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Heights of roots of polynomials with odd
coeflicients

par J. GARZA, M. 1. M. ISHAK, M. J. MOSSINGHOFF,
C. G. PINNER et B. WILES

RESUME. Soit « un zero d’un polyndome de degré n a coefficients
impairs qui n’est pas une racine de I'unité. Nous montrons que la
hauteur de « satisfait

0.4278
h(a) > .

() 2 n+1
Plus généralement, nous obtenons des bornes dans le cas ol chaque
coefficient est congru a 1 modulo m, avec m > 2.

ABSTRACT. Let a be a zero of a polynomial of degree n with odd
coefficients, with « not a root of unity. We show that the height
of « satisfies
hia) > 0.4278'
n+1
More generally, we obtain bounds when the coeflicients are all
congruent to 1 modulo m for some m > 2.

1. Introduction

We recall the Mahler measure M (f) of a polynomial f = a %, (z — o)
in Clz]:

d
M(f) = |a| [T max{1, |as[}.
i=1

For a nonzero algebraic number « of degree d, one defines the absolute
logarithmic height h(«) of a to be

(@) = log M(F)

where F' is an irreducible polynomial in Z[z] with F(a) = 0. That is,
log M (f) represents the sum of the heights of the nonzero roots of f (with
multiplicity) whenever f is primitive in Z[z].

Manuscrit recu le 24 mai 2009, révisé le 15 décembre 2009.
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For an integer m > 2, let D,,, denote the set of integer polynomials whose
coefficients a; all satisfy a; = 1 (mod m). For a polynomial of degree n in
D,,, with no cyclotomic factors, Borwein, Dobrowolski, and Mossinghoff [1]
proved that

n
mn T 17
with ¢ = %logf) =0.402359..., cg = 0.459003, and ¢, = log(vm? + 1/2)
for m > 3. These constants were improved in [2] to obtain co = 0.416230. . .,
general bounds of strength

log M(f) = ¢

. log(m/2) + (3 —log 3)/2m? + O(1/m*) if m > 3 odd,

" \log(m/2) + (4 —log4)/m? + O(1/m*)  if m > 4 even,
and particular values c3 = 0.501026..., ¢4 = 0.832461..., c5 = 0.952869,
e = 1.165884, ¢; = 1.271775, cs = 1.425369, co = 1.515669, c1op =

1.634836, and ¢1; = 1.712539.
We show here how to more straightforwardly obtain bounds of the form

(1.1) h(a) > nrl

when « is a zero of a polynomial f in D,, of degree n, but not a 2(n + 1)st
root of unity. Of course then

d
n+1

log M(f) > ¢

where d is the degree of the noncyclotomic part of f (the type of bound
obtained in Theorem 2.2 of [2]).

Theorem 1.1. If a is a zero of a polynomial f in D, of degree n and « is
not a 2(n + 1)st root of unity (not an (n+ 1)st if m > 3), then (1.1) holds
with

co = 0.427800
and
2.947486 — 6/2 1
o (5) 22 o)
2 m?2 m4
where

5= 1 ifm >3 odd,
1o if m > 4 even.
For small m > 3 we show the following improvements: c3 = 0.620362,

cs = 0.855600, c5 = 1.016628, cg = 1.179916, c; = 1.307083, cg = 1.434141,
cg = 1.538934, c10 = 1.640027, and c11 = 1.728890.
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We note the easily obtained (if asymptotically less precise) bound

Log (m243) if m > 3 odd,
(1.2) em=14" ()

%log (m1+4> if m > 4 even

(the even case having already been obtained and improved in [2]). We
remark also that the same computation that yields the value of ¢3 in The-
orem 1.1 immediately produces the lower bound

h(c) > 0.155090

for abelian « (see [3]).
Our second main result shows that the optimal ¢, in (1.1) certainly
satisfies ¢, = logm + O(1).

