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On a theorem of Mestre and Schoof

par John E. CREMONA et Andrew V. SUTHERLAND

Résumé. Un théorème bien connu de Mestre et Schoof implique
que la cardinalité d’une courbe elliptique E définie sur un corps
premier Fq peut être déterminée de manière univoque en calculant
les ordres de quelques points sur E et sur sa tordue quadratique, à
condition que q > 229. Nous étendons ce résultat à tous les corps
finis avec q > 49, et tous les corps premiers avec q > 29.

Abstract. A well known theorem of Mestre and Schoof implies
that the order of an elliptic curve E over a prime field Fq can be
uniquely determined by computing the orders of a few points on
E and its quadratic twist, provided that q > 229. We extend this
result to all finite fields with q > 49, and all prime fields with
q > 29.

Let E be an elliptic curve defined over the finite field Fq with q elements.
The number of points on E/Fq, which we simply denote #E, is known to
lie in the Hasse interval:

Hq = [q + 1− 2√q, q + 1 + 2√q].
Equivalently, the trace of Frobenius t = q + 1 −#E satisfies |t| ≤ 2√q. A
common strategy to compute #E, when q is not too large, relies on the
fact that the points on E/Fq form an abelian group E(Fq) of order #E.
For any P ∈ E(Fq), the integer #E is a multiple of the order of P , and
the multiples of |P | that lie in Hq can be efficiently determined using a
baby-steps giant-steps search. If there is only one multiple in the interval,
it must be #E; if not, we may try other P ∈ E(Fq) in the hope of uniquely
determining #E. This strategy will eventually succeed if and only if the
group exponent

λ(E) = lcm{|P | : P ∈ E(Fq)}
has a unique multiple in Hq. When this condition holds we expect to deter-
mine #E quite quickly: with just two random points in E(Fq) we already
succeed with probability greater than 6/π2 (see [2, Theorem 8.1]).

Unfortunately, λ(E) need not have a unique multiple in Hq. However,
for prime q we have the following theorem of Mestre, as extended by
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Schoof [1, Theorem 3.2]; the result as stated in [1] refers to the order of a
particular point P , but the following is an equivalent statement.

Theorem 1 (Mestre-Schoof). Let q > 229 be prime and E an elliptic curve
over Fq with quadratic twist E′. Either λ(E) or λ(E′) has a unique multiple
in Hq.

The quadratic twist E′ is an elliptic curve defined over Fq that is isomor-
phic to E over the quadratic extension Fq2 , and is easily derived from E.
The orders of the groups E(Fq) and E′(Fq) satisfy #E + #E′ = 2(q + 1).
For prime fields with q > 229, Theorem 1 implies that we may determine
one of #E and #E′ by alternately computing the orders of points on E
and E′, and once we know either #E or #E′, we know both.

Theorem 1 does not hold for q = 229. Since there are counterexamples
whenever q is a square, it does not hold in general for non-prime finite
fields either. The argument in the proof of [1, Theorem 3.2] does not use
the primality of q, but only that q is both large enough and not a square,
so that the Hasse bound on t cannot be attained. If q = r2 is an even power
of a prime, then there are supersingular elliptic curves E over Fq such that

E(Fq) ∼= (Z/(r − 1)Z)2 and E′(Fq) ∼= (Z/(r + 1)Z)2 .

One may easily check that there are at least 5 multiples of r − 1, and at
least 3 multiples of r + 1, in Hq; however for r > 7 (q > 49), the only pair
that sum to 2(q+1) are (r−1)2 and (r+1)2. This resolves the ambiguity in
these cases, leaving a finite number of small exceptions. For example, when
q = 49 there is more than one pair of multiples of 6 and 8 (respectively)
which sum to 2(q + 1) = 100, since 100 = 36 + 64 = 60 + 40.

The preceding observation led to this note, whose purpose is to extend
Theorem 1 to treat all finite fields (not just prime fields) Fq with q > 49,
and all prime fields with q > 29. Specifically, we prove the following:

Theorem 2. Let q /∈ {3, 4, 5, 7, 9, 11, 16, 17, 23, 25, 29, 49} be a prime power,
and let E/Fq be an elliptic curve. Then there is a unique integer t with
|t| ≤ 2√q such that λ(E)|(q + 1− t) and λ(E′)|(q + 1 + t).

