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Journal de Théorie des Nombres
de Bordeaux 22 (2010), 383-396

Linear forms of a given Diophantine type

par Oleg N. GERMAN et Nikolay G. MOSHCHEVITIN

Résumé. Nous démontrons un résultat sur l’existence des formes
linéaires de type Diophantien donné.

Abstract. We prove a result on the existence of linear forms of
a given Diophantine type.

1. Approximation to irrational numbers
Let α be an irrational number. The Hurwitz theorem says that the in-

equality
‖qα‖ < 1√

5q
,

where ‖ · ‖ denotes the distance to the nearest integer, has infinitely many
solutions in integer q. Moreover, there is a countable set of numbers α for
which this inequality is exact, that is for every positive ε the inequality

‖qα‖ <
( 1√

5
− ε

) 1
q

admits only a finite number of solutions in integer q.
The numbers λ under the condition that there is an α = α(λ) for which

one has
λ = lim inf

q→+∞
q||qα||

form the Lagrange spectrum. It is a well-known fact that the Lagrange
spectrum has a discrete part

1√
5
,

1√
8
, . . . ,

and the maximal λ for which there are continuously many α(λ) is λ = 1/3.
It is also well-known that the Lagrange spectrum contains an interval [0;λ∗].
This interval is known as Hall’s ray as M. Hall [7] was the first to prove that
λ∗ > 0. These and many other results concerning the Lagrange spectrum
can be found in the book [5].
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Furthermore, V. Jarnik (see [8], Satz 6) showed that for every decreasing
function ϕ(y) = o(y−1) there is an uncountable set of real numbers α
satisfying the following conditions: the inequality

‖qα‖ < ϕ(q)
has infinitely many solutions but for any ε > 0 the stronger inequality

‖qα‖ < (1− ε)ϕ(q)
has only a finite number of solutions.

The results mentioned above use the theory of continued fractions.
Recently V. Beresnevich, H. Dickinson and S. Velani in [2] and Y. Buge-

aud in [3], [4] obtained a precise metric version of Jarnik’s result. For exam-
ple, Y. Bugeaud [3] showed that for every decreasing function ϕ : R+ → R+,
such that the function x 7→ x2ϕ(x) is non-increasing and the series

(1.1)
∞∑
x=1

xϕ(x)

converges, the sets

K(ϕ) =
{
α ∈ R :

∣∣∣∣α− p

q

∣∣∣∣ < ϕ(q) for infinitely many rationals p

q

}
and

EXACT(ϕ) = K(ϕ) \
(⋃
ε>0
K((1− ε)ϕ)

)
have the same Hausdorff dimension. Moreover, Y. Bugeaud [3] proved that
the sets K(ϕ) and EXACT(ϕ) have the same Hf -Hausdorff measure for a
certain choice of the dimension function f : R+ → R+. A certain result in
the case when the series (1.1) diverges was obtained by Y. Bugeaud in [4].

2. General result by Jarnik
Throughout the paper for each x = (x1, . . . , xn) we denote by |x| the

Euclidean norm
|x| = |x|2 = (x2

1 + . . .+ x2
n)1/2

and by |x|∞ the sup-norm
|x|∞ = max

16i6n
|xi|.

We also denote by 〈ααα,βββ〉 the inner product of ααα,βββ ∈ Rn. For a fixed ααα we
get a linear form 〈ααα, ·〉.

We formulate a general result from [9]. Consider a real matrix

Θ =

 θ1,1 · · · θ1,n
· · · · · · · · ·
θm,1 · · · θm,n

 .



Linear forms of a given Diophantine type 385

Given a function ϕ : R+ → R+ we say that a set of n+m integers
x1, . . . , xn, y1, . . . , ym

is a ϕ-approximation for Θ if with θθθi = (θi,1, . . . , θi,n) we have{
|〈θθθi,x〉 − yi| < ϕ(|x|∞), i = 1, . . .m,
|x|∞ > 0.

