) = 1 if a < pN0−1.

Let r = r(f) ∈ N be the maximal subject to the condition that αab0(f) =
0, for any a, b ∈ Z(p) with a, b < pN0−2 and a < b < a+ r.

If r > pN0−3−1 then there is nothing to prove. Therefore, we can assume
that r 6 pN0−3 − 2. For 1 6 a < pN0−2, set αa(r) = αa,a+r,0(f) if a ∈ Z(p)
and αa(r) = 0, otherwise.
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By proposition 5.7 αa(r) depends only on the residue amod δ(p) and
by the choice of r the function a 7→ αa(r) is not identically zero. The
proposition will be proved if we show the existence of η ∈ Aut0K such that
r(fη∗) > r(f).

In the case p 6= 2 apply proposition 2.5 with w0 = 1+r. Let η will be the
corresponding character. If r(fη∗) > r(f), then the proposition is proved.
So, assume that r(fη∗) = r(f). Therefore, by replacing f by fη∗ we can
assume the following normalisation conditions:

a) α1(r) = 0 if r 6≡ −1 mod p;
b) α2(r) = 0 if r ≡ −1 mod p.
In the case p = 2, apply proposition 2.6 with either w0 = r + 2 if r ≡

2 mod 4 or w0 = r if r ≡ 0 mod 4. In the first case we have the normalisation
condition

c) α1(r) = α3(r) = 0;
in the second case we obtain only that

d) α1(r) = 0.
The case p 6= 2.
If r = pN0−3 − 2 then α1(r) = αab0(f) = 0 if a = 1, b = pN0−3 − 1. For

all other couples a, b ∈ Z(p) such that a < b < pN0−3, we have αab0(f) = 0
because b− a < r. Therefore, we can assume that r 6 pN0−3 − 3.

Let cj = p(r+1)+j for j = 1, 2, . . . , p−1. Then cj 6 p(pN0−3−2)+p−1 <
pN0−2, for all j. Set vj = cj + 1/p and consider the coefficient for Fvj+r(vj)
in the image f(Fvj (vj)) ∈ A

(vj)
adm modA(vj)

tr + pA
(vj)
adm.

Similarly to the proof of proposition 5.7, we see that the term
[∆cj0,∆1+rp,−1] from the expression of Fvj+r(vj) can appear with non-zero
coefficient only as image of one of the following two terms from Fvj (vj):
(cj − r)[∆cj−r,0,∆1+rp,−1] and cj [∆cj0,∆1,−1]. This coefficient is equal to

(cj − r)αcj−r(r) + cjα1,1+rp,0(f).
Similarly, the term [∆cj−1,0,∆1+(r+1)p,−1] from the expression of

Fvj+r(vj) can appear with non-zero coefficient only in the image of either
(cj−1−r)[∆cj−1−r,0,∆1+(r+1)p,−1] or (cj−1)[∆cj−1,0,∆1+p,−1]. Therefore,
this coefficient will be equal to

(cj − 1− r)αcj−1−r(r) + (cj − 1)σ−1α1+p,1+(r+1)p,0(f)
and we obtain the following relation

(5.5) cj − r
cj

αcj−r(r) = cj − 1− r
cj − 1

αcj−1−r(r) +X,

where X = σ−1(α1+p,1+(r+1)p,0(f))− σ−1(α1,1+rp,0(f)).
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For j = 1, . . . , p− 1, set βj = cj−r
cj
αj−r(r). Then the above relation (5.5)

implies that β2 = β1 +X,β3 = β2 +X, . . . , βp−1 = βp−2 +X.

The case r 6≡ 0 mod p, p 6= 2.
In this case the normalisation conditions imply that

— if r 6≡ −1 mod p then βr+1 = 0;

— if r ≡ −1 mod p then βr+2 = 0.
In both cases βr = 0. This implies that β1 = · · · = βp−1 = 0. Therefore,

αa(r) = 0, for all a. This is a contradiction.
So, in the case r 6≡ 0 mod p, p 6= 2 the proposition is proved.