Our proof is entirely elementary, relying on just two properties of elliptic
curves over finite fields:

(a) #E = q+1−t and #E′ = q+1+t for some integer t with |t| ≤ 2√q;
(b) E(Fq) ∼= Z/n1Z× Z/n2Z with n1 dividing both n2 and q − 1.

Proofs of (a) and (b) may be found in most standard references, includ-
ing [3]. We note that n2 = λ(E), and n1 = 1 when E(Fq) is cyclic.

Proof of Theorem 2. Let E be an elliptic curve over Fq, and put #E =
mM with M = λ(E), and #E′ = nN with N = λ(E′). Without loss of
generality, we assume a = q + 1 −#E ≥ 0. Taking t = a shows existence,
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by (a) and (b) above, so we need only prove that t = a is the unique t
satisfying the conditions stated in the theorem. For any such t we have t ≡
q+1 modM and t ≡ −(q+1) mod N ; hence t lies in an arithmetic sequence
with difference lcm(M,N). We also have |t| ≤ 2√q; thus if lcm(M,N) >
4√q, then t = a is certainly unique.

We now show that lcm(M,N) ≤ 4√q implies q ≤ 1024. We start from

mMnN = (q+ 1− a)(q+ 1 + a) = (q+ 1)2− a2 ≥ (q+ 1)2− 4q = (q− 1)2,

which yields

(0.1) mn ≥ (q − 1)2

MN
= (q − 1)2

gcd(M,N)lcm(M,N)
.

Let d = gcd(m,n). Then d2 divides mM +nN = 2(q+ 1), so d|(q+ 1), but
also d|(q − 1), hence d ≤ 2. This implies 2 lcm(M,N) ≥ 2 lcm(m,n) ≥ mn.
We also have gcd(M,N) ≤ gcd(m,n) gcd(M/m,N/n) ≤ 2 gcd(M/m,N/n).
Applying these inequalities to (0.1) we obtain

(0.2) lcm(M,N)2 ≥ (q − 1)2

4 gcd(M/m,N/n)
.

We now suppose lcm(M,N) ≤ 4√q, for otherwise the theorem holds. We
have nN = q + 1 + a > q, since we assumed a ≥ 0, and N ≤ 4√q implies
that n > √q/4, so N/n < 16. Applying gcd(M/m,N/n) ≤ N/n < 16 to
(0.2) yields

4√q ≥ lcm(M,N) > (q − 1)/8,
which implies that the prime power q is at most 1024.

The cases for q ≤ 1024 are addressed by a program listed in the appen-
dix that outputs the values of q, M = λ(E), and N = λ(E′) for which
exceptions can arise. This yields the set of excluded q and completes the
proof. �

Application. The proof of Theorem 2 suggests an algorithm to com-
pute #E, provided that q is small enough for the orders of randomly chosen
points in E(Fq) to be easily computed. It suffices to determine integers a
andm for which the set S = {x : x ≡ a mod m} contains t = q+1−#E but
no t′ 6= t with |t′| ≤ 2√q. Beginning with m = 1 and a = 0, we compute |P |
for random points P in E(Fq) or E′(Fq), and update a and m to reflect the
fact that t ≡ q+1 mod |P | when P ∈ E(Fq), and t ≡ −(q+1) mod |P | when
P ∈ E′(Fq). The new values of a andmmay be determined via the extended
Euclidean algorithm. When the set S contains a unique t with |t| ≤ 2√q,
we can conclude that #E = q + 1− t (and also that #E′ = q + 1 + t).

The probabilistic algorithm we have described is a Las Vegas algorithm,
that is, its output is always correct and its expected running time is finite.
The correctness of the algorithm follows from property (a). Theorem 2
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ensures that the algorithm can terminate (provided that q is not in the
excluded set), and [2, Theorem 8.2] bounds its expected running time.

An examination of Table 1 reveals that in many cases an ambiguous t′
could be ruled out if λ(E) or λ(E′) were known. For example, when q =
49, the trace t′ = −10 yields #E = 60 and #E′ = 40, so both λ(E)
and λ(E′) are divisible by 5 (and are not 6 or 8). If E has trace −10,
the algorithm above will likely discover this and terminate within a few
iterations. But when the trace of E is 14 (and λ(E) = 6 and λ(E′) =
8), we can never be completely certain that we have ruled out −10 as a
possibility. Thus when an unconditional result is required, we must avoid
q ∈ {3, 4, 5, 7, 9, 11, 16, 17, 23, 25, 29, 49}.