V. Jarnik considered an arbitrary non-increasing function ϕ : R+ → R+
and an arbitrary function λ : R+ → R+, such that the following conditions
are satisfied:

• λ(x)→ 0, x→∞;

• the functions ϕ(x) · x1/k, k = 1, . . . ,m, ϕ(x) · x1+ε and ϕ(x) ·
x(n−1)/m are monotone;
• the integral

∫ ∞
A

xn−1(ϕ(x))mdx converges.

For such ϕ(x) and λ(x) he proved in [9]1 that there is an uncountable set
of matrices Θ, each having infinitely many ϕ-approximations but not more
than a finite collection of λϕ-approximations.

Another result by Jarnik (see [9], Théorème B) gives a more precise
statement under stronger conditions on ϕ(x). Namely, he considered an
arbitrary function ϕ(x) satisfying the following conditions:

• ϕ(x) · x→ 0, x→∞;

• the functions ϕ(x) · x and ϕ(x) · x(n−1)/m are monotone;
• the integral

∫ ∞
A

xn−1(ϕ(x))mdx converges;

and proved the existence of an uncountable set of matrices Θ, each having
infinitely many ϕ-approximations but not more than a finite collection of
(1− ε)ϕ-approximations, for any positive ε.

So we see that the additional condition
ϕ(x) = o(x−1), x→∞,

allows obtaining sharper results concerning systems of linear forms of a
given Diophantine type.

Here we would like to note that a nice metric generalization of Jarnik’s
result was obtained by V. Beresnevich, H. Dickinson and S. Velani in [2].
There the authors deal with a general setting for Diophantine approxima-
tions for systems of linear forms and prove certain results on the “exact
logarithmic” order of approximations.

In the next two sections we discuss some improvements of Jarnik’s result
in the cases n = 1, m > 2 (simultaneous approximations) and m = 1,

1for the special case of simultaneous approximations (n = 1) see [8]
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n > 2 (linear forms). Here we should note that there is an old problem, still
unsolved, to generalize the result on the existence of Hall’s ray mentioned
in Section 1 to the cases of simultaneous approximations and linear forms
(and even to the general case). This problem seems to be a difficult one.

3. Simultaneous approximations
In this section for convenience we put

ϕ(t) = ψ(t)
t1/m

.

In Jarnik’s theorem discussed in Section 2 by certain reasons the mono-
tonicity conditions may be omitted. This observation in the case of simul-
taneous approximations (see also [8], Satz 5) leads to the following

Theorem 3.1. Let m be a positive integer. Given an arbitrary decreasing
function ψ : R+ → R+ and an arbitrary function λ : R+ → R+, decreasing
to zero, suppose that the integral∫ ∞

A

(ψ(x))m

x
dx

converges. Then one can find an uncountable set of ααα = (α1, . . . , αm) ∈ Rm,
such that for every sufficiently large positive integer q one has

max
16i6m

‖qαi‖ >
λ(q)ψ(q)
q1/m ,

but the inequality

max
16i6m

‖qαi‖ 6
ψ(q)
q1/m

has infinitely many solutions in positive integer q.

In [1] R. Akhunzhanov and N. Moshchevitin generalizing the approach
from [10] proved the following

Theorem 3.2. Let m be a positive integer. Then there are explicit positive
constants Am, Bm with the following property. Given an arbitrary non-
increasing function ψ : R+ → R+, ψ(1) 6 Am, one can find an uncountable
set of vectors ααα = (α1, . . . , αm) ∈ Rm such that for every positive integer q

max
16i6m

‖qαi‖>
ψ(q)
q1/m (1−Bmψ(q)) ,

but the inequality

max
16i6m

‖qαi‖6
ψ(q)
q1/m (1+Bmψ(q))

has infinitely many solutions in positive integer q.



Linear forms of a given Diophantine type 387

Here we would like to note that in the paper [10] the author attributes
to V. Jarnik a stronger result than he actually proved in [8], [9].

4. Linear forms
In this section we put

ϕ(t) = ψ(t)
tn

.