The case r ≡ 0 mod p, p 6= 2
In this case we only have the normalisation condition β1 = 0. Therefore,

for i = 1, . . . , p − 1, we have βi = (i − 1)X and αa(r) = (a − 1)X for any
a ∈ Z(p), a < pN0−3.

Let v = (p − 1)r + p and consider the coefficient for Fv+r(v) in the
image f(Fv(v)). Following the images of terms of degree 2 we see that
this coefficient equals −2X. Now notice that the linear terms in Fv(v)
(resp. Fv+r(v)) have coefficients with p-adic valuation vp((p−1)r+p) (resp.
vp(pr + p)). Clearly, if 1 = vp(pr + p) and if 1 < vp((p− 1)r + p) then the
linear term of Fv+r(v) cannot appear in the image f(Fv(v)). Therefore,
1 = vp(pr + p) = vp((p − 1)r + p) and the linear terms in Fv(v) (resp.
Fv+r(v)) are multiples of ∆r+1−r/p,1 (resp. ∆r+1,1). But then (r+ 1)− (r+
1− r/p) = r/p < r and by the definition of r, ∆r+1,1 will not appear in the
image F (∆r+1−r/p,1). This contradiction proves the proposition in the case
r ≡ 0 mod p, p 6= 2.

The case p = 2.
Here r ≡ 0 mod 2. If r ≡ 2 mod 4 then the normalisation conditions imply

that αa(r) = 0 for all a and the proposition is proved.
If r ≡ 0 mod 4 then we only have one normalisation condition αa(r) = 0

if a ≡ 1 mod 4. Let αa(r) = α where a ≡ 3 mod 4. Consider

Fr+4(r + 4) = (r + 4)∆ r+4
2s ,s

+
∑

a+b=r+4a,b<r+4
∆a0∆b0 ∈ A

(r+4)
adm modA(r+4)

tr ,

where s = v2(r + 4) > 2. Then f(Fr+4(r + 4)) contains ∆r+1,0∆r+3,0 with
coefficient

α1,r+1,0(f) + α3,3+r,0(f) = α,

and therefore it contains F2r+4(r+4) with coefficient α. Similarly to the case
p 6= 2, we obtain the equality v2(r + 4) = v2(2r + 4) = 2 and consequently
the fact that f(∆r/2+1,2) cannot contain ∆r/4+1,2 with non-zero coefficient
because (r/2 + 1) − (r/4 + 1) = r/4 < r. The proposition is completely
proved. �
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6. Proof of the main theorem — the characteristic p case
Suppose E is a field of characteristic p.
Then E′ is also a field of characteristic p, because the topological groups

ΓE(p)ab and ΓE′(p)ab are isomorphic. Looking at the ramification filtrations
of these groups we deduce that the residue fields of E and E′ are isomorphic.
Therefore, E and E′ are isomorphic complete discrete valuation fields and
we can identify the maximal p-extensions E(p) of E and E′(p) of E′.

Let K be a finite Galois extension of E in E(p). Then E(p) is a maximal
p-extension of K and ΓK(p) = Gal(E(p)/K). Let K ′ be the extension of E′
in E(p) such that g(ΓK(p)) = ΓK′(p) (recall that g is a group isomorphism).
If s > 0 and Ks is the unramified extension of K in E(p) such that [Ks :
K] = ps then g(ΓKs(p)) = ΓK′s(p), where K ′s is the unramified extension
of K ′ in E(p) of degree ps. Therefore, with the notation from Section 3
we have a compatible system gKK′ = {gKK′s}s>0 of Fp-linear continuous
automorphisms gKK′s : M̄Ks −→ M̄K′s.

