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On subsequences of convergents to a quadratic
irrational given by some numerical schemes

par Benoît RITTAUD

Résumé. Un irrationnel quadratique α étant donné, nous nous
intéressons à la manière dont une fonction f convenablement choi-
sie produit des sous-suites de réduites de α. Nous étudions trois
schémas numériques : les méthodes type sécante et certaines géné-
ralisations formelles, qui conduisent à des sous-suites à récurrence
linéaire ; la méthode de la fausse position, qui conduit à des sous-
suites arithmétiques de réduites et donne quelques intéressants
développement en série ; la méthode de Newton, pour laquelle
nous complétons un résultat d’Edward Burger [1] sur l’existence
de fonctions f qui fournissent des sous-suites arithmétiques de
réduites.

Abstract. Given a quadratic irrational α, we are interested in
how some numerical schemes applied to a convenient function f
provide subsequences of convergents to α. We investigate three nu-
merical schemes: secant-like methods and formal generalizations,
which lead to linear recurring subsequences; the false position
method, which leads to arithmetical subsequences of convergents
and gives some interesting series expansions; Newton’s method,
for which we complete a result of Edward Burger [1] about the
existence of some functions f which provide arithmetical subse-
quences of convergents.

1. Introduction
Given a real function f regular enough with root α, there exists several

ways to approximate this root. The most classical ones are, in increasing or-
der of efficiency, the false position method, the secant method and Newton’s
method.

The false position method, whose order of convergence is linear, con-
sists in choosing two initial approximations of α, x0 and x1, such that
f(x0) and f(x1) are of opposite signs, and in defining each new xn in
the following way: in−1 being the smallest integer such that f(xn−1) and
f(xn−1−in−1) are of opposite signs, xn is the x-coordinate of the intersection
with the x-axis of the straight line defined by the points (xn−1, f(xn−1)) and
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(xn−1−in−1 , f(xn−1−in−1)). (When f is convex or concave in a neighborhood
of α, then the sequence (n− 1− in)n is ultimately constant.)

The secant method consists in defining the sequence (xn)n of succes-
sive approximations to α by the following induction: x0 and x1 being two
given approximations of α, each xn is defined as the intersection with
the x-axis of the straight line defined by the points (xn−1, f(xn−1)) and
(xn−2, f(xn−2)). Its order of convergence is equal to ϕ := (1 +

√
5)/2, that

is, the difference |xn − α| is asymptotically upper-bounded by |xn−1 − α|ϕ
up to a multiplicative constant. If we replace, in the definition of xn, the
points (xn−1, f(xn−1)) and (xn−2, f(xn−2)) by the points (xn−s, f(xn−s))
and (xn−t, f(xn−t)) (where s and t are fixed integers), we obtain what we
call here “secant-like methods”.

Newton’s method for approximating α consists in choosing a first ap-
proximation x0, close enough to α, and in defining each new approximation
xn by the intersection with the x-axis of the tangent at (xn−1, f(xn−1)) of
the curve y = f(x). The convergence of Newton’s method is quadratic, that
is, its order of convergence is equal to 2.

When f is a polynomial with integral coefficients, all these methods
allow to find rational approximations to one of its roots, so it is natural
to ask whether these approximations are linked in any way with rational
approximations given by continued fraction expansion.

If c is a positive integer which is not a perfect square, Joseph-Alfred Serret
proved [6] that, if f(x) = x2 − c and x0 is the integer part of

√
c, then,

for every n ≥ 0, Newton’s method gives that, for all n, xn = p2n−1/q2n−1,
where pi/qi is the i-th convergent to

√
c. In other words, applying Newton’s

formula where f stands for the minimal polynomial of some quadratic surd
α and x0 the integral part of α gives for xn the (2n−1)-th convergent to α.
This can be seen as an echo to the fact that the sequence (xn)n converges
quadratically to α.

In section 2, we show that a similar phenomenon occurs for the secant
method (Theorems 2.1 and 2.2): for a large class of quadratic irrational
numbers, starting with suitable x0 and x1, we get a subsequence of conver-
gents to α of the form pFn/qFn where the Fns verify the “quasi-Fibonacci
relation” Fn = Fn−1 +Fn−2 +zn where (zn)n is a bounded sequence. Again,
this property is an echo of the fact that the order of convergence of the se-
cant method is equal to ϕ, the only solution of x2 = x+ 1 such that x > 1.
We show that this phenomenon holds also for secant-like methods; thus,
we get other subsequences of convergents to α given by linear recurring
sequences (Theorem 2.3).