However, when λ(E) and λ(E′) are known we have the following corol-
lary, which extends Proposition 4.19 of [3].

Corollary 1. Let E/Fq be an elliptic curve. Up to isomorphism, the in-
tegers λ(E) and λ(E′) uniquely determine the groups E(Fq) and E′(Fq),
provided that q /∈ {5, 7, 9, 11, 17, 23, 29}. In every case, λ(E) and λ(E′)
uniquely determine the set {E(Fq), E′(Fq)}.

Note that λ(E) and #E together determine E(Fq), by property (b).
To prove the corollary, apply Theorem 1 with a modified version of the
algorithm in the appendix that also requires (q + 1 − t′)/M to divide M
and (q + 1 + t′)/N to divide N .

As a final remark, we note that all the exceptional cases listed in Table 0.1
can be eliminated if the orders of the 2-torsion and 3-torsion subgroups
of E(Fq) are known (these orders may be computed using the division
polynomials). Alternatively, one can simply enumerate the points on E/Fq
to determine #E when q ≤ 49.

Appendix
For a prime power q, we wish to enumerate all M , N , and t such that:

(i) M divides q + 1− t and N divides q + 1 + t, with 0 ≤ t ≤ 2√q.
(ii) (q + 1 − t)/M divides M and q − 1, and (q + 1 + t)/N divides N

and q − 1.
(iii) M divides q + 1 − t′ and N divides q + 1 + t′ for some t′ 6= t with
|t′| ≤ 2√q.

Any exception to Theorem 2 must arise from an elliptic curve E/Fq with
λ(E) = M , λ(E′) = N , and #E = q + 1 − t (or from its twist, but the
cases are symmetric, so we restrict to t ≥ 0). Properties (i) and (ii) follow
from (a) and (b) above, and (iii) implies that t does not uniquely satisfy
the requirements of the theorem.

Algorithm 1 below finds all M , N , and t satisfying (i), (ii), and (iii). For
q ≤ 1024, exceptional cases are found only for the twelve values of q listed
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in Theorem 2. Not every case output by Algorithm 1 is actually realized
by an elliptic curve (in fact, all but one of the exceptions fail the condition
that (q + 1− t)/M ≡ (q + 1 + t)/N (mod 2)), but for each combination of
q and t at least one is. An example of each such case is listed in Table 0.1,
where we only list cases with t ≥ 0: for the symmetric cases with t < 0,
change the sign of t and swap M and N .
Algorithm 1. Given a prime power q, output all quadruples of integers
(M,N, t, t′) satisfying (i), (ii), and (iii) above:

for all pairs of integers (M,N) with √q − 1 ≤M,N ≤ 4√q do
for all integers t ∈ [0, 2√q] with M |(q + 1− t) and N |(q + 1 + t) do

Let m = (q + 1− t)/M and n = (q + 1 + t)/N .
if m|M and m|(q − 1) and n|N and n|(q − 1) then

for all integers t′ ∈ [−2√q, 2√q] do
if M |(q + 1− t′) and N |(q + 1 + t′) then

print M,N, t, t′.
end if

end for
end if

end for
end for

q M N t E t′

3 2 2 0 y2 = x3 − x -2,2
4 1 3 4 y2 + y = x3 + α2 -2,1
5 2 4 2 y2 = x3 + x -2
7 2 6 4 y2 = x3 − 1 -2
7 4 4 0 y2 = x3 + 3x -4,4
9 2 4 6 y2 = x3 + α2x -6,-2,2

11 4 8 4 y2 = x3 + x+ 9 -4
11 6 6 0 y2 = x3 + 2x -6,6
16 3 5 8 y2 + y = x3 -7
17 6 12 6 y2 = x3 + x+ 7 -6
23 8 16 8 y2 = x3 + 5x+ 15 -8
25 4 6 10 y2 + y = x3 + α7 -2
29 10 20 10 y2 = x3 + x -10
49 6 8 14 y2 = x3 + α2x -10

Table 0.1. Exceptional Cases with t ≥ 0.

The coefficient α denotes a primitive element of Fq.
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