Now choose uniformising elements tK and tK′ in K and, resp., K ′.
Consider the corresponding standard generators D(s)

an (resp. D′(s)an ), where
a ∈ Z(p) and n ∈ Z modNs, of M̄Ks = MKs⊗̂kk(p) (resp., M̄K′s =
MKs⊗̂kk(p)). Here, as usual, k ' Fq0 is the residue field of K, q0 = pN0 ,
Ns = N0p

s. Then

gKK′s(D
(s)
a0 ) =

∑
b∈Z(p)

m∈Z modNs

αabm(gKK′s)D
′(s)
bm

with αabm(gKK′s) ∈ ks ⊂ k(p).
For each s > 0, choose ns ∈ Z modNs such that α11ns(gKK′s) 6= 0: ns

exists, because gKK′s induces a k(p)-linear isomorphism of M̄KsmodM̄(2)
Ks

and M̄K′smodM̄(2)
K′s.

Let Fr(tK′) ∈ AutK ′ur be such that Fr(tK′) : tK′ 7→ tK′ and Fr(tK′)|k(p) =
σ. Let ξ ∈ Iso0(K ′ur,Kur) be such that ξ(tK′) = tK .

For any s > 0, Fr(tK′) (resp. ξ) induces a continuous field isomorphism
K ′s −→ K ′s (resp. K ′s −→ Ks). It will be denoted by Fr(tK′)s (resp. ξs).
With notation from n.3, we introduce continuous group isomorphisms

g0
KK′s = gKK′sFr(tK′)ns∗s : M̄Ks −→ M̄K′s.

Clearly, hs := g0
KK′sξ

∗
s is induced by an automorphism of ΓKs(p) which is

compatible with the ramification filtration. Notice also that, by proposition
2.1, if a ∈ Z(p), n ∈ Z modNs and

hs(D(s)
a0 ) =

∑
b,m

αabm(hs)D(s)
bm,
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then αa,b,m−ns(hs) = σnsαabm(gKK′s). In particular, α110(hs) 6= 0. There-
fore, applying proposition 5.6, we obtain that for all s > 0,

hs ∈ AutadmMKsmodM(pNs−2)
Ks

,

the residues ns ∈ Z modNs are unique, and ns+1 modNs = ns. Here we use
that D(s+1)

an 7→ D
(s)
an under the natural morphism from M̄K,s+1 to M̄Ks.

Then hKK := {hs}s>0 and g0
KK′ := {g0

KK′s}s>0 are compatible systems
and, by propositions 3.3 and 5.9, they are special admisible locally ana-
lytic systems. By proposition 3.4 there is an ηKK′ ∈ Iso0(K,K ′) such that
g0
KK′an = d(ηKK′)⊗̂kk(p). Notice also that if n̄KK′ := lim←−

s

ns ∈ lim←−
s

Z/NsZ

then gKK′ = g0
KK′Fr(tK′)−n̄KK′∗, where Fr(tK′)∗ = {Fr(tK′)s}s>0 is the

compatible system from Subsection 3.5.
Suppose L is a finite Galois extension of E in E(p) containing K. Proceed

similarly to obtain L′ ⊂ E(p) such that g induces an isomorphism of ΓL(p)
and ΓL′(p), the corresponding compatible system gLL′ = {gLL′s}s>0 and the
special admissible locally analytic system g0

LL′ = {g0
LL′s}s>0, where gLL′ =

g0
LL′Fr(tL′)−n̄LL′∗, together with the corresponding ηLL′ ∈ Iso0(L,L′) such

that g0
LL′an = d(ηLL′)⊗̂kLkL(p). Here kL is the residue field of L, kL ' FpM0

and n̄LL′ ∈ lim←−Z/pM0psZ. Notice that all these maps depend on some choice
of uniformising elements tL and tL′ in, respectively, L and L′.

The systems gLL′ and gKK′ are comparable because both come from the
group isomorphisms ΓL(p) −→ ΓL′(p) and ΓK(p) −→ ΓK′(p) which are
induced by g. If IL/K is the inertia subgroup of Gal(L/K) then there is
a natural group embedding IL/K ⊂ Aut0(L) ⊂ Aut0(Lur). Similarly, we
have a group embedding for the inertia subgroup IL′/K′ of Gal(L′/K ′) into
Aut0(L′).

