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Résumé. Pour r = (r0, . . . , rd−1) ∈ Rd, nous définissons la fonc-
tion

τr : Zd → Zd, z = (z0, . . . , zd−1) 7→ (z1, . . . , zd−1,−brzc),

où rz est le produit scalaire des vecteurs r et z. Si chaque orbite de
τr se termine par 0, nous dirons que τr est un shift radix system. Il
est bien connu que chaque orbite de τr est ultimement périodique
si le polynôme td+ rd−1t

d−1 + · · ·+ r0 associé à r est contractant.
D’autre part, si ce polynôme a au moins une racine en dehors du
disque unité, il existe des vecteurs initiaux qui conduisent à des
orbites non-bornées. Le présent article considère les cas restants
pour les propriétés de périodicité des applications τr pour des
vecteurs r associés à des polynômes dont les racines ont un module
supérieur ou égal à un, avec égalité dans au moins un cas. Nous
montrons que pour une large classe de vecteurs r appartenant à la
famille précédente, l’ultime périodicité des orbites est équivalente
au fait que τs est un shift radix system ou a une autre structure
prescrite d’orbite pour un certain paramètre s dépendant de r. Ces
résultats sont combinés avec de nouveaux résultats algorithmiques
dans le but de caractériser les vecteurs r de la classe précédente qui
donnent des orbites ultimement périodiques pour chaque valeur
initiale. En particulier, nous donnons la description de ces vecteurs
r pour le cas d = 3. Cela conduit à des ensembles qui semblent
avoir une structure très compliquée.
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Abstract. For r = (r0, . . . , rd−1) ∈ Rd define the function
τr : Zd → Zd, z = (z0, . . . , zd−1) 7→ (z1, . . . , zd−1,−brzc),

where rz is the scalar product of the vectors r and z. If each
orbit of τr ends up at 0, we call τr a shift radix system. It is a
well-known fact that each orbit of τr ends up periodically if the
polynomial td + rd−1t

d−1 + · · ·+ r0 associated to r is contractive.
On the other hand, whenever this polynomial has at least one root
outside the unit disc, there exist starting vectors that give rise to
unbounded orbits. The present paper deals with the remaining
situations of periodicity properties of the mappings τr for vectors
r associated to polynomials whose roots have modulus less than
or equal to one with equality in at least one case. We show that for
a large class of vectors r belonging to the above class the ultimate
periodicity of the orbits of τr is equivalent to the fact that τs is a
shift radix system or has another prescribed orbit structure for a
certain parameter s related to r. These results are combined with
new algorithmic results in order to characterize vectors r of the
above class that give rise to ultimately periodic orbits of τr for
each starting value. In particular, we work out the description of
these vectors r for the case d = 3. This leads to sets which seem
to have a very intricate structure.

1. Introduction
Shift radix systems were introduced in 2005 by Akiyama et al. [1] in the

following way. For r = (r0, . . . , rd−1) ∈ Rd define the function
τr : Zd → Zd, z = (z0, . . . , zd−1) 7→ (z1, . . . , zd−1,−brzc),

where rz is the scalar product of the vectors r and z. Note that τr(z) =
(z1, . . . , zd) where zd is defined uniquely by

0 ≤ r0z0 + · · ·+ rd−1zd−1 + zd < 1.
This relates the study of τr to almost linear recurrences (see e.g. [2, 3, 12]
where this viewpoint is emphasized).

The mapping τr is called a shift radix system (SRS) if for any z ∈ Zd
there exists k ∈ N such that1 τkr (z) = 0. Shift radix systems turned out
to be a generalization of several notions of well-known number systems.
For certain parameters r related to a Pisot number β the mapping τr is
conjugate to the well-known beta-transformation Tβ(γ) = βγ − bβγc. This
conjugacy can be used in order to prove that the beta-expansions related
to β have a certain finiteness property (called property (F) in the literature;
cf. e.g. [10]) if and only if the related mapping τr is an SRS. Moreover, the
problem of characterizing all bases of canonical number systems (see [15] for

1The notation τkr (z) denotes the kth iterate of τr applied to z.
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a definition of these objects) turns out to be a special case of the description
of all vectors r giving rise to SRS. For details of these correspondences we
refer the reader to [1]. It is also possible to view the rational based number
systems introduced in [5] as special cases of SRS.

SRS are related to orbits of τr ending up eventually at zero. As we are
interested in eventually periodic orbits of τr in general, we define the sets

Dd :=
{

r ∈ Rd
∣∣∣ ∀z ∈ Zd ∃k, l ∈ N : τkr (z) = τk+lr (z)

}
and

D(0)
d :=

{
r ∈ Rd | τr is an SRS

}
which will be of importance throughout the present paper. In view of the
above-mentioned facts the set D(0)

d is related to finiteness properties of sev-
eral kinds of number systems. The set Dd is strongly related to contractive
polynomials. Indeed, for r = (r0, . . . , rd−1) ∈ Rd define

(1.1) R(r) :=



0 1 0 · · · 0
... 0 . . . . . . ...
...

... . . . 1 0
0 0 · · · 0 1
−r0 −r1 · · · −rd−2 −rd−1


∈ Rd×d

and let
Ed := {r ∈ Rd | %(R(r)) < 1}

where %(A) denotes the spectral radius of the square matrix A. It is easy
to see that Ed is the so-called Schur-Cohn-region (see [18]) which contains
all vectors r for which r · (x0, x1, . . . , xd−1) is a contractive polynomial in
x. In [1, Section 4] it is shown that Dd satisfies

(1.2) Ed ⊂ Dd ⊂ Ed
and Ed = int (Ed). We mention here that the set Ed was discussed in [9],
where it was shown that it is simply connected and that it is bounded by
three hypersurfaces two of which are hyperplanes for d ≥ 2.

The only problem remaining for the characterization of Dd is to describe
Dd\Ed, which is a subset of ∂Dd. We just mention that this problem contains
a well-known conjecture on Salem numbers as a special case. Indeed, in
1980 Schmidt [17] conjectured that beta-expansions with respect to a Salem
number β are periodic for each γ ∈ Q(β). It turns out that this is equivalent
to the fact that the mapping τr has only eventually periodic orbits, i.e.,
r ∈ Dd, for a certain r related to β. As β is a Salem number this parameter
r is contained in ∂Dd. Some studies related to the original conjecture of
Schmidt can be found in [6], however, it has not been settled for a single
Salem number up to now. Although in the present paper we are able to
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Figure 1.1. The set D2 (left) and an approximation of D(0)
2

(middle). On the right hand side we give a magnified ver-
sion of the dashed rectangle indicated in the approximation
of D(0)

2 . In this magnification some parts of the small grey
region which is not yet characterized is visible.

describe large parts of Dd \ Ed we cannot settle Schmidt’s conjecture. Our
parameter classes also do not contain Salem numbers.

For the more general problem of describing Dd \ Ed the situation is a
bit different. Indeed, there exist some subsets of ∂Dd (not related to Salem
numbers) which could be characterized so far. Partial results for d = 2 can
be found in [2, 3, 4, 14]. Moreover, in [16] several regions of ∂D3 have been
investigated. The current situation for d = 2 is depicted on the left hand
side of Figure 1.1. The interior of the triangle represents E2. The solid lines
and the points marked with small full disks form a subset of D2 while the
dashed lines together with the points marked with small circles ((1, 2) and
(1,−2)) do not. It is up to now unknown whether the grey parts of the right
boundary of the triangle belong to D2 or not. It is conjectured that they do
(see [4, Conjecture 6.1]). For the three dimensional case there exists only a
case study (see [12]). More precisely, it was shown that

(
1, 3+

√
5

2 ,
3+
√

5
2

)
∈

∂D3\D3. Summing up, it seems to be very difficult to describe the boundary
of Dd and often even for a single point it seems to be hard to decide whether
it belongs to Dd or not.
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The aim of the present paper is to give a new method which allows to
decide for large regions of ∂Dd whether they belong to Dd or not.