When f is a quadratic polynomial, the false position method can be
seen as a limit case of one of these generalizations of the secant method.
We show in section 3 that, again for a large class of quadratic irrationals,
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this method gives arithmetical subsequences of convergent to α (Theorem
3.1). In passing, these arithmetical subsequences leads to some nice formulas
which express α by series of Egyptian fractions.

As for Newton’s methods, we extend here (section 4) some previous re-
sults given by various authors. In 1999, Georg Rieger [4] exhibited a function
f for which Newton’s formula converges to a quadratic irrational number
and gives more convergents of it than the use of its minimal polynomial; his
example was limited to ϕ−1 = (

√
5−1)/2, for which he obtained a sequence

xn which describes all even-indexed convergents. In 2001, Takao Komatsu
[3] extended this result to every real number with a continued fraction
expansion of the form [0, a, b] (a, b positive integers). Eventually, Edward
Burger [1] gave, for every quadratic number α of the form [0, a1, . . . , aL]
where L is even, an explicit function fα from which the sequence (xn)n
obtained by Newton’s formula starting from x0 = 0 gives all convergents
to α of the form pnL/qnL.

Here, for any quadratic irrational α, we show an explicit way to con-
struct a function fα and an initial value x0 for which Newton’s formula
gives exactly the convergents of the sequence (pnL+k/qnL+k)n, where k is
any integer and L the length of any period of the partial quotients in the
continued fraction expansion of α (Theorem 4.2). Contrary to the previ-
ously mentioned works, we are not limited anymore to the case L even, even
if the parity of L plays a role in the study (explained in Proposition 4.1). We
mention that, under reasonable hypotheses, fα is essentially unique, and we
show that there is no “reasonable” function f for which Newton’s method
gives the whole subsequence of convergents to the quadratic irrational α,
apart from the cases L = 1 and L = 2 (Proposition 4.2 and Corollary 4.1).
It is nevertheless possible, by applying Newton’s method “circularily” to
different functions, to get this whole sequence (Theorem 4.3).

The last section of the present paper gives, in an informal way, some
possible extensions of some of the previous results, mainly in the case of
the so-called λ-continued fractions.

2. Secant-like methods and generalization
Let t > s > 0 be two integers. A natural generalization of the secant

method consists in defining xn with the straight line given by the points
(xn−s, f(xn−s)) and (xn−t, f(xn−t)), the values x0, . . . , xt−1 being given.
We call this variant the (s, t)-secant method; it corresponds to the iteration
of the following induction formula:

(2.1) xn = f(xn−s)
f(xn−s)− f(xn−t)

xn−t −
f(xn−t)

f(xn−s)− f(xn−t)
xn−s.
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In all this section, α > 0 is a quadratic irrational number with minimal
polynomial given by f(x) = ax2 + bx+ c (with a > 0 and a, b, c ∈ Z). We
write ∆ := b2− 4ac. We denote by (pn/qn)n the sequence of convergents to
α. The conjugate root of α is denoted by α.

Definition. We define the function hα on Q(α) by:
hα(u+ vα) := a(u+ vα)(u+ vα) (u, v ∈ Q).

An index i is said to be suitable if it has the following properties:
• hα(pi − qiα) = ±1;
• pi/qi > α− |

√
∆− 2|/a.

The main result of the present section is the following

Theorem 2.1. Let t > s > 0 be two integers, and assume that f(x) =
ax2 + bx + c is such that b ∈ aZ and 2a <

√
∆. Suppose that there exists

a pair of integers (u, v) such that hα(u − vα) = ±1. Then, there exists
suitable (explicit) indices i0,. . . , it−1 such that, defining xj as pij/qij for
all j < t, the iteration of the (s, t)-secant method leads to the sequence of
general term xn = pφ(n)/qφ(n), where φ(n) is defined by

(2.2) φ(n) =
{
in for n < t;
φ(n− s) + φ(n− t) + zn for n ≥ t,

where zn is a bounded sequence.

In all the examples we tested, the sequence (zn)n appeared to be constant
and equal to 1; unfortunately, we do not know how to prove it in full
generality. In subsection 2.3 we give a proof for some particular cases, which
makes use of some ideas that could be helpful for the general case.

The present section is subdivised in three parts: the first one gives some
complements about the necessity of the hypotheses of Theorem 2.1 and
gives an additional theorem; the second one gives the proof of Theorem 2.1
and of this additional theorem; the third one makes use of an element of
the proof to give some more generalizations of secant-like methods to get
other subsequences of convergents.