Theorem 1.2. If (1.1) holds for any non-root of unity « that is a zero of
a polynomial f in D,, of degree n, then

1 5
(1.3) ¢y < log ( +2‘[> — 0.481211 ...
(even if we further restrict to Littlewood polynomials),
(1.4) c3 <log2=0.693147...,
(1.5) cs < log(1 +V2) = 0.881373...,
and

1

(1.6) ce < log <:H2\/>3> = 1.194763 . . ..

Further, for general m > 3,
(1.7) cm < log(m —1).

It is not clear what the optimal constant C should be in a bound of the
form ¢,;, =logm — Cy + o(1).

2. Preliminaries

Suppose that « lies in an algebraic number field k, and V} is a complete
set of absolute values | |, on k, normalised so that |z|, = Hx||v”/ ¢ where
d=[k:Q)],d, =[ky:Qyl], and ||z, coincides with the usual absolute value
or p-adic absolute value on Q. Then

h(a) =log H(a), H(a) = H max{1, ||y}
veVy

The normalisations ensure that this does not depend upon k.
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Lemma 2.1. Fort=1, ort > 1 and k < 4t/(t — 1),

(t+ 1)k (k:)zk

sup |(z — 1)k(z+t)| =

|2|=1 (k+1)2*+D \ ¢
achieved at z = —((tzj(i)fl_)%) + (t+1) 2’1212:1(;71)%)1'. Fort > 1 and k >

4t/(t —1)2, the supremum is 2F(t — 1), achieved at z = —1.
Proof. Writing z = €%, u = cos 8, it is readily checked that
[(z = D)F(z +1)]* = 2°(1 — w)F((#* + 1) + 2tw)

is maximised for —1 <u <1 at u= —% while this is at least —1

(and at u = —1 when k > 4t/(t — 1)?). O

Define the polynomials

1 1 1 ifmi
21 gi() = 50m - )z+ 5(m+9) 5:{ if m is odd,

0 if m is even,

and

1 1 1
(2.2) ga2(2) = Z(m2 +(4—6)2% + i(m2 —(4-9))z+ Z(m2 + (4 —9)).
Lemma 2.2. If m > 3 is odd then gi(z") is irreducible in Z[z] for alln in
N. Further, if m > 4 is odd with 3 1 m or even with 4 | m then g2(2") is
irreducible in Z[z] for all n in N.

Proof. If m = 2k+1, is odd then by Capelli’s Theorem ¢, (2") = kz"+(k+1)
is irreducible unless (k+1)/k is a prime power in Q, but plainly k+1 = a?,
k = bP has no positive integer solutions a, b.

Observe that if go(5) = 0 then

5 —L(m? = (4—6)) £ m/([E—0)i
L(m2+ (4-9))

is complex, lying on the unit circle. Moreover, if m is odd and 3 t m, or if
4 | m, then

ged (3(m? + (4= 8)), 3 m? — (1= 5))) = 1.

g2(z) is irreducible in Z[z], and

m? —
h(B) = 3 log (*fj“”) .
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Notice that if m > 2 is odd with 3 | m, or if 2| m, then we need to first
factor out a common 3 or 2 and

(2.3) h(B) = %log (mi;— 3) or %bg <m28+ 4> .

Suppose then that (m,6) = 1 or 4 | m, and g2(z") has a nontrivial factor,

d
r(z) = Zaizi € Z[z], ag#0, 0<d<2n.
=0
If v is a root of 7(z), then

REal_ (o) = Ln()

d n
and )
m*+ (4 -0 n
e

for some y in N and prime p | 2n/ged(2n,d). For m = 41, this reduces to
12 +1 = yP, a special case of Catalan’s equation shown to have no solution
by Lebesgue [4]. For odd m = 2I + 1, this reduces to {*> + 1+ 1 = y?, which
was shown by Nagell [6] and Ljunggren [5] to have only the solution p = 3,
y =7, 1 = 18. This just leaves the case m = 37, in which case