Our method works by establishing connections between the sets Dd and
D(0)
e (where e < d) as well as some related sets. Knowledge on the sets D(0)

e

is used in order to make assertions on the boundary of Dd. Although the sets
D(0)
d are far from being described completely, large regions of them can be

described algorithmically which is a priori not possible for points in Dd\Ed.
Indeed, characterization results on D(0)

d can be found in [1, 4]. Moreover, a
very good approximation of D(0)

2 is contained in [19]. This approximation
is shown in the middle of Figure 1.1. The white parts inside the triangle
belong to D(0)

2 , the black parts do not. The small grey sets near the right
boundary that can be seen in the magnification on the right hand side of
Figure 1.1 have not been analyzed yet. The only complete result available
so far is for d = 1. Here we have D1 = [−1, 1] and D(0)

1 = [0, 1) (cf. [1,
Proposition 4.4]).

The paper is organized as follows. In Section 2 we collect several proper-
ties of Ed which will be used in the sequel. For this purpose we summarize
and adapt the results of Fam and Meditch [9]. Section 3 contains first re-
sults on the orbit structure of τr. In Section 4 we define sets determined by
certain cycles of τr that will be relevant in the sequel. Section 5 contains
our main results. We give characterization results for large parts of Dd \ Ed
in terms of sets which can be determined algorithmically. In particular, we
relate some parts of Dd \Ed to D(0)

d−1, D(0)
d−2 as well as some related sets large

parts of which can be described algorithmically. The results are based on
a fairly general theorem on the orbit structure of τr. Section 6 is devoted
to algorithms for determining the relevant sets. Using these algorithms we
give a description of large parts of D3 \ E3, compare Figures 6.1 and 6.2.

2. Some properties of Ed
The set Ed can be described by using a result of Schur [18].
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Figure 2.1. The set E3

Proposition 2.1 (cf. Schur [18]). For 0 ≤ k < d define δk(r0, . . . , rd−1) ∈
R2(k+1)×2(k+1) by

δk(r0, . . . , rd−1) =



1 0 · · · 0 r0 · · · · · · rk

rd−1
. . . . . . ... 0 . . . ...

... . . . . . . 0
... . . . . . . ...

rd−k−1 · · · rd−1 1 0 · · · 0 r0
r0 0 · · · 0 1 rd−1 · · · rd−k−1
... . . . . . . ... 0 . . . . . . ...
... . . . 0

... . . . . . . rd−1
rk · · · · · · r0 0 · · · 0 1


.

Then

(2.1) Ed =
{

(r0, . . . , rd−1) ∈ Rd
∣∣∣∣∣ ∀k ∈ {0, . . . , d− 1} we have

det (δk(r0, . . . , rd−1)) > 0

}
.

For small d we have
E1 = {x ∈ R | |x| < 1},
E2 = {(x, y) ∈ R2 | |x| < 1, |y| < x+ 1},
E3 = {(x, y, z) ∈ R3 | |x| < 1, |y − xz| < 1− x2, |x+ z| < y + 1}.

(2.2)

We already saw that E2 is a triangle. E3 is depicted in Figure 2.1. For
obtaining a characterization of Ed in the above mentioned way we have
to calculate d determinants, the biggest of them having dimension 2d ×
2d. There exists another way of characterizing Ed which is based on the
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results proved by Fam and Meditch in [9]. In this paper it was shown
that Ed is simply connected and that for d ≥ 2 it is bounded by three
hypersurfaces two of which are hyperplanes. Just intuitively this is obvious
by the following observations.

Indeed, for r ∈ Rd denote by λ1, . . . , λd the d (not necessarily distinct)
roots of the characteristic polynomial χR(r) of R(r). It is easy to see that
r ∈ Ed if and only if |λi| < 1 for all i ∈ {1, . . . , d} and r ∈ ∂Ed if and only if
|λi| ≤ 1 for all i ∈ {1, . . . , d} and equality holds for at least one index. There
are three possibilities for a root to have modulus 1. It can be +1, −1 or a
non-real complex number with absolute value 1. Each of these possibilities
corresponds to one hypersurface. For obtaining a parametrization of these
hypersurfaces define for vectors r = (r0, . . . , rp−1), s = (s0, . . . , sq−1) of
arbitrary dimension p, q ∈ N the binary function � by
(2.3) χR(r�s) = χR(r)χR(s).

Obviously � is associative, commutative and continuous in both arguments.
Formally denote by () the 0-dimensional vector and define r � () := r for
all vectors r. Note that this makes

(⋃
k∈N Rk,�

)
a commutative monoid

which is isomorphic to the monoid of monic real polynomials together with
multiplication. Furthermore, it is convenient to denote by E0 the set that
consists only of (). For D ⊂ Rp and E ⊂ Rq let D�E := {r� s| r ∈ D, s ∈
E}. The following results have already been presented by Fam and Meditch
in [9]. Since the authors only give sketched and somewhat heuristic proofs
we prove the results in full detail here.
Lemma 2.1 (cf. [9, Formulas (9) and (10)]). Let p, q ∈ N, p even. Then

(1) Ep � Eq = Ep+q,
(2) Ep � Eq = Ep+q,
(3) ∂Ep � Eq ∪ Ep � ∂Eq = ∂Ep+q.

Proof. For p = 0 or q = 0 the lemma is trivial. Thus suppose p and q
are non-zero. For proving (1) suppose that r := (r0, . . . , rp−1) ∈ Ep and
r′ := (r′0, . . . , r′q−1) ∈ Eq. This implies that the roots of the polynomials
P (x) = χR(r)(x) = xp + rp−1x

p−1 + · · · + r0 and Q(x) = χR(r′)(x) =
xq + r′q−1x

q−1 + · · · + r′0 have modulus smaller than 1. Thus, by (2.3), we
have χR(r�r′) = PQ and therefore r�r′ ∈ Ep+q. On the other hand suppose
that s ∈ Ep+q. We have to show that there exist r ∈ Ep and r′ ∈ Eq with
r� r′ = s. We can write χR(s) as a product of the shape

χR(s)(x) = (x− λ1) · · · (x− λs)(x− λs+1) · · ·
· · · (x− λs+t)(x− λs+t+1) · · · (x− λs+2t)

with s, t ≥ 0, s + 2t = p + q, λj ∈ R for 1 ≤ j ≤ s, λs+j ∈ C \ R for
1 ≤ j ≤ 2t, λs+j = λs+t+j for 1 ≤ j ≤ t and |λj | < 1 for 1 ≤ j ≤ p+ q. Let
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J ⊂ {1, . . . , s} and J ′ ⊂ {1, . . . , t} such that |J |+ 2|J ′| = p. This is always
possible, since p is even. Let

P (x) = xp + rp−1x
p−1 + · · ·+ r0

:=
∏
j∈J

(x− λj)
∏
j∈J ′

(x− λs+j)(x− λs+t+j),

Q(x) = xq + r′q−1x
q−1 + · · ·+ r′0

:=
∏

j∈{1,...,s}\J
(x− λj)

∏
j∈{1,...,t}\J ′

(x− λs+j)(x− λs+t+j).

Note that P and Q are real polynomials. Then obviously r := (r0, . . . , rp−1)
∈ Ep, r′ := (r′0, . . . , r′q−1) ∈ Eq and r � r′ = s completing the proof of
Assertion (1). Assertions (2) and (3) follow immediately by the continuity
of �. �

Note that for p ≡ q ≡ 1 mod 2 we only have Ep � Eq ⊂ Ep+q. Lemma 2.1
can be used to obtain a parametrization of Ep+q from parametrizations of
Ep and Eq. We will show this by an example.