2.1. Some examples, and an additional theorem. Theorem 2.1 ap-
plies for example to the usual secant method (s = 1, t = 2) and α =

√
2,

with f(x) = x2−2, x0 = 1, x1 = 3/2. The first terms of the sequence (xn)n
are
1
1

= p0
q0
,

3
2

= p1
q1
,

7
5

= p2
q2
,

41
29

= p4
q4
,

577
408

= p7
q7
,

47321
33461

= p12
q12
. . .

Denoting by (Fn)n the Fibonacci sequence defined by F0 = 1, F1 = 2
and, for any n ≥ 2, Fn = Fn−1 + Fn−2, we have that xn = pFn−1/qFn−1 for
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all n ≥ 0. Another example of number α for which we get the same formula
is the positive root of x2−kx− 1 (where k > 0 is any integer), with x0 = k
and x1 = k + 1/k (see section 2.3).

The assumption that b ∈ aZ cannot be removed: for example, defin-
ing α as the only positive root of f(x) := 8x2 + 5x − 23 (we have α =
(
√

761 − 5)/16) and applying the usual secant method (s = 1, t = 2),
starting with the suitable pairs (u0, v0) = (p3, q3) = (24, 17) and (u1, v1) =
(p8, q8) = (38398, 27201) gives that x2 = p12/q12, but some calculation
shows that the next xns are not anymore convergents to α.

As regards the hypothesis 2a <
√

∆, here is a way to weaken it:

Theorem 2.2. Remove the hypothesis 2a <
√

∆ in the statement of The-
orem 2.1. Let (d(n))n be the sequence of integers defined by

d(n) =
{

0 if n < t;
1 + d(n− s) + d(n− t) if n ≥ t.

For any n such that d(n) is even, xn is a convergent to α.

An example in which Theorem 2.2 applies but not Theorem 2.1 is given
by the usual secant method (s = 1, t = 2) applied to f(x) = 2x2−1 starting
with (u0, v0) = (1, 1) (so x0 = 1) and (u1, v1) = (2, 3) (so x1 = 2/3). The
successive approximations to α = 1/

√
2 are then the ratios un/vn given by

the following table, the last line telling if un/vn is a convergent to α.
n 0 1 2 3 4 5 6
un 1 2 7 58 1632 378 568 2 471 293 760
vn 1 3 10 82 2308 535 376 3 494 937 152
d(n) 0 0 1 2 4 7 12

convergent? yes yes no yes yes no yes
The indices of the convergents to α obtained under the assumptions

of Theorem 2.2 can certainly be precized. To show this, let us consider
the example of the (1, 3)-secant method applied to α =

√
2/3, which has

f(x) = 3x2−2 as minimal polynomial. A simple verification shows that 2a >√
∆ and that the pairs (u0, v0) = (1, 1), (u1, v1) = (9, 11) and (u2, v2) =

(881, 1079) are suitable. The iteration of the (1, 3)-secant method then gives
the following table, in which the second line indicates the value of the index
in such that the equality xn = pin/qin holds.

n 0 1 2 3 4 5 6 7 8 9 10
index 1 3 7 (8) 11 (18) (26) 37 55 81 (118)

Indices written between parentheses are not “true” indices: the equality
xn = pin/qin does not hold for these one. The value of these “false indices” is
given by the relation in = in−1 +in−3, which is satisfied by the full sequence
of indices (true and false) given in the table. As stated in Theorem 2.2, the
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set of n for which a “false index” occurs is the set of integers n such that
d(n) is odd.

Note also that, as a consequence of the fact that α is a quadratic surd,
if in is a “false index”, then xn = qin/(3pin/2).

As regards the definition of initial “suitable” indices, we do not know
whether there is a simple way to weaken it. The particular case of the usual
secant method applied to α =

√
3 (of minimal polynomial f(x) = x2 − 3)

starting with (u0, v0) = (1, 1) and (u1, v1) = (2, 1) is an example in which
h√3(u0, v0) = 2 but for which, nevertheless, all the fractions un/vn (to be
reduced) are convergents to

√
3.

2.2. Proof of Theorem 2.1 and Theorem 2.2. Here, we prove simul-
taneously both Theorem 2.1 and Theorem 2.2.

We start with some general properties of the function hα and of the
(s, t)-secant method.

Proposition 2.1. The function h := hα satisfies the following properties:
1) for any z and z′ ∈ Z(α), ah(zz′) = h(z)h(z′);
2) for any u, v ∈ Z, h(u+ vα) = au2 − buv + cv2;
3) for any z ∈ Z(α) and any m ∈ Z, we have h(mz) = m2h(z).