Jarnik’s theorem discussed in Section 2 in the case of linear forms leads to
the following

Theorem 4.1. Let n be a positive integer. Given an arbitrary decreasing
function ψ : R+ → R+ and an arbitrary function λ : R+ → R+, decreasing
to zero, suppose that the integral∫ ∞

A

ψ(x)
x

dx

converges. Then there is an uncountable set of ααα ∈ Rn, such that for all
x ∈ Zn \ {0} with |x| sufficiently large one has

‖〈ααα,x〉‖ >
λ(|x|)ψ(|x|)
|x|n∞

,

but the inequality

‖〈ααα,x〉‖ 6
ψ(|x|)
|x|n∞

has infinitely many solutions in x ∈ Zn.

We now formulate the main result of this paper. For simplicity we restrict
ourselves to the case n = 2 and use the Euclidean norm, though we believe
that a similar result should be valid for systems of linear forms and for
arbitrary norms.

Theorem 4.2. There are explicit positive constants A, B with the following
property. Given an arbitrary non-increasing function ψ : R+ → R+, ψ(1) 6
A, one can find an uncountable set of ααα ∈ R2, such that for all x ∈ Z2 \{0}

‖〈ααα,x〉‖ >
ψ(|x|)
|x|2

(1−Bψ(|x|))

but the inequality

‖〈ααα,x〉‖ 6
ψ(|x|)
|x|2

(1 +Bψ(|x|))

has infinitely many solutions in x ∈ Z2.
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5. Best approximations
Definition 1. A point m ∈ Z2\{0} is said to be a best approximation for
〈ααα, ·〉 if

‖〈ααα,m〉‖ < ‖〈ααα,m′〉‖
for every m′ ∈ Z2\{0}, such that |m′| < |m|, and

‖〈ααα,m〉‖ 6 ‖〈ααα,m′〉‖
for every m′ ∈ Z2\{±m}, such that |m′| = |m|.

The set of all the best approximations for 〈ααα, ·〉 is infinite if and only if
the coordinates of ααα are linearly independent with the unit over Q. If this
is the case, then for each possible absolute value there are exactly two best
approximations, on which this absolute value is attained, and they differ
only in the sign. Thus, we can order the set of all the best approximations for
〈ααα, ·〉 with respect to the absolute value and obtain a sequence {±mk}∞k=1.

Set

(5.1) γ = 18
9−
√

2
≈ 2.373 .

Theorem 4.2 is a corollary of the following, more precise, theorem, which
is the main result of the paper. In this theorem the whole sequence of best
approximations is concerned and all of them are required to be of a given
order.

Theorem 5.1. Given an arbitrary non-increasing function ψ : R+ → R+,
ψ(1) 6 (9γ)−1, there is an ααα ∈ R2, such that all the best approximations
mk for 〈ααα, ·〉 satisfy the condition
(5.2) ψ(|mk|)− 4γψ(|mk|)2 < ‖〈ααα,mk〉‖ · |mk|2 6 ψ(|mk|) + γψ(|mk|)2.

Moreover, there is a continuum of such ααα.

We note that the technique used here to prove Theorem 5.1 is similar to
the technique developed in [6].

6. Proof of Theorem 5.1
6.1. Description of the set of forms having a given point m as
a best approximation. Given a primitive point m ∈ Z2, the set of all
ααα ∈ R2, such that m is a best approximation for 〈ααα, ·〉, is contained in the
set
(6.1) S =

⋂
m′∈Z2\{0,±m}
|m′|6|m|

{
x ∈ R2

∣∣∣ ‖〈m,x〉‖ 6 ‖〈m′,x〉‖
}

and contains its interior. One can easily see that each of the sets in the
intersection (6.1) is simply a union of parallelograms. Besides that, one of
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the two diagonals of each of these parallelograms lies on an integer level of
the form 〈m, ·〉, and the union of such diagonals coincides with the union of
all the integer levels of 〈m, ·〉. Thus, all the connected components of int S
are open convex polygons. None of these polygons can be too small. To see
this we shall use the following

Lemma 6.1. Let a,b, c ∈ Z2 and let b and c be linearly independent. Let
also ααα ∈ R2, 〈b,ααα〉 ∈ Z, 〈c,ααα〉 ∈ Z. Then for every λ ∈ Z the (Euclidean)
distance from ααα to the line defined by the equation 〈a,x〉 = λ is an integer
multiple of

1
|a||det(b, c)|

.