Example. It is easy to see that E1 = {v| − 1 < v < 1} and E2 =
{(s, (s + 1)t)| − 1 < s, t < 1}. We now want to get a parametrization
of E3. From Assertion (1) of Lemma 2.1 we know that E3 = E1�E2. By the
definition of � this shows that

(2.4) E3 = {(vs, s+ vt(s+ 1), (s+ 1)t+ v) | − 1 < s, t, v < 1}.

This parametrization maps (−1, 1)3 onto E3. However, this mapping is not
bĳective since, for example, we have (0)�

(
1
6 ,

5
6

)
=
(

1
2

)
�
(
0, 1

3

)
. By Asser-

tion (2) of Lemma 2.1 we easily get a parametrization of E3 by enlarging the
domain of s, t, v to the closed interval [−1, 1]. This shows the advantage of
the representation (2.4) since exchanging the strict inequalities to non-strict
ones in the representation of E3 in (2.2) does not yield E3 (cf. [11]).

Now we turn to the boundary of Ed. Assertion (3) of Lemma 2.1 already
shows one way to obtain ∂Ed. Now we will present an alternative represen-
tation. Let d ≥ 2 and

E
(1)
d := (1)� Ed−1,

E
(−1)
d := (−1)� Ed−1,

E
(C)
d := {(1, a) | a ∈ (−2, 2)} � Ed−2.

(2.5)

Theorem 2.1 (cf. [9, Section II]). For d ≥ 3 we have

∂Ed = E(1)
d ∪ E

(−1)
d ∪ E(C)

d .
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Proof. The proof runs along similar lines as the proof of Lemma 2.1. Since
(1), (−1) ∈ ∂E1 and {(1, a) |a ∈ (−2, 2)} ∈ ∂E2 we have E(1)

d ∪E
(−1)
d ∪E(C)

d ⊂
∂Ed. On the other hand suppose that r ∈ ∂Ed. Then χR(r) has a root 1,
a root −1 or a pair of complex conjugate roots with absolute value 1. All
other roots have modulus less than or equal to 1. Suppose χR(r)(1) = 0.
Then χR(r)(x) = (x− 1)χR(s)(x) for some s ∈ Rd−1 and thus r = (−1)� s.
Since all roots of χR(r) have modulus less than or equal to 1 we necessarily
have s ∈ Ed−1 showing that r ∈ E(−1)

d . Similarly it can be shown that
r ∈ E(1)

d when χR(r) has −1 as a root. If χR(r) has a pair of complex
conjugate roots having modulus 1, say α± iβ, |α| < 1, then χR(r)(x) must
be divisible by x2−2α+1. Hence χR(r)(x) = (x2−2α+1)χR(s)(x) for some
s ∈ Rd−2 and we even have s ∈ Ed−2 by the same argument as above. Thus
r = (1,−2α)� s ∈ E(C)

d . �

Note that in view of (2.5) this shows that E(1)
d and E(−1)

d are homeomor-
phic images of Ed−1. It is not true that E(C)

d is a homeomorphic image of
Ed−2×(−2, 2) for d ≥ 4, as injectivity is violated. This can be seen by observ-
ing that for a, b ∈ (−2, 2) with a 6= b we have r := (0, . . . , 0, 1, a) ∈ ∂Ed−2,
s := (0, . . . , 0, 1, b) ∈ ∂Ed−2 and r� (1, b) = s� (1, a). However, it is easy to
see that the interior of E(C)

d (subspace topology) is always a homeomorphic
image of Ed−2 × (−2, 2).

Theorem 2.2 (cf. [9, Section II]). E(1)
d , E

(−1)
d and E(C)

d are simply con-
nected. Moreover, E(1)

d and E(−1)
d are subsets of hyperplanes.

Proof. The simple connectivity of E(1)
d , E

(−1)
d and E(C)

d follows immediately
from the simple connectivity of Ed−1 and Ed−2 and by the definition of
E

(1)
d , E

(−1)
d and E(C)

d . Now x = (x0, . . . , xd−1) ∈ E(1)
d if and only if there

exists a (unique) point r = (r0, . . . , rd−2) ∈ Ed−1 such that
x = (1)� r = (r0, r0 + r1, . . . , rd−3 + rd−2, rd−2 + 1).

Thus (x0, . . . , xd−1) satisfies 1 +
∑d
j=1(−1)jxd−j = 0 showing that E(1)

d lies
on a hyperplane. Similarly it can be shown that

E
(−1)
d ⊂ {(X0, . . . , Xd−1) ∈ Rd | X0 + · · ·+Xd−1 + 1 = 0}.

�

Let us summarize some facts on Ed. Fam and Meditch show that Ed is
bounded (cf. [9, Theorem 1]) and simply connected (cf. [9, Lemma 1]).
As mentioned in (1.2), it satisfies Ed = int (Ed). Moreover, Theorem 2.1
yields that Ed is bounded by three hypersurfaces for d ≥ 2. Two of these
hypersurfaces are hyperplanes. If d = 2 the third one is a hyperplane (line),
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too. This is obviously not true for d ≥ 3. E(C)
d is a subset of an algebraic

curve of higher degree. Just for completeness we want to mention another
result of Fam [8] in which the volume V (Ed) of Ed is calculated. Using the
Barnes G-function G we have

V (Ed) =


22n2+nΓ(n+1)G(n+1)4

G(2n+2) (d = 2n),
22n2+3n+1G(n+2)4

Γ(n+1)G(2n+3) (d = 2n+ 1).

Note that for positive integers the Barnes G-function equals the superfacto-
rials: G(n+ 2) =

∏n
j=1 j! for n ∈ N. Moreover, observe that by [8, Formula

(2.13)] we have limd→∞ V (Ed) = 0. On the other hand the diameter of Ed
tends to infinity with d. Indeed, the vector of the coefficients of the k-th
cyclotomic polynomial Φk belongs to the boundary of Eϕ(k) and by a result
of Emma Lehmer [13] the maximum of the absolute value of the coefficients
of Φk is not bounded.

3. First relations between the orbits of τr and τr�s

In this section we will investigate the relation between the behavior of
τr and the behavior of τr�s for r ∈ Rd and s ∈ Zq (see Theorem 3.1). We
will see that it is necessary for r to be an element of Dd in order to have
that r�s ∈ Dd+q. Moreover, we need s to have integer coordinates because
otherwise there exist no relations between τr and τr�s as the ones described
in Theorem 3.1.

This forms the basis for a finer classification of Dd which will be estab-
lished in the subsequent sections and which will enable us to give necessary
and sufficient conditions for r and s to ensure that r � s ∈ Dd+q. These
conditions can be checked algorithmically. Thus at the end we will be able
to describe large pieces of Dd+q \ Ed+q.

We start with an analysis on how the maps τr and � fit together. At
first we introduce a new map acting on (right) infinite sequences. For some
q ∈ N \ {0} and a vector s = (s0, . . . , sq−1) ∈ Zq define

Vs : Z∞ → Z∞, (xn)n∈N 7→

q−1∑
k=0
skxn+k + xn+q


n∈N

.

It is easy to see that Vs maps each periodic sequence to a periodic sequence
and each sequence that is eventually zero to a sequence that is eventually
zero.

Let r ∈ Rd and x ∈ Zd. Successive application of τr to x induces a
sequence of integer vectors, (xn)n∈N = (τnr (x))n∈N, where x0 = x. By
the definition of τr after each application only one entry changes. The
other entries only change their position. Denote by τ∗r (x) ∈ Z∞ the se-
quence (xn)n∈N of the first entries of the sequence (xn)n∈N. It is easy to
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see that for all k ≥ 0 we have (xk, . . . , xk+d−1) = xk = τkr (x), in particular,
x = (x0, . . . , xd−1). We will denote a sequence (xn)n∈N with period l and
preperiod k by x0, . . . , xk−1, (xk, . . . , xl+k−1)∞. If there is an index k such
that xn = 0 for n ≥ k we will therefore write x0, . . . , xk−1, (0)∞.