Proof. Simple calculation. �

Lemma 2.1. The discriminant ∆ = b2 − 4ac is lower-bounded by 5.

Proof. We have ∆ = b2 (mod 4), and b2 = 0 or 1 (mod 4). Since 0, 1 and
4 are perfect squares, we must have ∆ ≥ 5. �

Proposition 2.2. If there exists a pair of integers (u, v) such that
h(u− vα) = ±1, then there exists infinitely many suitable indices.

Proof. Let ε be any unit of Q(
√

∆) of the form µ + ν
√

∆ (µ, ν integers).
A calculation shows that ε(u − vα) ∈ Z(α) and that h(ε) = a. Thus,
h(ε(u − vα)) = h(ε)h(u − vα)/a = ±1, so we have proved that there are
infinitely many pairs of integers (x, y) such that h(x− yα) = ±1. Our aim
is now to prove that infinitely many of these pairs are convergents to α,
and that these convergents satisfy the inequality pi/qi > α − |

√
∆ − 2|/a.

Note that, thanks to Lemma 2.1,
√

∆− 2 is positive.
Assume that y goes to infinity. The relation f(x/y) = h(x − yα)/y2 =
±1/y2 shows that x/y remains bounded and that the accumulation points
of x/y are included in the set {α, α}. A calculation shows that, defining
x/y by the sequence εn(u − vα), we have that x/y goes to α (resp. α) for
µν < 0 (resp. µν > 0). Thus, we can find a sequence x/y converging to α,
so the inequality x/y > α − (

√
∆ − 2)/a is true for infinitely many pairs

(x, y), and it only remains to show that these pairs are convergents to α.
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An order 1 approximation gives that
1
y2

=
∣∣∣∣f (xy

)
− f(α)

∣∣∣∣ ≈ |f ′(α)| ·
∣∣∣∣xy − α

∣∣∣∣ ,
so, since f ′(α) =

√
∆ > 2 thanks to Lemma 2.1:∣∣∣∣xy − α

∣∣∣∣ < 1
2y2
,

hence, thanks to a classical result on approximation of an irrational number
by its convergents (see for example [2], Theorem 184), x/y is a convergent
to α, and the proposition is proved. �

Since it is assumed in the statement of Theorem 2.1 that there exists a
pair (u, v) of integers such that h(u−vα) = ±1, Proposition 2.2 allows us to
choose t convergents to α which are suitable in the sense of our Definition.
These suitable convergents define the xns for n < t. We have now to prove
that the xns for n ≥ t, defined by formula (2.1), have the desired property.

For any n < t, write xn as un/vn, where un and vn are mutually prime
integers. The integers un and vn for n ≥ t are defined by induction, using
formula (2.1) of the (s, t)-secant method:

xn =

(
a
u2
n−s
v2
n−s

+ bun−svn−s
+ c
)
· un−tvn−t

−
(
a
u2
n−t
v2
n−t

+ bun−tvn−t
+ c
)
· un−svn−s(

a
u2
n−s
v2
n−s

+ bun−svn−s
+ c
)
−
(
a
u2
n−t
v2
n−t

+ bun−tvn−t
+ c
)

=
(aun−tu2

n−svn−t + cun−tvn−tv2n−s)− (au2
n−tun−svn−s + cun−sv2n−tvn−s)

(au2
n−sv

2
n−t + bun−sv2n−tvn−s)− (au2

n−tv
2
n−s + bun−tvn−tv2n−s)

= (aun−tun−s − cvn−tvn−s)(un−svn−t − un−tvn−s)
(aun−svn−t + aun−tvn−s + bvn−tvn−s)(un−svn−t − un−tvn−s)

= aun−tun−s − cvn−tvn−s
aun−svn−t + aun−tvn−s + bvn−tvn−s

.

This leads to the following definition of un and vn for n ≥ t:

(2.3)
{
un = aun−tun−s − cvn−tvn−s
vn = aun−svn−t + aun−tvn−s + bvn−tvn−s

so we can write xn = un/vn for any n. Remind that, apart from the case
n < t, the fraction un/vn is non necessarily irreducible.
Lemma 2.2. For any n ≥ t, we have

un − vnα = a(un−s − vn−sα)(un−t − vn−tα).
Proof. Simply expand the expression a(un−s−vn−sα)(un−t−vn−tα), use the
relation aα2 = −bα− c and compare the result to the definition of un and
vn given by relation (2.3) (of course, we also make use of the irrationality
of α). �
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Recall that, as defined in the statement of Theorem 2.2, for any n we
have

d(n) =
{

0 if n < t;
1 + d(n− s) + d(n− t) if n ≥ t.