Let κ : IL/K −→ IL′/K′ be the group isomorphism induced by g. Then
τ∗gLL′s = gLL′sκ(τ)∗, for any τ ∈ IL/K and any s > 0. This implies that

τ∗gLL′ur = gLL′urκ(τ)∗,

i.e. condition C from Subsection 3.7 holds in this case.
Let µKK′ = ηKK′Fr(tK′)−n̄KK′ ∈ Iso(K,K ′) and µLL′ =

ηLL′Fr(tK′)−n̄LL′ ∈ Iso(L,L′).

Proposition 6.1. With the above notation:
a) µLL′ |K = µKK′;
b) for any τ ∈ IL/K , τµLL′ = µLL′κ(τ).

Proof. Let α = Fr(tL′)n̄LL′ . Consider K ′ur as a subfield in L′ur and set K ′′ur =
α(K ′ur) ⊂ L′ur. Then K ′′ur is the maximal unramified p-extension of the
complete discrete valuation field K ′′ := α(K ′) ⊂ E(p) in E(p).
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Let β = α|K′ur . Consider the following commutative diagram

M̄Lur
gLL′ur−−−−→ M̄L′ur

α∗
L′L′ur−−−−→ M̄L′ury y y

M̄Kur
gKK′ur−−−−→ M̄K′ur

β∗
K′K′′ur−−−−−→ M̄K′′ur

where the vertical arrows come from natural embeddings of the correspond-
ing Galois groups.

The systems g0
LL′ = gLL′α

∗
L′L′ and fKK′′ := gKK′β

∗
K′K′′ are comparable,

because they come from the compatible group isomorphisms ΓL(p) −→
ΓL′(p) and ΓK(p) f−→ ΓK′′(p). In this situation, condition C is auto-
matically satisfied and, by proposition 3.5, the admissibility of g0

LL′ im-
plies the admissibility of fKK′′ . Because the group homomorphism f is
compatible with ramification filtrations, we can apply the results of sec-
tion 5 to deduce that fKK′′ is special admissible locally analytic and that
there is an η1

KK′′ ∈ Iso0(K,K ′′) such that fKK′′an = d(η1
KK′′)⊗̂kk(p) and

ηLL′ |K = η1
KK′′ .

Consider ψ := η−1
KK′ηLL′ |K ∈ Iso0(K ′,K ′′). Then

ψan = η−1
KK′anη

1
KK′′an = (g0

KK′an)−1(gKK′β∗K′K′′)KK′′an

=
(
g0
KK′

−1
gKK′β

∗
K′K′′

)
K′K′′an

=
(
Fr(tK′)−n̄KK′β

)
an
.

Therefore by proposition 2.7,

η−1
KK′ηLL′ |K = Fr(tK′)−n̄KK′Fr(tL′)n̄LL′ |K

or µLL′ |K = µKK′ .
Part a) of our proposition is proved.
Consider the inertia subgroups IL/K ⊂ Gal(Lur/Kur), IL′/K′ ⊂

Gal(L′ur/K
′
ur) and IL′/K′′ ⊂ Gal(L′ur/K

′′
ur). As it was noticed earlier, the

correspondence
τ∗ 7→ τ ′∗ = g−1

LL′urτ
∗gLL′ur

induces a group isomorphism κ : IL/K −→ IL′/K′ such that κ(τ) = τ ′.
We use the correspondence

α∗ : τ ′ 7→ τ ′′ = α−1τ ′α

to define the group isomorphism κα : IL′/K′ −→ IL′/K′′ such that κα(τ ′) =
τ ′′. With this notation we have the following equality of compatible systems

τ∗LLg
0
LL′ = g0

LL′τ
′′
L′L′
∗
,

where as earlier, g0
LL′ = gLL′α

∗
L′L′ .
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Therefore, the equality (τηLL′)an = (τ∗LLg0
LL′)an = (g0

LL′τ
′′
L′L′
∗)an =

(ηLL′τ ′′)an together with proposition 2.7 and the definition of τ ′′ imply
that τηLL′ = ηLL′τ

′′ = ηLL′α
−1τ ′α, i.e. τµLL′ = µLL′τ

′.
The proposition is proved. �

Let µ := lim
→
µKK′ : E(p) −→ E(p). Clearly, it is a continuous field

isomorphism and µ(E) = E′.