1 2+\/§i>3

@) =T (" =) ("= 571), B=5(1-V5i) (

2 2 —/3i

Plainly then go(2™) is irreducible in Z[z] unless (2" — (3) is reducible in
Q(v/3i)[z]. But by Capelli’s Theorem this would require 3 = AP or — 4u*
for some prime p and A or u in Q(v/34). Considering prime factorizations in
the integers of Q(v/37), the only possibility would be p = 3, but %(1 —V/3i)
cannot be a cube in Q(y/37) (which contains the sixth but not the eighteenth
roots of unity). O

3. Proof of Theorem 1.1

If fis in D,,, then f(x) = A mr(z) for some r of degree at most

z—1
n in Z[z]. Hence for v { 0o, writing 8 = a1,

(3.1) 18 = 1o = Im(a = D)r(a)|y < [m|y max{1,[B].}.
For m = 2 we take
9(2) =(z — D)*(z + 1)1(522 + 62 + 5)"(292* 4+ 602> + 782% + 602 + 29)"
- (32% 4+ 22 + 3)%(332* + 602% 4 702% + 602 + 33)°
- (1692° 4- 4902° + 8712* + 103623 + 87122 + 4902 + 169)°.
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Thus for v 1 oo,

18— 1]y < |2l max{1, 8], },
B+ 1y =18~ 1+2], < |2, max{L,|8],},
and
(3.2) 82 =1| <[22 max{1, |5}, %,
giving
82+ 1]y = 8 — 1+ 2], < |2y max{1,|8],}%,
58" + 682 +5| = |5(8” —1)? +165°| < [2[} max{L, |5}, }",
36" + 267 + 3] =[3(8 ~ 1) + 87| < [2f max{L,[5].}",
and for integers A, B, C, and D,

(33)  |A(B - 1)+ B2'6X(62 — 1)? + C2°6*| < |23 max{1, |l )%,

and
(84) |A(B —1)° + BEF (B — 1) + Ca*BH (B — 1) + DA%

< 1212 max{1, |},
The two quartic factors in g(z) correspond to (A, B,C) = (29,11,1) and

(33,12,1) in (3.3), and the sextic to (4, B,C, D) = (169,94,17,1) in (3.4).
Hence we have

|g(ﬂ2)|v < ’2|12)k+l+4t+8w+3c+86+123 max{l, |ﬂ|v}2 degg

for v 1 oo.
For v | oo and |8|, > 1, we observe that |g(8%)], = |329%¢9|g(572)],
with |372|, < 1. Hence for v | oo,

dy/d
|g<ﬁznv<<xnax{1,w3n}2deg9(sup\g(zn)

|z|<1
dy/d

= max{L, 8], }**59VM T,

where, writing z = e and u = cost,

M = sup |g(z)|2 _ 2k+l+2t+4w+20+4e+65L,
|z]=1
with
L = _ k ! 2t 2 2w 2c
= sup (1—u)"(1+4uw)'(5bu+3)"(29u” + 30u + 5)"(3u+ 1)
—1<u<1

- (33u? + 30u + 1)%(169u® + 245u? + 91u + 7)%.
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We need to justify that g(3?) # 0. By assumption 4% # 1, and from (3.2)
plainly 3% # —1. Observe also that

5240 4 6220+ 45
324D 4 92(n+1) 4 3
2928+D) 1 6060+ 4 78,4+ | 60,20 99,
332800 4 6025+ 470240+ 460220+ 433,
and the factors
1320040 4 9,5(nt1) 4 19 4(nt1) _ 4 3(n+1) | 19,2(n41) 4 9 (n+1) 4 13
1326(n+1) _ 225(n+1) + 1924(n+1) + 423(71—1—1) + 1922(714-1) _ 2Z(n+1) +13
of
16921271 4 49021000+1) 4 871,8(n+1) 4 1036,0(m+D) 4 87124 )
+ 49022+ 4+ 169

are all irreducible (each of their roots lies on the unit circle with the same
nontrivial height, so the lead coefficients of each factor would need to con-
tain all the primes in the original lead coefficient). Since « has degree at
most n, the remaining factors cannot vanish. Thus, by the product formula,