Proposition 2.3. For any n, we have |h(un − vnα)| = ad(n).

Proof. The proposition is true for any n < t, since these xns were chosen
to be convergents to α of suitable indices (so |hα(un − vnα)| = 1 = a0 for
these n). For n ≥ t, we write

|h(un − vnα)| = h(|a(un−s − vn−sα)(un−t − vn−tα)|)
= a2h(|(un−s − vn−sα)(un−t − vn−tα)|)
= a2h(|un−s − vn−sα|) · h(|un−t − vn−tα)|)/a

= a · ad(n−s) · ad(n−t).

The first equality comes from Lemma 2.2, the two following ones by Propo-
sition 2.1 (point 3, then point 1), and the last one by the induction hypoth-
esis. �

Corollary 2.1. For any n, if p is a prime number which divides both un
and vn, then p divides a.

Proof. Assume that p divides both un and vn. Thus, for some integers u
and v, Proposition 2.1 gives that h(un−vnα) = p2h(u−vα). Since h(u−vα)
is integer-valued, the right side of this equality is a multiple of p2. Since
h(un− vnα) is a power of a by Proposition 2.3, we get that p divides a. �

Proposition 2.4. For any n ≥ 0, let us denote by y(n) (resp. z(n)) the
biggest exponent e ∈ N such that un (resp. vn) is a multiple of ae. We have,
for any n:

y(n) ≥ d(n)− 1
2

and z(n) ≥ d(n)
2
.

Proof. Since d(n) = 0 for any n < t, the property is true for any n < t.
Let assume that it is true until some n − 1. Recall that we assume that
b is a multiple of a: we write b = b′a, where b′ is an integer. The general
expression for un and vn gives that, for some integers ũn−s, ũn−t, ṽn−s and
ṽn−t:

un = a · ay(n−t)ũn−t · ay(n−s)ũn−s − c · az(n−t)ṽn−t · az(n−s)ṽn−s
vn = a · ay(n−s)ũn−s · az(n−t)ṽn−t + a · ay(n−t)ũn−t · az(n−s)ṽn−s

+ b′a · az(n−t)ṽn−t · az(n−s)ṽn−s.
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The induction hypothesis and the definition of d(n) then give

1 + y(n− t) + y(n− s) ≥ 1 + d(n− t)− 1
2

+ d(n− s)− 1
2

≥ d(n− t) + d(n− s)
2

≥ d(n)− 1
2

z(n− t) + z(n− s) ≥ d(n− t)
2

+ d(n− s)
2

≥ d(n)− 1
2

so y(n) ≥ (d(n)− 1)/2. The same calculation for the exponents of a in the
expression of vn gives that z(n) ≥ d(n)/2. �

The following lemma will conclude the proof of Theorem 2.2.

Lemma 2.3. If a/
√

∆ < 1/2 then xn = un/vn is a convergent to α. Else,
for any n such that d(n) is even, xn = un/vn is a convergent to α.

Proof. We have, by Proposition 2.3:(
un
vn
− α
)(
un
vn
− α
)

= h(un − vnα)/a
v2n

= ±a
d(n)−1

v2n
.

For any n we denote by εn the value such that un/vn−α = εn. We have

a

(
un
vn
− α
)

= a (α− α+ εn) =
√

∆ + aεn.

Thus, we can write

(2.4) un
vn
− α = 1√

∆ + aεn
±ad(n)

v2n

• Case 1: d(n) is even
Then, the lower bound of y(n) and z(n) given in Proposition 2.4

become the same, equal to d(n)/2. There exists two integers u′n and
v′n such that un = ad(n)/2u′n and vn = ad(n)/2v′n, so equation (2.4)
becomes

un
vn
− α = u

′
n

v′n
− α = 1√

∆ + aεn
±1
v′n

2 .