Proof. The index of Z2 as a sublattice of the lattice, dual to spanZ(b, c), is
equal to |det(b, c)|. Hence det(b, c)ααα ∈ Z2, and thus,

〈a,ααα〉 ∈ Z
|det(b, c)|

.

It remains to notice that the Euclidean distance between two adjacent in-
teger levels of the form 〈a,x〉 equals 1/|a|. �

Since not all the linear forms determining the boundary of a connected
component of int S are necessarily integer, but some of them may have
half–integer coefficients, the fact that none of those components can be too
small is implied by the following obvious corollary to Lemma 6.1:

Corollary 6.1. Let a ∈ 1
2Z2, b, c ∈ Z2 and let b and c be linearly indepen-

dent. Let also ααα ∈ R2, 〈b,ααα〉 ∈ Z, 〈c,ααα〉 ∈ Z. Then for every λ ∈ 1
2Z the

(Euclidean) distance from ααα to the line defined by the equation 〈a,x〉 = λ
is an integer multiple of

1
2|a||det(b, c)|

.

6.2. Basis change. The following statement supports one of the crucial
steps in the proof of Theorem 5.1.

Lemma 6.2. Suppose a,b, c ∈ Z2 and ααα,βββ ∈ R2 satisfy the relations
〈ααα,b〉 ∈ Z, 〈ααα, c〉 = 〈βββ, c〉 ∈ Z, and 〈βββ,a〉 equals the nearest integer to 〈ααα,a〉
(in case 〈ααα,a〉 = 1/2 one can take any of the two nearest integers). Suppose
also that b, c are linearly independent, a, c are linearly independent,
(6.2)

{
x ∈ Z2 ∣∣ 〈ααα,x〉 ∈ Z

}
= spanZ(b, c)

and
(6.3) ‖〈ααα,a〉‖ = |det(b, c)|−1.

Then
(6.4)

{
x ∈ Z2 ∣∣ 〈βββ,x〉 ∈ Z

}
= spanZ(a, c)
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and

(6.5) ‖〈βββ,b〉‖ = |det(a, c)|−1.

Proof. Let a = (a1, a2), b = (b1, b2), c = (c1, c2) and set a3 = −〈βββ,a〉,
b3 = −〈ααα,b〉, c3 = −〈ααα, c〉 = −〈βββ, c〉.

Let us prove that the points

a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3)

form a basis of Z3. It follows from (6.2) that all the integer points contained
in the plane πα spanned by b and c belong to the lattice

spanZ(b, c).

This means that b and c can be supplemented to a basis of Z3. Hence
Z3 splits into “layers” contained in two-dimensional planes parallel to πα.
Moreover, any two neighbouring planes cut a segment in the vertical axis
of length |det(b, c)|−1. Now, using (6.3) and the fact that a3 equals the
nearest integer to −〈ααα,a〉 we see that a lies in a plane next to πα. This
shows that a,b, c form a basis of Z3.

Thus, all the integer points of the plane πβ spanned by a and c are in

spanZ(a, c),

which immediately implies (6.4). As before, Z3 splits into “layers” contained
in two-dimensional planes parallel to πβ, such that any two neighbouring
ones cut a segment in the vertical axis of length |det(a, c)|−1. Noticing that
b lies in a plane next to πβ we get (6.5). �

6.3. Induction lemma. To prove theorem 5.1 we shall construct a se-
quence of embedded two-dimensional “half-balls” {Ωk}∞k=1 with their com-
mon point ααα satisfying the statement of the corresponding theorem. We
say that a set Ω is a half-ball of radius R centered at a point x if Ω is
the intersection of a closed Euclidean ball of radius R centered at x and a
closed half-plane with the supporting line containing x.

The following lemma gives the induction step.