1= H |g(ﬁ2)|v S H(/B)Qdeg92—(2k+l+4t+8w+30+8e+125)\/M’
v

and
log (23k+l+6t+12w+40+12e+185 / L)
3.5 h > .
(3:5) (ﬁ)_4(k+l+2t+4w+2c+4e+6s)
The choice (k,l,t,w,c,e,s) = (3977,780,328,96,24,16,16) and numerical
computation of L gives the lower bound h(/3) > 0.4278003111 ... claimed.
For m = 4, taking g(3) in place of g(/3?) immediately produces h(3) >
2-0.4278003111 ... = 0.8556006223 . . ..
For general m > 3, we take

I
9(z) =[] 9i(2)”
1=0

with I = 2, go(z) = z — 1, and ¢1(2) and g¢2(2) as in (2.1) and (2.2). For
v 1 oo we have

0Bl = |2 (m — 6)(B— 1) +m

2

< |ml, max{1, [8],},

v

< |m[2 max{1, |3, }?,

v

92Dl = |17 + (4= 9)(3 - 1 + ms




376 J. GArza, M. I. M. IsHAK, M. J. MOSSINGHOFF, C. G. PINNER, B. WILES

and
|g(ﬂ)’v < max{l, |ﬁ|v}d0gg|m’gegg'

For v | oo and |8, > 1, writing |g(3)], = |8|3°¢9|¢g*(8)|s, where g* is the
reciprocal of g, we have

dy/d
19(8)], < max{L, rmv}degg(sg max{lg(2)], \g*(z)\})

= max{1, | 3], }4%9 sup |g(z)|™/7.

|z|=1
Hence assuming that g(3) # 0 we have

1—Hm Yo < H( wwwmwﬁymm,
zZl=

and

(3.6) h(B) > log(m) — Log(v21) M := sup |g(2)|*.

degg ’ l2|=1
It remains to check that g(8) # 0. By assumption 5 # 1. For m odd

g1(2"*1) is irreducible by Lemma 2.2 so cannot vanish at o (which has
degree at most n). From (3.1) we know that

(3.7) [I11 =58l =m ][] max{1,|8.} "
v]oo vfoo

So for m > 2 we must have § # —1 (else (3.7) gives 2 > m). Hence
90(B)g1(B) # 0. Thus when s = 0 and s; = 1 (and sg < m? — 1 when m is
odd), Lemma 2.1 gives

7 80+1 480 %SO
(50 + 1)3(0+D) <7n2 5) ’

and

2 250
so+1 > l(SU—‘,-I) m- — 6
H(B) > (sp+1)2 <430 )

The result (1.2)

m? -
(3.8) Mmz;%<:%5>

follows from optimally taking s = (m? — §)/4.

Similarly, degree considerations show that g2(3) # 0 when 4 | m, or when
m is odd with 3 { m, and g2(2""!) is irreducible by Lemma 2.2. When m
is odd and 3 | m, or when 2 || m, then g2(5) # 0 from (2.3) and the lower
bound (3.8).
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Converting to cosines, we have

M = sup l9(2)|° = sup Hfz i
|z|= u€[-1,1] ;=g
with
folu) = 2(1 —w),
1 1
fi(w) = 5(m® = B)u+ 5 (m* +5),
and
fa(u) = (1 (m2 + (4 - 5)) U+ L (m2 ol C 5)))2
2 2 ’
where plainly M will be achieved at uw = —1 or at zero of

1 ’
Z 3 fz(u) -0
=0

i(w)

For example, after numerical computational and experimentation,
the respective choices (m;sg,s1,s2) = (3;107,48,17), (5;198,26,13),
(6,246, 21, 11), (7;225, 14, 8), (8;151,7,4), (9; 326,12, 7), (10; 106, 3,2), and
(11;206, 5, 3) produce in turn ¢ = 0.599206, c5 = 1.001086, cg = 1.172140,
cr = 1.298988, 5 = 1.429512, ¢ = 1.532875, c10 = 1.637694, and ¢;; =
1.724309.