We know that, for any n < t, the xns are convergents to α with
suitable indices, so, by our Definition, we have that

√
∆ + aεn >

2 for any n < t. Moreover, for any n ≥ t, it is proved in the
same way as for the usual secant method that the succession of
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values given by the (s, t)-secant method is such that |xn − α| ≤
min(|xn−s−α|, |xn−t−α|), that is, |εn| ≤ min(|εn−s|, |εn−t|). Thus,
for any n ≥ t, we also have

√
∆ + aεn > 2, so we finally get that:∣∣∣∣u′nv′n − α
∣∣∣∣ ≤ 1

2v′n2 ,

an inequality that implies that un/vn is a convergent to α, by the
classical result already mentionned in the proof of Proposition 2.2.
Thus, Theorem 2.2 is proved.
• Case 2: d(n) is odd

In this case, we have y(n) ≥ (d(n) − 1)/2 and z(n) ≥
(d(n) + 1)/2. As in the previous case, writing un = a(d(n)−1)/2u′n
and vn = a(d(n)−1)/2v′n gives, in equation (2.4):∣∣∣∣u′nv′n − α

∣∣∣∣ = a√
∆ + aεn

1
v′n

2 .

Recall the assumption, specific to Theorem 2.1, that a/
√

∆ <
1/2. When we chose the t first xns by Proposition 2.2, we can ask
for these convergents to be close enough to α so as to get that
a/(
√

∆ + aεn) < 1/2 for any n < t. Since the sequence (|εn|)n is
decreasing, this choice implies that a/(

√
∆ + aεn) < 1/2 for any n,

thus, we finally get ∣∣∣∣u′nv′n − α
∣∣∣∣ < 1

2v′n2 ,

an inequality that implies, as before, that u′n/v′n is a convergent to
α.

�

Note that neither the fractions un/vn nor the fractions u′n/v′n given in
the previous proof are necessarily irreducible (even if they correspond to
convergents to α). Nevertheless, we have the following property.

Lemma 2.4. Let gn be the greatest common divisor between the values u′n
and v′n defined in the proof of Lemma 2.3. The sequence (gn)n is bounded.

Proof. For n even or odd, the proof of Lemma 2.3 shows that the inequality∣∣∣∣u′nv′n − α
∣∣∣∣ ≤ a√

∆ + aεn
1
v′n

2

holds. Let u′n = gnu′′n and v′n = gnv′′n. We thus have∣∣∣∣u′′nv′′n − α
∣∣∣∣ ≤ a

g2n(
√

∆ + aεn)
1
v′′n

2 .
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Since α is a quadratic number, it has bounded partial quotients, so the
coefficient a/(g2n(

√
∆ + aεn)) cannot become arbitrarily small. Therefore,

gn cannot become arbitrarily big, and the lemma is proved. �

Lemma 2.5. Let L be the period length of the continued fraction expansion
of α. There exists a quadratic number β such that its conjugate, β, is equal
to ±1/β and such that, for any n big enough and any m between 0 and
L− 1:

pnL+m = ρmβn + ρmβ
n and qnL+m = (ρm/α)βn + (ρm/α)βn

for some ρm.

Proof. Classical formulae for numerators of convergents give that, for any
n big enough:

pnL+1 = a1pnL + pnL−1

pnL+2 = a2pnL+1 + pnL
...

p(n+1)L = aLp(n+1)L−1 + p(n+1)L−2,

where the ais are the partial quotients belonging to the periodic part of
the continued fraction expansion of α. The smallest n0 such that these
equalities are true for any n ≥ n0 is the index of the first partial quotient
to α from which the continued fraction expansion of α is periodic.

Linear combinations of these relations allow to express pnL+1, pnL+2, . . . ,
p(n+1)L as a linear combination of pnL and pnL−1. By induction, let us define
the following vectors of RL: `1 := (0, . . . , 0, 1, a1), `2 = (0, . . . , 0, a2, a1a2+1)
and, for any 3 ≤ i ≤ L, `i := ai`i−1 + `i−2. Define, then, the L× L matrix
M as the matrix with `i as i-th row. We write Pn for the vector whose
coordinates are pnL+1, . . . , p(n+1)L. We thus have, for any n ≥ n0, that
Pn =MPn−1.

Due to the form of M , the characteristic polynomial of M is of the
form XL−2Q(X), where Q is of degree 2. Moreover, Q(0) is equal to the
determinant of the 2 × 2-submatrix of M at the bottom and the right of
M . Thanks to the definition of the `is, this determinant is equal (up to a
possible change of sign) to the determinant of the 2× 2-submatrix of M at

the top and the right of M , that is: Q(0) =
∣∣∣∣ 1 a1
a2 a1a2 + 1

∣∣∣∣ = 1. Hence,

the roots of Q are of the form β and ±1/β. The diagonalization of M then
gives the expected result for pnL+m.