Proposition 6.2. µ∗ = g.

Proof. As earlier, let K and K ′ be Galois extensions of E and E′, respec-
tively, such that g(ΓK(p)) = ΓK′(p).

By part b) of the above proposition 6.1, the correspondences µ∗ : τ 7→
µ−1τµ and g : τ 7→ g(τ) induce the same isomorphism of the inertia sub-
groups IK(p) −→ IK′(p). Consider the induced isomorphism IK(p)ab −→
IK′(p)ab. With respect to the identifications of class field theory IK(p)ab =
UK and IK′(p)ab = UK′ , where UK and UK′ are groups of principal units in
K and K ′, respectively, this homomorphism is induced by the restriction of
the field isomorphism µKK′ on UK . In addition, µKK′ transforms the natu-
ral action of any τ ∈ ΓE(p) on UK into the natural action of g(τ) ∈ ΓE′(p)
on UK′ . Therefore, the two field automorphisms µ−1τµ|K′ and g(τ)|K′ of
K ′ become equal after restricting on UK′ . This implies that they coincide
on the whole field K ′, i.e. µ−1τµ ≡ g(τ) mod ΓK′(p), for any τ ∈ ΓE(p).
Because K is an arbitrary Galois extension of E in E(p) this implies that
g = µ∗.

So, proposition 6.2 together with the characteristic p case of the Main
Theorem are completely proved. �

7. Proof of the main theorem — the mixed characteristic case

In this section we assume that E is a field of characteristic 0. Clearly,
this implies that the field E′ is also of charactersitic 0.

7.1. Following the paper [10] introduce the categories Ψ, Ψ̃ and the func-
tor Φ : Ψ −→ Ψ̃.

The objects of Ψ are the field extensions L/K, where [K : Qp] < ∞, L
is an infinite Galois extension of K in a fixed maximal p-extension K(p)
of K and ΓL/K = Gal(L/K) is a p-adic Lie group. A morphism from L/K
to an object L′/K ′ in Ψ is a continuous field embedding f : L −→ L′ such
that [L′ : f(L)] <∞ and f |K is a field isomorphism of K and K ′.

The objects of Ψ̃ are couples (K, G) where K is a complete discrete
valuation field of characteristic p with finite residue field and G is a closed
subgroup of the group of all continuous automorphisms of K. In addition,
with respect to the induced topology G, is a compact finite dimensional
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p-adic Lie group. A morphism from (K, G) to an object (K′, G′) in Ψ̃ is
a closed field embedding f : K −→ K′ such that K′ is a finite separable
extension of f(K). In addition, f(K) is G′-invariant and the corrspondence
τ 7→ τ |f(K) induces a group epimorphism from G′ to G.

Let X be the Fontaine-Wintenberger field-of-norm functor, cf. [11]. Then
the correspondence L/K 7→ (X(L), GL/K), where GL/K = {X(τ) | τ ∈
ΓL/K}, induces the functor Φ : Ψ −→ Ψ̃.

One of main results in [10] states that the functor Φ is fully faithful.

7.2. Let {Eα/E, iαβ}I be an inductive system of objects in the category
Ψ. From now on I is a set of indices α with a suitable partial ordering. The
connecting morphisms iαβ ∈ HomΨ(Eα, Eβ) are the natural field embed-
dings defined for suitable couples α, β ∈ I. We can choose this inductive
system to be large enough to satisfy the requirement lim

→
Eα = E(p).