The behavior of τr can be described completely by the behavior of τr�s
if s ∈ Zq. This is made precise in the following theorem. If s ∈ ∂Eq then
also r � s ∈ ∂Ed+q. Thus this result will enable us to describe parts of
Dd+q \ Ed+q ⊂ ∂Ed+q.

Theorem 3.1. Let p, q ≥ 1 be integers, r ∈ Rp and s ∈ Zq. Then

Vs ◦ τ∗r�s(Zp+q) = τ∗r (Zp).

Proof. Suppose r = (r0, . . . , rp−1) and s = (s0, . . . , sq−1). Set

U =


s0 s1 · · · sq−1 1 0 · · · 0

0 s0
. . . . . . . . . ...

... . . . . . . . . . . . . 0
0 · · · 0 s0 · · · · · · sq−1 1

 ∈ Zp×p+q.

Note that U has maximal rank p and UZp+q = Zp. Thus the theorem is
proved if we show that for all x ∈ Zp+q we have

(3.1) Vs ◦ τ∗r�s(x) = τ∗r (Ux).

Suppose (xk)k∈N = τ∗r�s(x) and (yk)k∈N = τ∗r (Ux). We have to show that

(3.2) yn = s0xn + · · ·+ sq−1xn+q−1 + xn+q

holds for all n ≥ 0. We do this by induction on n. For 0 ≤ n ≤ p − 1
this is true by the definition of U . Now assume that (3.2) is true for each
k ∈ {0, . . . , n} with n ≥ p− 1. By the definition of (yk)k∈N we have

yn+1 = −

p−1∑
j=0
rjyn+1−p+j

 .
By the assumption on the induction this gives

yn+1 = −

p−1∑
j=0
rj(s0, . . . , sq−1, 1) · (xn+1−p+j , . . . , xn+1+q−p+j)


= −

p−1∑
j=0
rj(s0, . . . , sq−1, 1) · (xn+1−p+j , . . . , xn+1+q−p+j)

+
q−1∑
i=0
sixn+1+i

+
q−1∑
i=0
sixn+1+i,
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where we used the fact that s is an integer vector. Now write the argument
of the last floor function as scalar product of two p+d dimensional vectors.
It is easy to see that this gives

−




r0



s0
...
sq−1

1
0
...
...
0


+ · · ·+ rp−1



0
...
0
s0
s1
...
sq−1

1


+



0
...
...
0
s0
s1
...
sq−1





 xn+1−p
...
xn+q





=−

(s� r)

 xn+1−p
...
xn+q


 = xn+q+1

where the last equality follows from the definition of (xk)k∈N. Thus we
arrive at

yn+1 = s0xn+1 + · · ·+ sq−1xn+q + xn+q+1

which shows that (3.2) holds for n+ 1. Hence, in view of (3.1) the theorem
is proved. �

We give an example for illustrating the statement of the theorem.

Example. Let r = (11
12 ,

9
5) and s = (1). Theorem 3.1 says that for each

y ∈ Z2 there exists x ∈ Z3 such that τ∗r (y) = Vs ◦τ∗r�s(x), i.e., the behavior
of τr is completely described by the behavior of τr�s. For instance, suppose
y := (5,−3). By (3.1) we have to choose x such that Ux = y with

U =
(

1 1 0
0 1 1

)
.

Hence, we can choose x := (4, 1,−4). We have r� s = (11
12 ,

163
60 ,

14
5 ) and

τ∗r�s(x) = 4, 1,−4, (5,−4, 2, 1,−4, 7,−9, 10,−9, 7,−4, 1, 2,−4)∞.
In our case the map Vs adds two consecutive entries of a sequence. We thus
have

Vs ◦ τ∗r�s(x) = 5,−3, (1, 1,−2, 3,−3, 3,−2)∞ = τ∗r (y).

From Theorem 3.1 we can deduce several assertions. Firstly by choosing
s = (0) we obtain that

(r0, . . . , rd−1) ∈ Dd ⇐⇒ (0, r0, . . . , rd−1) ∈ Dd+1,

(r0, . . . , rd−1) ∈ D(0)
d ⇐⇒ (0, r0, . . . , rd−1) ∈ D(0)

d+1.
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which is contained in [1].
More generally we have the following result.

Corollary 3.1. Let r ∈ Rd and s ∈ Eq ∩ Zq.
• If r� s ∈ Dd+q then r ∈ Dd.
• If r� s ∈ D(0)

d+q then r ∈ D(0)
d .

Proof. This can be seen immediately by Theorem 3.1 since Vs preserves the
periodicity of a sequence as well as the fact that a sequence is eventually
zero. �

Note that s ∈ Eq∩Zq holds if and only if χR(s) is the product of cyclotomic
polynomials.

We restricted ourselves to integer vectors s ∈ Eq since for s 6∈ Eq we had
r� s 6∈ Ed+q and thus r� s ∈ Dd+q (r� s ∈ D(0)

d+q, respectively) cannot hold
in view of Lemma 2.1 (3). Observe that s ∈ Eq∩Zq implies s ∈ ∂Eq whenever
s 6= 0 and thus r� s ∈ ∂Ed+q. Thus the above corollary yields first results
concerning the relation between Dd+q \ Ed+q and Dd (D(0)

d+q \ Ed+q and D(0)
d ,

respectively). It should be mentioned that the second part of Corollary 3.1
is of interest only if there exists d ∈ N with D(0)

d \ Ed 6= ∅. Up to now no
such d is known. As mentioned in the introduction, for d = 2 it is shown in
[4, Section 2] that the intersection is empty

Note that the converse of Corollary 3.1 does not hold in general. It is
shown in [2] that

(
1, 1+

√
5

2

)
∈ D2. But the already mentioned analysis of

Kirschenhofer et al. [12] shows that
(
1, 3+

√
5

2 ,
3+
√

5
2

)
= (1) �

(
1, 1+

√
5

2

)
∈

∂E3 \ D3. In the following we will develop a converse of Corollary 3.1 that
gives necessary and sufficient conditions for s and the behavior of τr to
ensure that r� s ∈ Dd+p.

4. Some classes of cycles of τr
This section is devoted to solving the problem of finding sufficient con-

ditions for r ∈ Dd such that the converse of Corollary 3.1 holds. To this
matter we will define sets characterized by cycles of τr with certain prop-
erties. First we need some additional definitions and notations. Define the
following equivalence relation for finite sequences.

(x0, . . . , xl−1) ∼= (y0, . . . , ym−1) ⇐⇒
∃k ∈ N : x0 = yk, x1 = yk+1, . . . , xlcm(l,m)−1 = yk+lcm(l,m)−1

where the indices of x and y are taken modulo l and m, respectively. It is
easy to see that ∼= is an equivalence relation. Let Z∗ the set of all finite
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integer sequences. We will denote the elements of Z∗/∼= by representatives
of minimal length inside angle brackets. For example, we have

(2, 3, 1, 2, 3, 1) ∼= (3, 1, 2, 3, 1, 2, 3, 1, 2) ∼= (1, 2, 3)

and the corresponding equivalence class is 〈1, 2, 3〉 (= 〈3, 1, 2〉 = 〈2, 3, 1〉).
Furthermore, let

π : Z∗ → Z∗/∼=
be the canonical epimorphism and

l : Z∗ → N

the length of the representative. Note that the length is well defined. In the
example from above we have l(〈1, 2, 3〉) = 3.

For r ∈ Dd the sequences τ∗r (x) end up periodically for all choices of
x ∈ Zd. This motivates the following definition.