For the asymptotic bound, we take a sequence of triples (s, s1, $2) with

30/32—>Am2, s1/s2 — 20,

for constants A and C' which will be chosen optimally below. Hence M
must be achieved at
_ —AmS + m?((4 — 0)(2C — Ab) — 26) — 26(4 — 6)(C + 1) + 2m?\/D,
B (m? —0)(m2+4—96)(Am?2 +2C + 2) ’

where
Dy =m" ((24+ 1+ C)? - 8AC)
+m2((2A+1+C)(8—26(C + 1)) + 8ACYH)
+4-61+0))7,
or at u = —1 when m is odd. Writing

2 1
u=-1+—>(24+14+C- Aaif)+o< )
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where D = (2A + 1 + C)? — 8AC, leads to

exp(2A+1+C—A5i\/D)
> log () inl

¢ o8 ( 2 ) 2Am2 H108 (2A+1+Ci\@)20 (—2A+1+Ci\/5)2

1A 1A

1
+0(=),

or log(m/2) + 42 log (22(1+C)/3) +0 (m_4) if this is smaller when m is

Am
odd. For a given choice of C we can choose A to make these + quantities

equal. Choosing (after numerical experimentation) 2C' = 1.5799148239 and
calculating A = 0.5569260220. .. gives the desired asymptotic bound.

To obtain the improved values for m = 3 to 11 stated in the theorem,
we take g(z) = [1/_g gi(2)% with I = 4 or 5, where the auxiliary factors
gi(%) and choice of exponents s; are given in Table 3.1. For these g;(2)

we have |g;(5)], < |m|Seg9j max{1,|3],}39% for v { co and (3.6) holds as
before (as long as g(3) # 0). We can argue as above that g(3) # 0 by
irreducibility (and for m = 8 that %logQ = 1.0986... < 1.4295..., the
previous lower bound, and for m = 5 and m = 11 that %logS > 1.016628
and 3 log 32 > 1.728890). O

We remark that many factors of the auxiliary polynomials employed in
the proof were selected by using a number of experimental strategies, in-
cluding testing various combinations of factors of the form (3.3) or (3.4),
since the polynomials in these families produce sizable arithmetic contribu-
tions to the bound (3.5) relative to their degree. Algorithm 2.3 of [2] was
also used to construct some of the factors. For example, the polynomial
93(z) shown for m = 3 in Table 3.1 was found by applying that algorithm
to the base polynomial (x — 1)%(z + 2)3(2? + z + 1). In addition, the values
of the exponents s; used here were selected by using heuristic optimization
strategies like hill-climbing.

We remark also that additional factors could probably be added to the
auxiliary polynomials g(z) employed here in the style of [2] for further
improvements.

Finally, the choices g(z) = (22 — 1)4(22+1) and g(z) = (z — 1)’ (z + 1)
similarly recover the values ¢y = %log5 and ¢,, = log(vm?+1/2) for
m > 2 respectively (and using the auxiliary polynomials of [2] for g(z)
gives the improved values stated there).

4. Proof of Theorem 1.2

Since the golden ratio is a limit point of Salem numbers with Littlewood
minimal polynomials (Theorem 6.2 of [1]) we note that the optimal co
certainly satisfies (1.3).
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TABLE 3.1. Auxiliary factors and exponents.

m  Auxiliary factors g3(z), ... (so, 81, 82,83, ...)

3 gs(z) =11(z — 1)4 +7-3%2(2 - 1)% 4+ 3222 (823,178,183,48,53,7)
9a(2) = 13(z = D* +8-3%2(2 — 1)% + 3422
g5(2) =5(z —1)* +2-3%2

5  g3(2) =8(z—1)> +5%2 (340, 10,29, 1, 8, 10)

ga(z) = 61(z — D* + 16 - 5%2(z — 1)? + 522
g5(2) =5(11(z — 1)* +3-5%2(z — 1) + 5°27)

6 g3(2) =109(z — 1)* + 21 - 6%2(z — 1)* + 622 (222680, 19000, 8000,
ga(z) = 11(z — 1)? + 622 2793, 2064, 1000)
g5(2) =2(59(z — 1)* +11-6%2(2 — 1)* + 3 - 6327)