Lemma 6.3. Let k ∈ Z+, ψk, ψk+1 ∈ R+, ψk, ψk+1 6 (9γ)−1, and let
mk,mk+1 ∈ Z2. Let Ωk ⊂ R2 be a half-ball of radius

Rk = (2|mk+1||det(mk,mk+1)|)−1

centred at αααk with the line

`k =
{
x ∈ R2 ∣∣ 〈x,mk〉 = 〈αααk,mk〉

}
supporting it. Suppose that the following conditions are satisfied:

1) 〈mk,mk+1〉 6 0;
2)
{
x ∈ Z2 ∣∣ 〈αααk,x〉 ∈ Z

}
= spanZ(mk,mk+1);



Linear forms of a given Diophantine type 391

3) for every ααα ∈ Ωk and every m ∈ Z2\ spanZ(mk,mk+1), such that
|m| < |mk+1|, one has

‖〈ααα,mk〉‖ < ‖〈ααα,m〉‖;

4) γ < |det(mk,mk+1)|
|mk|2

< 3γ;

5) (2γψk)−1/2 6
|mk+1|
|mk|

< (γψk)−1/2.

Then there is a point mk+2 ∈ Z2, linearly independent with mk+1, and
a half-ball Ωk+1 ⊂ Ωk of radius

Rk+1 = (2|mk+2||det(mk+1,mk+2)|)−1

centred at αααk+1 with the line
`k+1 =

{
x ∈ R2 ∣∣ 〈x,mk+1〉 = 〈αααk+1,mk+1〉

}
supporting it which satisfy the following conditions:

1) 〈mk+1,mk+2〉 6 0;
2) 〈αααk+1,mk+1〉 = 〈αααk,mk+1〉 and{

x ∈ Z2 ∣∣ 〈αααk+1,x〉 ∈ Z
}

= spanZ(mk+1,mk+2);

3) for every ααα ∈ Ωk+1 and every m ∈ Z2\ spanZ(mk+1,mk+2), such that
|m| < |mk+2|, one has

‖〈ααα,mk+1〉‖ < ‖〈ααα,m〉‖;
4) for every ααα ∈ Ωk+1 and every m ∈ Z2\{0,±mk}, such that |m| <
|mk+1|, one has

‖〈ααα,mk〉‖ < ‖〈ααα,m〉‖;

5) (2γψk+1)−1/2 6
|mk+2|
|mk+1|

< (γψk+1)−1/2.

6) ψ−1
k 6

|det(mk+1,mk+2)|
|mk|2

< ψ−1
k + 3γ.

Proof. Denote by Ω̃k the ball, of which Ωk is a half, and by Ω̃k+1 the
corresponding ball for Ωk+1, which is to be constructed.

Define δk as follows. Set δk = 1 if for every x ∈ Ωk
〈x,mk〉 6 〈αααk,mk〉,

and set δk = −1 if for every x ∈ Ωk
〈x,mk〉 > 〈αααk,mk〉.

Since `k supports Ωk, δk is defined correctly. Hence
δk〈x,mk〉 6 δk〈αααk,mk〉

for every x ∈ Ωk.
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There is exactly one integer point w in the parallelogram spanned by mk
and mk+1, such that the fractional part of 〈αααk,w〉 is minimal and positive,
i.e.

{〈αααk,w〉} = |det(mk,mk+1)|−1.

Denote by m⊥k+1 the integer point satisfying the conditions 〈m⊥k+1,mk+1〉 =
0, |m⊥k+1| = |mk+1| and 〈m⊥k+1,mk〉 > 0. Consider the point

v =
(
ψ−1
k

|mk|2

|mk+1|2

)
δkm⊥k+1 −

√
(2γψk+1)−1 −

(
ψ−1
k

|mk|2
|mk+1|2

)2
mk+1.

The subset of the affine lattice

w + spanZ(mk,mk+1)

consisting of points x, such that the quantity 〈x − v, δkm⊥k+1〉 is minimal
and non-negative, lies on a line parallel to mk+1. Define mk+2 to be the
point of this set, such that the quantity 〈mk+2−v,−mk+1〉 is minimal and
non-negative. Notice that, due to the definition of the point m⊥k+1, the sign
of the coefficient λ1 in the decomposition mk+2 = λ1mk+λ2mk+1 is equal
to that of δk, i.e.