Definition. For r ∈ Dd we call a point x ∈ Zd purely periodic (with respect
to τr) if there exists an l ∈ N such that τ lr(x) = x. Moreover let

C(r) := π{b ∈ Z∗ | ∃x ∈ Zd : τ∗r (x) = b∞} ⊂ Z∗/ ∼=

be the set of all equivalence classes of cycles of τr. For p ∈ N \ {0}, define
the function

Sp : Z∗/ ∼= → {0, 1}

B =
〈
x0, . . . , xl(B)−1

〉
7→

{
0 for p - l(B) or

∑l(B)−1
j=0 ξjpxj = 0

1 otherwise,

where ξp denotes a primitive p-th root of unity.

Note that the function Sp is well defined since it is independent of the
chosen representative of B. We can define the set D(0)

d in terms of C(r) by

D(0)
d = {r ∈ Dd | C(r) = {〈0〉}}.

We will now make a finer classification of the elements of Dd. For p ∈ N\{0}
let

(4.1) D(p)
d := {r ∈ Dd | ∀B ∈ C(r) : Sp(B) = 0}.

We obviously have D(0)
d ⊆ D

(p)
d for each p ∈ N. According to the following

lemma, the set D(1)
d coincides with D(0)

d apart from a set of measure 0.

Lemma 4.1. Let r = (r0, . . . , rd−1) ∈ D(1)
d \D

(0)
d . Then r ∈ ∂Ed. Moreover,

χR(r) has a cyclotomic polynomial Φk, k > 1, as divisor.
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Proof. As r ∈ D(1)
d \ D

(0)
d there exists a cycle B 6= 〈0〉 with S1(B) = 0.

Suppose B = 〈x0, . . . , xl−1〉. By the definition of cycles and the behavior of
τr we know that r0, . . . , rd−1 must satisfy the l(B) inequalities

(4.2) 0 ≤ r0xj + · · ·+ rd−1xj+d−1 + xj+d < 1 (0 ≤ j ≤ l(B)− 1)

where here (and throughout the remaining part of this proof) the indices
of the xi have to be taken modulo l(B). By the definition of D(1)

d we have

(4.3)
l(B)−1∑
j=0
xj = 0.

By adding any l(B)−1 of the above inequalities we thus obtain another set
of l(B) inequalities, namely

(4.4) 0 ≤ −r0xj −· · ·− rd−1xj+d−1−xj+d < l(B)−1 (0 ≤ j ≤ l(B)−1).

Combining (4.2) and (4.4) we get

(4.5) 0 = r0xj + · · ·+ rd−1xj+d−1 + xj+d
for all j ∈ {0, . . . , l(B) − 1}. By multiplying these equations with integers
we see that

{〈kx0, . . . , kxl−1〉 | k ∈ Z} ⊂ C(r).
Since B 6= 〈0〉 we have that C(r) has infinitely many elements. By [1,
Lemma 4.2] this implies that r ∈ ∂Ed.

To prove the second assertion observe that the recurrence relations (4.3)
and (4.5) for the sequence (xj)j∈N imply that the ordinary generating func-
tion F (z) :=

∑
j≥0 xjz

j of this sequence fulfills

F (z) = P0(z)
1 + z + · · ·+ z`−1 = Q0(z)

zdχR(r)(1/z)
,

where P0, Q0 ∈ Z[z] with degP0 < ` − 1 and degQ0 < d. The second
assertion now follows. �

5. Main results
We now come to the main results of the present paper. They show that

large parts of Dd \ Ed can be described by the sets D(p)
e for e < d. In

particular, we are able to describe Dd ∩E
(1)
d and Dd ∩E

(−1)
d completely in

terms of these sets. In the next section we will see that the sets D(p)
e can

be characterized algorithmically.
Our main result is the following. As before, Φj denotes the jth cyclotomic

polynomial.
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Theorem 5.1. Let d, q ≥ 1, r ∈ Rd and s = (s0, . . . , sq−1) ∈ Zq such
that s0 6= 0. Then r � s ∈ Dd+q if and only if the following conditions are
satisfied:

(i) χR(s) = Φα1Φα2 · · ·Φαb for pairwise disjoint non-negative integers
α1, . . . , αb,

(ii) r ∈
⋂b
j=1D

(αj)
d .

Before we give the proof we list some propositions which contain special
cases of Theorem 5.1. These propositions give characterizations of the be-
haviour of τr on some parts of ∂Ed. As already mentioned in Theorem 2.1
the boundary ∂Ed is the union of the three hypersurfaces E(−1)

d , E(1)
d and

E
(C)
d . The intersection of Dd with the hyperplanes E(−1)

d and E(1)
d is com-

pletely determined by the structure of D(1)
d−1 and D(2)

d−1, respectively.

Proposition 5.1. For d ≥ 2 we have Dd ∩ E
(−1)
d = (−1)�D(1)

d−1.

Note that by Proposition 5.1 and Lemma 4.1 we also have

Dd ∩ int (E(−1)
d ) = (−1)� (Ed−1 ∩ D

(0)
d−1)

(the interior on the left hand side is taken with respect to the subspace
topology). At the end of the present section we give a short proof of Propo-
sition 5.1. Indeed, we show how it follows from Theorem 5.1. In the same
way as Proposition 5.1 one can show that the following results are special
cases of Theorem 5.1.

Proposition 5.2. For d ≥ 2 we have Dd ∩ E
(1)
d = (1)�D(2)

d−1.

The situation for E(C)
d is more complicated. Here Theorem 5.1 yields

only partial results. Observe that the sets on the left hand sides in Propo-
sitions 5.3 - 5.5 are proper subsets of E(C)

d .

Proposition 5.3. For d ≥ 3 we have Dd ∩ (1, 0)� Ed−2 = (1, 0)�D(4)
d−2.

Proposition 5.4. For d ≥ 3 we have Dd ∩ (1, 1)� Ed−2 = (1, 1)�D(3)
d−2.

Proposition 5.5. For d ≥ 3 we have Dd∩(1,−1)�Ed−2 = (1,−1)�D(6)
d−2.

Note that for d ≥ 4 more results of this type follow from Theorem 5.1.
In order to prove Theorem 5.1 we need the following simple auxiliary

lemma, whose proof is incorporated for the sake of completeness.

Lemma 5.1. Let (xn)n≥0 be a sequence with

xn =
L∑
i=1
Ai(n)λni
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where Ai(n) =
∑mi
j=0A

(j)
i n
j are polynomials with coefficients A(j)

i ∈ C and
λ1, . . . , λL are pairwise disjoint roots of unity. If A(j)

i 6= 0 for some pair
(i, j) with j ≥ 1 then xn is not bounded.

Proof. Let q ≥ 1 be the largest integer such that there is a pair (i, q) with
A

(q)
i 6= 0. Then, after a possible rearrangement of the indices of the λi,

there is a positive integer K ≤ L such that

|xn| = nq
∣∣∣∣∣
K∑
i=1
A

(q)
i λ
n
i

∣∣∣∣∣+O(nq−1).

If we can show that B(n) :=
∑K
i=1A

(q)
i λ
n
i is bounded away from zero for

infinitely many n, we are done. Since the λi are roots of unity B(n) is
periodic in n and it suffices to prove that B(n) 6= 0 for at least one n.
Suppose this is false. Then

K∑
i=1
A

(q)
i λ
n+k
i = 0 (0 ≤ k < K).

However, as the determinant of this system is a multiple of a Vandermonde
determinant, this would imply that A(q)

i = 0 for all i, a contradiction to
our assumption. �

Proof of Theorem 5.1. We start with showing the sufficiency of the two con-
ditions. Suppose that (i) and (ii) are satisfied. Let x ∈ Zd+q and (xn)n∈N :=
τ∗s�r(x). We have to show that (xn)n∈N ends up periodically. For conve-
nience set sq := 1. By (3.1) we know that
(5.1) (yn)n∈N := τ∗r (y) = Vs((xn)n∈N)
holds with

y :=
( q∑
i=0
sixi,

q∑
i=0
sixi+1 . . . ,

q∑
i=0
sixi+d−1

)
.