The same reasoning gives also that, for some ρ′m, we have qnL+m =
ρ′mβ

n+ρ′mβ
n for n ≥ n0 and m < L. Let us fix m. The ratio pnL+m/qnL+m

goes to α as n goes to infinity and, taking |β| > 1, it also converges to
ρm/ρ

′
m. Hence, we have ρ′m = ρm/α, and we are done. �
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We are now ready to end the proof of Theorem 2.1.
Denote by δ(n) the value d(n)/2 if d(n) is even, (d(n) − 1)/2 if d(n) is

odd. Thus, using the notation of the proof of Lemma 2.3, we have un =
aδ(n)u′n and vn = aδ(n)v′n. In Lemma 2.4, we defined gn as the greatest
common divisor between u′n and v′n, and defined, in the proof, u′n = gnu′′n
and v′n = gnv′′n. Hence, u′′n/v′′n is irreducible. Since it is equal to a convergent
to α (because un/vn is, by Lemma 2.3), we can define φ(n) such that
u′′n/v

′′
n = pφ(n)/qφ(n). We thus get

un = aδ(n)gnpφ(n),

vn = aδ(n)gnqφ(n).

It remains to show that the sequence (φ(n))n satisfies the relation (2.2)
of the statement of Theorem 2.1.

Lemme 2.5 allows to write pφ(n) and qφ(n) as a linear combination of
βbn/LcL and (±β)−bn/LcL. In the induction definition of un, express un,
un−t, un−s, vn−t and vn−s using all of this. Writing φ(n) = µL + ν with
0 ≤ ν < L, φ(n− t) = iL+ j with 0 ≤ j < L and φ(n− s) = i′L+ j′ with
0 ≤ j′ < L, we get, by considering only the most rapidly increasing terms
in n in both sides of the equality:

aδ(n)gnρνβ
µ = aδ(n−t)+δ(n−s)gn−tgn−s(a− cα−2)ρjρj′βi+i

′
.

Thus

ρνβ
µ =
(

(a− cα−2)gn−tgn−s
gn

aδ(n−s)+δ(n−t)−δ(n)ρjρj′

)
βi+i

′
.

Since δ(n) − δ(n − t) − δ(n − s) and (gn)n are bounded, there exists
a bounded value z such that βi+i′+z = βµ. Thus, we get that φ(n) =
φ(n− s) + φ(n− t) + zn for some bounded zn, and Theorem 2.1 is proved.

2.3. A proof that zn = 1 in Theorem 2.1 for some particular
cases. We prove here the following result.

Proposition 2.5. Let k be a positive integer, let α > 0 be such that
α2 − kα− 1 = 0. Theorem 2.1 applies to this α with zn = 1 for all n.

Proof. Let (pn/qn)n be the sequence of convergents to α. Since α = k+1/α,
we have α = [k], so qn = pn+1 for any n ≥ 0, p0 = k, p1 = k2 + 1 and
pn = kpn−1 + pn−2 for any n ≥ 2. A calculation thus shows that, for any
n ≥ 0:

pn = ραn + ραn

with ρ = α2/(α− α).
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Since a = 1, Theorem 2.1 together with Corollary 2.1 give that un = pφ(n)
and vn = qφ(n) for any n. Thus, applying the induction formula for un and
using the relations α = −α−1 and qn = pn−1 give

pφ(n) = un
= un−tun−s + vn−tvn−s
= pφ(n−t)pφ(n−s) + qφ(n−t)qφ(n−s)
= ρ2αφ(n−t)+φ(n−s) + ρ2αφ(n−t)+φ(n−s)−2)

+ ρ2αφ(n−t)+φ(n−s) + ρ2αφ(n−t)+φ(n−s)−2)

= ραφ(n−t)+φ(n−s)+1 · (ρ(α−1 + α−3))

+ ραφ(n−t)+φ(n−s)+1 · (ρ(α−1 + α−3)).

A simple calculation shows that ρ(α−1 +α−3) = 1, so φ(n) = φ(n− t) +
φ(n− s) + 1, thus zn = 1 for any n, and we are done. �

The previous proof can be generalized to many other particular cases.
For example, we leave as an exercice to the reader to show that Theorem
2.1 applies with zn = 1 for all n whenever α > 0 is a root of x2−kx− l = 0
with k ∈ lN. We did not found a way to extend the previous proof in the
full generality of Theorem 2.1.