(6.6) λ1
|λ1|

= δk.

We shall use this fact when defining Ωk+1. But now let us turn to the
statements 5) and 6), for their proof involves neither Ωk+1, nor αk+1.

With mk+2 chosen as above the statement 5) follows from the inequalities

|v|2 6 |mk+2|2 < |v|2 + |mk+1|2 +
(
〈mk,m⊥k+1〉
|m⊥k+1|

)2

< |v|2 + |mk+1|2

2γψk+1
,

the latter being a consequence of the relation

〈mk,m⊥k+1〉
|m⊥k+1|2

= |det(mk,mk+1)|
|mk+1|2

< 6γ2ψk

and the condition ψk, ψk+1 6 (9γ)−1.
As for the statement 6), it follows from the inequalities

ψ−1
k

|mk|2

|mk+1|2
6
〈mk+2,m⊥k+1〉
|m⊥k+1|2

< ψ−1
k

|mk|2

|mk+1|2
+ |det(mk,mk+1|

|mk+1|2

6 ψ−1
k

|mk|2

|mk+1|2
+ 3γ|mk|2

|mk+1|2

6 (ψ−1
k + 3γ) |mk|

2

|mk+1|2
.
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Indeed, taking into account that

|det(mk+1,mk+2)|
|mk+1|2

=
〈mk+2,m⊥k+1〉
|m⊥k+1|2

we get

ψ−1
k 6

|det(mk+1,mk+2)|
|mk|2

< ψ−1
k + 3γ.

Now let us define αααk+1 and Ωk+1 and prove the rest of the statements.
Let us define αααk+1 by the equalities

〈αααk+1,mk+1〉 = 〈αααk,mk+1〉,(6.7)
〈αααk+1,mk+2〉 = [〈αααk,mk+2〉].(6.8)

Note that, due to Lemma 6.2, for mk+2 and αααk+1 thus chosen the statement
2) of the Lemma holds. It also follows from Lemma 6.2 that the distance
from αααk+1 to `k is equal to

(|mk||det(mk+1,mk+2)|)−1,

which in its turn implies that

|αααk+1 −αααk| =
|mk+1|

|det(mk,mk+1) det(mk+1,mk+2)|
.

Hence

|αααk+1 −αααk|+Rk+1 = 2|mk+1|2

|det(mk+1,mk+2)|
Rk

+ |det(mk,mk+1)|
|det(mk+1,mk+2)|

|mk+1|
|mk+2|

Rk

<
2
γ
Rk + 3γψk

√
2γψk+1Rk

< Rk.

Here we have made use of the statements 5) and 6) we have already proved,
the assumption 4), the condition ψk, ψk+1 6 (9γ)−1 and the definition of
γ. Thus,

Ω̃k+1 ⊂ Ω̃k.
More than that, Ω̃k+1 is contained either in Ωk, or in Ω̃k\Ωk, since

Rk+1 < (|mk||det(mk+1,mk+2)|)−1

and the righthand side of this inequality, as we have already noticed before,
is the distance from αααk+1 to `k.

Let us prove that Ω̃k+1 ⊂ Ωk. By (6.8),

〈αααk+1,mk+2〉 < 〈αααk,mk+2〉,
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so, if mk+2 = λ1mk + λ2mk+1, then, due to (6.7),
〈αααk+1, λ1mk〉 < 〈αααk, λ1mk〉,

which, in view of (6.6), implies that
δk〈αααk+1,mk〉 < δk〈αααk,mk〉.

This shows that
Ω̃k+1 ⊂ Ωk.

To define Ωk+1 it remains to choose between the two parts of Ω̃k+1 sep-
arated by the line `k+1. Corollary 6.1 together with the definition of Rk+1
implies that the statement 3) of the Lemma holds for every ααα ∈ Ω̃k+1, so we
have to specify one of the two halves of Ω̃k+1 only to provide the statement
4).