7 g3(2) =181(z — 1)* + 27 - T%2(2 — 1)% 4 7422 (309,16,9,4,1,2)
ga(z) = 193(z — D) +28-T2(z —1)2 47122
95(2) =7(22°> + 32+ 2)

8  ga(z) =2(9(z — 1)2 4 2°2) (944, 45,20, 5,5, 2)
ga(2) = 305(z — 1)* +35-8%2(z — 1) + 822
g5(2) = 321(z — 1)* +36 - 822(2 — 1)® + 8*22

9 gs(z) =461(z — 1)* +43-9%2(2 — 1) + 9*2° (44277, 0, 1256, 538, 273)
ga(z) =481(z — 1)* +44-9%2(2 — 1)® +9*22

10 g3(2) = 701(z — 1)* +53-10%2(z — 1) + 10*2? (1029, 25,10, 5, 3)
ga(z) =1351(z — 1)* + 104 - 10%2(z — 1)2 + 2 - 10*2?

11 g3(2) = 32(z — 1)% 4+ 11%2 (827,6,12,2,6,3)
ga(2) = 991(z — D)* 463 - 11%22(2 — 1)% + 11*22
g5(2) = 1021(z — 1)* + 64 - 11%2(2 — 1) + 1122

Suppose that m > 3. For (1.4) and (1.7) we take n > 2 and

n—1
fala) = 2" + ;0 (% = (m = 1)2?"1) = S—Fu(@),

with
Fp(x) = (2" — 2=y — (m — 1) (2™ —2™").

Since fy (m> > 0 and f, (m T (1+( )71)) < 0, it is clear that
the f,(z) have real roots o, and a,' with a,, — (m — 1) as n — oc.
Notice that f,(z) does not vanish at +1 or any (2n + 1)st root of unity
(so by the theorem can have no cyclotomic factors). Since Q%F (e2mit) =
sin(2m(n 4+ 1)t) — (m — 1) sin(27nt) changes sign, it must have a zero t; in
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4in
zeros e*™i t; #1/2 of f,(x) all lie on the unit circle. Since f,(x) has no
monic factors with all roots on the unit circle, these f,(z) are irreducible

with (deg fr, + 1)h(ay) = (2”“) log ay — log(m — 1) as n — 0.
For (1.5) we similarly consider

each interval {QJnl, 23“}, j=1,2,...,2n— 1, and the remaining (2n — 2)

4An+2

fna(z Zx —4:L‘Zx4’— (1—2z)(1—2x—2?) Zx4z—$4n+3
=0

with real roots oy, ;' — /2 —1,v/2 + 1 and no roots at the (4n + 3)rd
roots of unity. Writing F, 4(z) = (2* — 1) fra(2)z~ 33 and observing
that
1

IFnA(e%”) (cos(37t) + cos(mt)) sin((4n + 3)wt) — 2sin(4(n + 1)wt)

i
has sign changes in each of the intervals [(25+1)/8(n+1), (27+3)/8(n+1)],
j=0,...,4n + 2 (and removing the introduced fourth roots of unity), the
remaining 4n zeros of f, 4(z) all lie on the unit circle.

For (1.6) we take

6n+4 n A
fne(z Zx—6:ﬁ(1—x+x)z:v6’
=0 1=0
n
=(1—-2)(1 -2+ 2%)(1 -3z — z?) Zx& — g Fs
i=0

with real roots oy, — (/13 — 3),3(V13 + 3) and no roots at the
(6n + 5)th roots of unity. Writing F, ¢(z) = fi;}rl fne(x)x™ (Bn+4) and
observing that

4zF 6(e2™) = (cos(3mt) 4 2 cos(mt)) sin((6n + 5)mt) — 3sin(6(n + 1)mt)

has sign changes in each of the intervals [(2j+1)/12(n+1), (25 +3)/12(n+
1)], 7 =0,...,6n+ 4 (and removing the introduced sixth roots of unity),
the remaining 6n + 2 zeros of f,, ¢(x) all lie on the unit circle. Il
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