As q ≥ 1 we have b ≥ 1 and thus r ∈ D(α1)
d and a fortiori r ∈ Dd.

Hence, there exists an index n0 and a (minimal) positive integer l such
that yn = yn+l for n ≥ n0. We therefore have 〈yn0 , . . . , yn0+l−1〉 ∈ C(r).

The sequence (xn)n≥n0 satisfies the recurrence relation

(5.2)
q∑
i=0
sixn0+k+i = yn0+k = yn0+k+l =

q∑
i=0
sixn0+k+l+i

for k ≥ 0. Its characteristic equation is
(tl − 1)χR(s)(t) = 0.

Denote its roots by λ1, . . . , λg and suppose that they are arranged in a way
that λ1, . . . , λw are roots of tl − 1 only, λw+1, . . . , λl are roots of tl − 1 and
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of χR(s)(t), and λl+1, . . . , λg are roots of χR(s)(t) only. As tl − 1 as well
as χR(s)(t) have only simple roots by the pairwise disjointness assertion in
(i) we conclude λw+1, . . . , λl have multiplicity two while all the other roots
have multiplicity one. Thus

(5.3) xn0+k =
g∑
j=1
A

(0)
j λ
k
j +

l∑
j=w+1

A
(1)
j kλ

k
j

for l + q complex constants A(ν)
j . The sequence (xn)n≥n0 is periodic if and

only if A(1)
j = 0 for all j ∈ {w+1, . . . , l}. If xl−1 and χR(s) have no common

roots (i.e., if α1 - l, . . . , αb - l) then all roots are simple and the second sum
in (5.3) is empty. Thus (xn)n∈N ends up periodically in this case and we
are done. Suppose in the sequel that xl − 1 and χR(s) have common roots,
i.e., that w < l.

In order to calculate the constants A(ν)
j we use (5.2) to obtain

(5.4)

yn0+k =
g∑
j=1
A

(0)
j

q∑
h=0
shλ
k+h
j +

l∑
j=w+1

A
(1)
j

q∑
h=0
sh(k + h)λk+hj

=
g∑
j=1
A

(0)
j λ
k
jχR(s)(λj) +

l∑
j=w+1

A
(1)
j (kλkjχR(s)(λj) + λk+1

j χ
′
R(s)(λj))

=
w∑
j=1
A

(0)
j λ
k
jχR(s)(λj) +

l∑
j=w+1

A
(1)
j λ
k+1
j χ

′
R(s)(λj).

The latter equality holds because χR(s)(λj) = 0 for j > w. Taking k ∈
{0, . . . , l − 1} this is a system of l linear equalities for the l constants
A

(0)
1 , . . . , A

(0)
w , A

(1)
w+1, . . . , A

(1)
l . We will show that condition (ii) implies that

A
(1)
j = 0 for each j ∈ {w + 1, . . . , l}. This will yield ultimate periodicity of

(xn)n∈N in view of (5.3).
The linear system in (5.4) can be rewritten as

(5.5) (yn0 , . . . , yn0+l−1)T = G(A(0)
1 , . . . , A

(0)
w , A

(1)
w+1, . . . , A

(1)
l )T

with

G =


χR(s)(λ1) · · · χR(s)(λw) χ′R(s)(λw+1)λw+1 · · · χ′R(s)(λl)λl
χR(s)(λ1)λ1 · · · χR(s)(λw)λw χ′R(s)(λw+1)λ2

w+1 · · · χ′R(s)(λl)λ2
l

...
...

...
...

χR(s)(λ1)λl−1
1 · · · χR(s)(λw)λl−1

w χ′R(s)(λw+1)λlw+1 · · · χ′R(s)(λl)λll

 .
Denote by Gj the matrix that is obtained by exchanging the jth column

of G by the vector (yn0 , . . . , yn0+l−1)T . Then, by Cramer’s Rule, we have

A
(1)
j = detGj

detG
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One has detG 6= 0 since it is a non-zero multiple of the determinant of a
Vandermonde matrix. We have to show that detGj = 0. We have

detGj =
w∏
k=1
χR(s)(λk)l

l∏
k=w+1
k 6=j

(λkχ′R(s)(λk))
lDj ,(5.6)

where

Dj := det


1 · · · 1 yn0 1 · · · 1
λ1 · · · λj−1 yn0+1 λj+1 · · · λl
...

...
...

...
λl−1

1 · · · λl−1
j−1 yn0+l−1 λ

l−1
j+1 · · · λ

l−1
l

 .
As the products in (5.6) are obviously nonzero we have to deal with the
determinant Dj . In order to calculate this determinant add the λj

k+1 mul-
tiple of the kth row to the last row for each k ∈ {1, . . . , l − 1}. This does
not change the determinant which now can be written as

Dj = det



1 · · · 1 yn0 1 · · · 1
λ1 · · · λj−1 yn0+1 λj+1 · · · λl
...

...
...

...
λl−2

1 · · · λl−2
j−1 yn0+k+l−2 λl−2

j+1 · · · λ
l−2
l

0 · · · 0
∑l−1
k=0 λj

k+1
yn0+k 0 · · · 0

 .

We shall now prove that
∑l−1
k=0 λj

k
yn0+k = 0. This implies that thus the

last determinants Dj , detGj and therefore A(1)
j as well are equal to zero

for each j ∈ {w + 1, . . . , l}. Indeed, as λj is a root of xl − 1 and χR(s),
in view of condition (i) there exists a p ∈ {1, . . . , b} with αp | l and thus
λj and, hence, λj as well are primitive αpth roots of unity. As αp | l and
〈yn0 , . . . , yn0+l−1〉 ∈ C(r) we have

(5.7) Sαp(〈yn0 , . . . , yn0+l−1〉) =
l−1∑
k=0
ξkαpyn0+k = 0

for each αpth root of unity ξαp by condition (ii). Hence, in particular,∑l−1
k=0 λj

k
yn0+k = 0. This shows that Dj = 0 for each j ∈ {w + 1, . . . , l}.

Thus detGj = 0 and therefore also A(1)
j = 0 for w + 1 ≤ j ≤ l. In view of

(5.3) this shows the ultimate periodicity of (xn)n∈N and we are done.
We will now show the necessity of the conditions (i) and (ii).

(i) Since r � s ∈ Dd+q the second inclusion in (1.2) implies that 1 ≥
ρ(R(r�s)) ≥ ρ(R(s)). Since s0 6= 0, s is related to a polynomial over
Z each of whose roots are nonzero and bounded by one in modulus.
This implies that each root of this polynomial is a root of unity.
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Still we have to show that χR(s) has no root of multiplicity greater
than 1. Suppose on the contrary that χR(s) has a root of multiplicity
at least 2, say λj0 . Let x ∈ Zd+q and (xn)n∈N := τ∗s�r(x). We will
show that (xn)n∈N does not end up periodically. As (xn)n∈N satisfies
the recurrence relation (5.2) there are polynomials Aj (1 ≤ j ≤ g)
such that

xn0+k =
g∑
j=1
Aj(k)λkj .

Inserting (5.2) we obtain

(5.8) yn0+k =
g∑
j=1

q∑
h=1
shAj(k + h)λk+hj .

Taking k ∈ {1, . . . l} these are l equations for the l + q coefficients
A

(ν)
j of the polynomials Aj . However, q of these l+ q coefficients do

not occur in (5.8) because they are cancelled out in a similar way
as in (5.4). One of the coefficients not occurring in (5.8) is A(1)

j0
, as

its multiplier in (5.8) is easily seen to be

kλkj0χR(s)(λj0) + λk+1
j0
χ′R(s)(λj0).