Between the described two halves of Ω̃k+1 let us choose to be Ωk+1 the
one that is closest to `k.

Let us prove the statement 4). Notice first that for each ααα ∈ Ωk the
linear form 〈ααα, ·〉 does not attain integer values at any point of the set
Z2\ spanZ(mk,mk+1) with absolute value not exceeding |mk+1|. At the
same time for every m ∈ ±w + spanZ(mk,mk+1) we have

‖〈αααk,m〉‖ = |det(mk,mk+1)|−1.

Hence, taking into account the assumptions 4) and 5), we see that for every
ααα ∈ Ωk and every m ∈ spanZ(mk,mk+1), such that |m| 6 |mk+1|, we have∣∣〈ααα,m〉 − 〈αααk,m〉∣∣ < 1/2.
This means that for any ααα ∈ Ωk, non-collinear with αααk, and any two points
m′,m′′ ∈ spanZ(mk,mk+1), such that |m′|, |m′′| 6 |mk+1|, the quotient

‖〈ααα,m′〉‖
/
‖〈ααα,m′′〉‖

is equal to the quotient of distances from the points m′ and m′′ to the line
(6.9)

{
x ∈ R2 ∣∣ 〈ααα,x〉 = 〈αααk,x〉

}
.

Due to the choice of Ωk+1 and the assumption 1), for every ααα ∈ Ωk+1 the
points ±mk are closer to the line (6.9) than any other non-zero point of
the set spanZ(mk,mk+1) with the absolute value less than |mk+1|. This
implies the statement 4). �

Let us describe now the base of induction. Set ψ1 = ψ(1) and

m1 = (1, 0), m2 =
(⌈√

(2γψ1)−1 − γ2
⌉
, 3
)
, ααα1 =

(
0, 3−1).

It is easily verified that the assumptions 1), 2), 4), 5) of Lemma 6.3 are
satisfied for these points. Setting

R1 = (2|m2||det(m1,m2)|)−1,
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choosing as Ω1 any of the two corresponding half-balls and taking into
account Corollary 6.1, we see that all the assumptions of Lemma 6.3 are
fulfilled. This gives the induction base.

For each k = 2, 3, 4, . . . let us consequently set ψk = ψ(|mk|) and ap-
ply Lemma 6.3. We can do so since the assumption 5) together with the
statement 6) of Lemma 6.3 for a fixed k ∈ Z+ imply the assumption 4)
with k substituted by k+ 1. Thus we get a sequence {Ωk}∞k=1 of embedded
half-balls with a common point ααα and a sequence {mk}∞k=1. It follows from
the statement 4) of Lemma 6.3 that for each k ∈ Z+ the pair ±mk is the
k-th pair of best approximations for 〈ααα, ·〉, whereas due to the statements
5) and 6) we have for each k ∈ Z+ the inequalities

ψ−1
k 6

|det(mk+1,mk+2)|
|mk|2

< ψ−1
k + 3γ < (ψk − 3γψ2

k)−1

and
Rk+1|mk|3 6

(
2(2γψk+1)−1/2(2γψk)−1/2ψ−1

k

)−1
6 γψ2

k.

Hence for all ααα ∈ Ωk+1

ψk − 4γψ2
k < ‖〈ααα,mk〉‖ · |mk|2 6 ψk + γψ2

k,

which proves Theorem 5.1.

Remark 1. In a similar way we can apply Lemma 6.3 to prove a bit dif-
ferent fact. Namely, within the assumptions of Theorem 5.1 we can prove
that there are continuously many forms 〈ααα, ·〉, such that their best approx-
imations mk satisfy the condition

ψ(k)− 4γψ(k)2 < ‖〈ααα,mk〉‖ · |mk|2 6 ψ(k) + γψ(k)2.

To this effect we just have to put ψk = ψ(k) and repeat the arguments from
the proof of Theorem 5.1.

Remark 2. It is not difficult to improve the constants in Theorem 5.1.
However, the wish to make better constants, if realized, would make the
proof look more cumbersome and blur the main ideas.
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