By applying the functor Φ, we obtain the inductive system
{(Eα, Gα), ĩαβ}I in the category Ψ̃, where (Eα, Gα) = Φ(Eα/E) and ı̃αβ =
Φ(iαβ), for all α ∈ I. Then lim

→
Eα = E(p) is a maximal p-extension for each

field Eα, α ∈ I.
Notice that the field embeddings ı̃αβ induce group epimorphisms ̃αβ :

Gβ −→ Gα with corresponding projective system {Gα, ̃αβ}I such that
lim←−Gα is identified via the functor X with ΓE(p). For any α ∈ I, we
then have the identifications ΓEα(p) = ΓEα(p). These identifications are
compatible with the ramification filtrations. This means that one can define
the Herbrand function ϕα for the infinite extension Eα/E as the limit of
Herbrand functions of all finite subextensions in Eα over E and

ΓE(p)(v) ∩ ΓEα(p) = ΓEα(p)(ϕα(v)),

for all v > 0.

7.3. Consider the group isomorphism g : ΓE(p) −→ ΓE′(p) from the
statement of the Theorem. For α ∈ I, let E′α ⊂ E′(p) be such that
g(ΓEα(p)) = ΓE′α(p). Then we have the corresponding injective system
{E′α, i′αβ}I and lim

→
E′α = E′(p).

Clearly, for any α ∈ I,
• E′α/E

′ is an object of Ψ;
• ḡα := gαmod ΓEα(p) : ΓEα/E −→ ΓE′α/E′ is a group isomorphism

which is compatible with the ramification filtrations; in particular, this
implies that the Herbrand functions for the infinite extensions Eα/E and
E′α/E

′ are equal;
• for any v > 0, gα := g|ΓEα (p) induces a continuous group isomorphism

of ΓE(p)(v) ∩ ΓEα(p) and ΓE′(p)(v) ∩ ΓE′α(p).
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For α ∈ I, set Φ(E′α/E′) = (E ′α, G′α) and Φ(i′αβ) = ı̃′αβ . Then we have
an inductive system {(E ′α, G′α), ı̃′αβ}I and lim

→
E ′α := E ′(p) is a maximal p-

extension for each E ′α. As earlier, we obtain the projective system {G′α, ̃′αβ}I
and the field-of-norms functor allows us to identify the topological groups
lim←−G

′
α and ΓE′(p). Therefore, for any α ∈ I, we have an identification of

the groups ΓE′α(p) and ΓE ′α(p).
This implies that for all α ∈ I, we have the following isomorphisms of

topological groups:

• g̃α := X(gα) : ΓEα(p) −→ ΓE ′α(p) such that, for any rational number
v > 0, g̃α(ΓEα(p)(v)) = ΓE ′α(p)(v);

• X(ḡα) : Gα −→ G′α which maps the projective system {Gα, ̃αβ}I to
the projective system {G′α, ̃′αβ}I .

7.4. By the characteristic p case of the Main Theorem for all α ∈ I, there
are continuous field isomorphisms µ̃α : Eα −→ E ′α such that

• {µ̃α}α∈I maps the inductive system {Eα, ı̃αβ}I to the inductive system
{E ′α, ı̃′αβ}I ;

• X(ḡα) is induced by µ̃α, i.e. if τ ∈ Gα and τ ′ = X(ḡα) ∈ G′α then
τ µ̃α = µ̃ατ

′.

Because Φ is a fully faithful functor, for all indices α ∈ I, there is a
µα ∈ HomΨ(Eα/E,E′α/E′) such that

• {µα}α∈I transforms the inductive system {Eα/E, iαβ}I into the in-
ductive system {E′α/E′, i′αβ}I ;

• if τ ∈ ΓEα/E and τ ′ = ḡα(τ) ∈ ΓE′α/E′ then τµα = µατ
′.

Therefore, µ := lim
→
µα is a continuous field isomorphism from E(p) to

E′(p) such that τµ = µg(τ), i.e. g(τ) = µ−1τµ, for τ ∈ lim←−ΓEα/E = ΓE(p)
and g(τ) ∈ lim←−ΓE′α/E′ = ΓE′(p).

The Main Theorem is completely proved.
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