This vanishes as λj0 is a double zero of χR(s). Thus we use (5.8)
in order to calculate l of the l + q coefficients A(ν)

j . Each q-tuple
z1, . . . , zq of integers yields a system of q equations. Indeed,

zk =
g∑
j=1
Aj(k)λkj (1 ≤ k ≤ q).

This system can be used in order to calculate the remaining q co-
efficients A(ν)

j , among which we have A(1)
j0

. We choose z1, . . . , zq in
a way that A(1)

j0
6= 0. This choice gives us values for all coefficients

A
(ν)
j .
For k ≥ q define the integers zk by

zk :=
g∑
j=1
Aj(k)λkj .

Then by (5.2) the sequence τ∗s�r((z0, . . . , zd+l−1)) obviously satis-
fies the recurrence relation

∑q
i=0 sizn0+k+i =

∑q
i=0 sizn0+k+l+i. As

A
(1)
j0
6= 0 this sequence does not end up periodically by Lemma 5.1,

a contradiction.
(ii) Since r � s ∈ Dd+q, (xn)n∈N in (5.3) is ultimately periodic. By

Lemma 5.1 this implies that A(1)
j = 0 for each j ∈ {w + 1, . . . , l}.
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The proof of the sufficiency of the three conditions shows that this
is equivalent to Dj = 0 and thus to the fact that (5.7) holds for
α1, . . . , αb. As the latter is just a reformulation of (ii) we are done.

�

We continue with the short proof of Proposition 5.1. It is then clear how
to deduce the other propositions from Theorem 5.1.

Proof of Proposition 5.1. Set s = (−1) and note that χR(s) = Φ1. Then an
application of Theorem 5.1 immediately shows the result. �

The following corollary gives a criterion which ensures that certain points
do not belong to D(p)

d .

Corollary 5.1. If Φp | χR(r) then r 6∈ D(p)
d .

Proof. Suppose on the contrary that r ∈ D(p)
d . We will derive a contradic-

tion. Let q := ϕ(p) where ϕ denotes Euler’s totient function. Define s ∈ Zq
by the equation χR(s) = Φp. Then by Theorem 5.1 we have r � s ∈ Dd+q.
On the other hand, since Φp | χR(r), there exists r′ ∈ Rd−q such that
r = r′ � s. As r ∈ Dd Theorem 5.1 implies that r′ ∈ D(p)

d−q. Thus we have
r′� (s� s) = r� s ∈ Dd+q. However, because r ∈ D(p)

d and χR(s�s) = Φ2
p is

not the product of pairwise disjoint cyclotomic polynomials this contradicts
Theorem 5.1. �

6. Algorithms and concrete results

6.1. An algorithm for describing D(p)
d . After the formal introduction

of the sets D(p)
d in (4.1) we will present a way for characterizing these

sets algorithmically. For p = 0 an algorithm can be found in [1] (see also
[4, 19, 20]). We first give a brief outline of this algorithm and afterwards
we apply similar ideas in order to generalize it for other values of p.

Definition. Let r ∈ Dd. A set V ⊂ Zd that satisfies
(1) ∀x ∈ Zd ∃k ∈ N, (b1, . . . ,bk) ∈ Vk : x =

∑k
j=1 bj ,

(2) x ∈ V ⇒ τr(x),−τr(−x) ∈ V
is called a set of witnesses of r.

Such a set exists and can be chosen to be finite because the linear part of
the mapping τr is contractive. We refer to [1], where details are discussed.

A set of witnesses has nice properties concerning τr.

Theorem 6.1 (cf. [1, Theorem 5.1]). Let r ∈ Dd and let V be a set of
witnesses of r. We have r ∈ D(0)

d if and only if V does not contain purely
periodic points with respect to τr except 0.
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The definition of the set of witnesses can be extended to sets Q ⊂ Dd.

Definition. Let Q ⊂ Dd. A set V ⊂ Zd that satisfies
(1) ∀x ∈ Zd ∃k ∈ N, (b1, . . . ,bk) ∈ Vk : x =

∑k
j=1 bj ,

(2) τr(V) ∪ −τr(−V) ⊂ V holds for all r ∈ Q
is called a set of witnesses of Q.

Such a set exists and can be chosen to be finite provided that the diameter
of Q is small. For details we refer again to [1].

Further define the following graph.

Definition. For a finite setW ⊂ Zd and a setQ ⊂ Dd, we defineG(W,Q) =
(V,E) to be the smallest directed graph with vertices V ⊂ Zd and edges
E ⊂ Zd × Zd such that

(1) W ⊆ V ,
(2) τr(V ) ⊂ V for all r ∈ Q,
(3) E = {(x, τr(x))|x ∈ V, r ∈ Q}.

We are interested in the (directed, simple) cycles of such a graph, i.e.,
in paths of the form v0 → v1 → . . .→ vl−1 → v0 with pairwise disjoint vi
(0 ≤ i ≤ l−1). To avoid confusion with cycles of τr we will refer to cycles of
graphs as graph-cycles although the two types of cycles are closely related
to each other. A graph-cycle of length l consists of l d-dimensional integer
vectors. By the definition of the edges a graph-cycle has the shape
(x0, . . . , xd−1)→ (x1, . . . , xd)→ · · · → (xl−1, . . . , xd−2)→ (x0, . . . , xd−1).

Similar to a cycle of τr, a graph-cycle is uniquely determined by the l
integers x0, . . . , xl−1. Again the elements are ordered cyclically. This enables
us to identify a graph-cycle of G(V, Q) for some sets V and Q with the
integer sequence of corresponding length that determines it and denote it
also by 〈x0, . . . , xl−1〉.

Finally, for some graph-cycle 〈x0, . . . , xl−1〉, consider the system of l dou-
ble inequalities
(6.1) 0 ≤ r0xj + · · ·+ rd−1xj+d−1 + xj+d < 1, (0 ≤ j < l),
where the indices of the xi have to be taken modulo l, and denote

Pd (〈x0, . . . , xl−1〉) :=
{

(r0, . . . , rd−1) ∈ Rd | (r0, . . . , rd−1) satisfies (6.1)
}
.

Note that a graph-cycle B is a cycle of τr for some r ∈ Dd if and only if
Pd(B) 6= ∅. More precisely,

r ∈ Pd (〈x0, . . . , xl−1〉)⇐⇒ 〈x0, . . . , xl−1〉 ∈ C(r).

It is possible to characterize Q ∩ D(0)
d by using a corresponding set of

witnesses V provided that it is finite. This characterization is based on an
idea of Brunotte (see [7]).
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Theorem 6.2 (Brunotte Algorithm, cf. [1, Theorem 5.2]). Let Q ⊂ Dd
and suppose that V is a finite set of witnesses of Q. Furthermore denote by
Π the set of graph-cycles of G(V, Q) without the trivial one 〈0〉. Then

D(0)
d ∩Q = Q \

⋃
π∈Π
Pd(π).

Our aim is to adapt Theorem 6.1 and Theorem 6.2 in order to get algo-
rithms for describing D(p)

d for p 6= 0. The main problem is that even though
a set of witnesses of a set Q (where Q may consist of one point only) con-
tains enough cycles to completely characterize Q∩D(0)

d it may not include
all cycles of τr with r ∈ Q.

Suppose that p 6= 0 and r ∈ Dd. For a given set of witnesses of r we have
the following situation. When 0 is the only purely periodic point of τr then
r ∈ D(0)

d by Theorem 6.1 and therefore, as D(0)
d ⊂ D

(p)
d , we immediately

conclude that r ∈ D(p)
d . If the set of witnesses includes other purely periodic

points than 0 then these points induce a set Π of cycles. If this set contains
a cycle B with Sp(B) 6= 0 then r 6∈ D(p)

d and we are done. A problem occurs
if Π 6= {(0)} and Sp(B) = 0 for all B ∈ Π since we do not know whether
there exists a cycle B′ with B′ 6∈ Π and Sp(B′) 6= 0.

The following lemma will show that we can use the idea of the set of
witnesses even for analyzing the structure of D(p)

d , however, with some ad-
ditional expenditure.

Lemma 6.1. Let r ∈ Dd and V a set of witnesses of r. If x ∈ Zd is purely
periodic w.r.t. τr then there exist integer points z1, . . . , zn ∈ V such that∑n
j=1 zj = x and

∑k
j=1 zj is purely periodic (w.r.t. τr) for all k ∈ {1, . . . , n}.

Proof. Let y be an arbitrary purely periodic point with respect to τr hav-
ing period l. For proving the lemma it suffices to show that we can find
w1, . . . ,wm ∈ V such that y =

∑m
j=1 wj and

∑m−1
j=1 wj is purely periodic.

By Definition 6.1 y can be represented as

y =
m∑
j=1

w′j

with w′1, . . . ,w′m ∈ V. Let q ∈ N. Then q applications of τ lr yield

τ lqr (y) = y = τ lqr

m−1∑
j=1

w′j

+ w′′m

with w′′m ∈ V by the construction of the set of witnesses. Since r ∈ Dd we
can choose q such that τ lqr

(∑m−1
j=1 w′j

)
is a purely periodic point of τr. On
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the other hand, again by the construction of the set of witnesses, we have

τ lqr

m−1∑
j=1

w′j

 =
m−1∑
j=1

w′′j

for some w′′1, . . . ,w′′m−1 ∈ V. Setting wj := w′′j for all j ∈ {0, . . . ,m} shows
the claim. �

We first show how Lemma 6.1 can be used to check whether a given
point r ∈ Ed is contained in D(p)

d or not. After that we will generalize this
to sets Q ⊂ Ed.

Theorem 6.3. Let p ∈ N, r ∈ Ed and V a finite set of witnesses of r. If
there exists a set W ⊂ Zd with

• 0 ∈W ,
• V + Z ⊂W ,

where Z consists of all purely periodic points (w.r.t τr) contained in W ,
such that for each cycle B generated by elements of W we have Sp(B) = 0,
then r ∈ D(p)

d .

Proof. The theorem is a direct consequence of Lemma 6.1. �

Note that by [1, Theorem 5.1] there always exists a finite set of witnesses
whenever r ∈ Ed. Theorem 6.3 provides an algorithm for verifying whether
r ∈ D(p)

d or not. We can now construct a set W that satisfies the conditions
of Theorem 6.3 as follows. Set W0 := V. Now, for every k = 0, 1, 2, . . .
define Wk recursively as follows: let Πk be the set of all cycles contained
in Wk without the trivial one 〈0〉. If Π = ∅ then we can stop and conclude
that r ∈ D(p)

d . If there exists a cycle B ∈ Πk with Sp(B) 6= 0 then we can
stop, too, and we obviously have r 6∈ D(p)

d . If Πk 6= ∅ and Sp(B) = 0 for all
B ∈ Πk then denote by Zk ⊂ Zd all purely periodic points induced by the
cycles in Πk and let

Wk+1 := V + Zk.
It can be shown easily by induction on k that, whenever Wk+1 contains a
purely periodic point,Wk+1 contains all purely periodic points of the corre-
sponding cycle. We also see by Lemma 6.1 that this procedure terminates
at some stage k = k0 since C(r) is finite for r ∈ Ed. This leads to a set
W :=Wk0 satisfying the conditions of Theorem 6.3 in the relevant case.

Finally we are going to generalize the results from above in order to
characterize Q ∩ D(p)

d for some Q ⊂ Ed using Theorem 6.2.

Theorem 6.4. Let p ∈ N, Q ⊂ Ed closed and V a finite set of witnesses of
Q. Denote by W ⊂ Zd a finite set with

• 0 ∈W ,
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• V + Z ⊂W ,
where Z consists of all purely periodic points w.r.t. τr for some r ∈ Q
contained in W . Then

Q ∩ D(p)
d = Q \

⋃
B∈Π,Sp(B) 6=0

Pd(B)

where Π consists of the graph-cycles of G(W,Q) except 〈0〉.

Proof. The theorem is a direct consequence of Lemma 6.1. �

By [1, Theorem 5.2] (see also [19, Lemma 2.2]) there exists a finite set
of witnesses of closed Q ⊂ Ed provided that Q is sufficiently small. To
construct W again set W0 := V. Now, for every k = 0, 1, 2, . . ., let Πk the
set of all graph-cycles of G(Wk, Q) (without the trivial one 〈0〉) that are
cycles for some r ∈ Q. If

(6.2) {B ∈ Πk \Πk−1|Sp(B) = 0} = ∅

we stop and have

Q ∩ D(p)
d = Q \

⋃
B∈Πk,Sp(B) 6=0

Pd(B).

If (6.2) does not hold let Zk ⊂ Zd all purely periodic points induced by the
cycles of Πk and let

Wk+1 := V + Zk.
Again this process terminates at some level k = k0. Setting W := Wk0
yields a set W satisfying the conditions of the theorem.

6.2. The behavior of τr on the boundary of E3. We now apply the
algorithms of the last subsection in order to describe D(p)

2 for p ∈ {1, 2}
and D(p)

1 for p ∈ {3, 4, 6}. Together with the results of Section 5 this will
give us a characterization of the parameters r ∈ ∂E3 for which τr has only
periodic orbits, i.e., a characterization of the set D3 \ E3. As one can easily
derive from the results in Section 3, ∂E3 = ∂D3 consists of the two triangles
E

(−1)
3 and E(1)

3 and of the surface E(C)
3 . In particular, from (2.4) we easily

see that

E
(1)
3 = {(s, s+ t+ st, st+ t+ 1) | − 1 ≤ s, t ≤ 1} and

E
(−1)
3 = {(−s, s− t− st, st+ t− 1) | − 1 ≤ s, t ≤ 1}.

The periodic parameters in E(−1)
3 (i.e., the parameters r for which τr(z) is

ultimately periodic for each starting value z ∈ Z3) can be described via the
set D(1)

2 by Proposition 5.1. According to Lemma 4.1, D(1)
2 is equal to D(0)

2
apart from few exceptional points on the boundary. Thus we can use the
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Figure 6.1. The triangles E(−1)
3 (left hand side) and E(1)

3
(right hand side). The dark grey regions correspond to pa-
rameters r for which τr is ultimately periodic for each start-
ing value z ∈ Z3. For the parameters r in the black regions
there exists at least one starting value z ∈ Z3 such that the
orbit (τkr (z))k∈N becomes unbounded. The light grey regions
are not yet characterized.

Figure 6.2. The boundary of D3. On the left hand side
we see a view of D3 where the surface E(C)

3 is transparent.
Some lines of it can be characterized with help of Propo-
sitions 5.3 to 5.5. On the right hand side another view of
D3 is presented. Here we see the two triangles E(−1)

3 and
E

(1)
3 . The colors have the following meaning. Black: there

exist unbounded orbits; dark grey: all orbits are ultimately
periodic; light grey: not yet characterized.
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description of the set D(0)
2 which has been studied extensively (cf. e.g. [4])

in order to get the periodic parameters of large parts of E(−1)
3 .

The periodic parameters in E(1)
3 can be described via the set D(2)

2 by
Proposition 5.2. Since large parts of D(2)

2 can be characterized with help of
the algorithms presented in the last subsection we obtain a description of
the periodic parameters of large parts of E(1)

3 .
Finally, small parts of E(C)

3 can be characterized by using Propositions 5.3
to 5.5. Indeed they yield straight lines on the surface E(C)

3 which belong to
D3.

The results of the algorithmic description of the periodic orbits of ∂E3
are visualized in Figures 6.1 and 6.2. The pictures suggest that the set
of parameters r ∈ ∂Ed that give rise to periodic orbits of τr has a very
complicated structure.
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