2.4. A generalization of secant-like methods. The (s, t)-secant meth-
od allows to find subsequences of convergents to some quadratic irrationals;
these subsequences are asymptotically geometrically increasing with growth
rate equal to the only x > 1 such that xt = xt−s+1. (Note that this growth
rate gives also the order of convergence of the (s, t)-secant method, as is
it shown by a straightforward generalization of the classical corresponding
result for the usual secant method, which is of order ϕ where ϕ2 = ϕ+1.) A
natural question is then to ask for other variants of the secant method which
give raise to subsequences of other growth rate. A way to do it is to make
use of the crucial relation given in Lemma 2.2. Taking it as a definition of
un and vn instead of a consequence of properties of the (s, t)-secant method
leads to the following

Definition. Let k > 0 be an integer and let 0 < s0 ≤ s1 ≤ s2 ≤ · · · ≤ sk
be integers. The quadratic irrational α being defined as in Theorem 2.1,
we define the (s0, s1, . . . , sk)-secant method of approximation to α as the
iteration of the formula
un − vnα := ak(un−s0 − vn−s0α)(un−s1 − vn−s1α) · · · (un−sk − vn−skα).

We do not know whether this definition of the (s0, . . . , sk)-secant method
has an elementary geometric interpretation which extends in a natural way
the geometric interpretation of the (s, t)-secant method.
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For the sake of brievety, we give the result only in the case a = 1.

Theorem 2.3. Let k > 0 be an integer, let f(x) = x2 + bx+ c the minimal
polynomial over Z of a quadratic irrational number α > 0. Assume that
there exists u and v such that |h(u− vα)| = 1, where h(x+ yα) is defined
as (x+ yα)(x− yα) = x2 + bxy+ cy2. There exists (explicit) indices i0,. . . ,
imax(sk)−1 such that, defining xj as pij/qij for all j < max(sk), the iteration
of the (s0, . . . , sk)-secant method leads to the sequence of general term xn =
pφ(n)/qφ(n), where φ(n) is defined by

φ(n) =


in for n < max(sk);
k∑
j=0
φ(n− sj) + zn for n ≥ max(sk),

where (zn)n is a bounded sequence.

The proof of Theorem 2.3 goes in the same way as the proof of Theorem
2.1. Since a = 1, Lemma 2.1 remains true and Proposition 2.3 becomes
|h(un−vnα)| = 1 for any n. Since a = 1, Lemma 2.1 gives that a

√
∆ < 1/2,

so Lemma 2.3 implies that xn = un/vn is a convergent to α for any n. The
end of the proof is the same.

3. The method of false position
Let α be a (irrational) root of the polynomial f(x) := ax2 +bx+c, where
a, b and c are integers without common divisor and a > 0. In particular, f
is convex. We define ∆ := b2 − 4ac.

If f ′(α) > 0 (resp. f ′(α) < 0), consider two first approximations to α, x0
and x1, close enough to α and such that x1 < α < x0 (resp. x0 < α < x1).
Thus, the iteration of the method of false position gives the sequence (xn)n
of approximations of α obtained by the following induction formula for all
n ≥ 1:

(3.1) xn+1 = x0 −
x0 − xn

f(x0)− f(xn)
· f(x0)

In some way, it can be seen as a limit case of the secant-like methods
presented in the beginning of the previous section, where s = 1 and t = +∞.

Theorem 3.1. Under the previous hypotheses on α and f , assume that
there exists a pair of integers (u, v) such that au2 + buv + cv2 = ±1 and
such that bv ∈ aZ. Put x0 := u/v, and let x1 = u1/v1 be a convergent to α.
Let h1 := au2

1 + bu1v1 + cv21.
• Assume v1 ∈ aZ.

If 2|h1| ≤ |a|
√

∆ (resp. 2|h1| ≤
√

∆), then, the sequence (x2n)n≥1
(resp. (x2n−1)n≥1) obtained by the iteration of the false position
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method starting from x0 and x1 is an arithmetical subsequence of
convergents to α.
• Do not assume v1 ∈ aZ.

If 2|h1| ≤ |a|−1
√

∆ (resp. 2|h1| ≤
√

∆), then, the sequence
(x2n)n≥1 (resp. (x2n−1)n≥1) obtained by the iteration of the false
position method starting from x0 and x1 is an arithmetical subse-
quence of convergents to α.

In the particular case a = 1, if 2|h1| ≤
√

∆, then the full sequence
(xn)n≥1 is an arithmetical subsequence of convergents to α.

In any case, the common difference of the arithmetical subsequence of
convergents to α is equal to mL, where L is the length of the periodic part
of the continued fraction expansion of α and m = m(u, v) is an integer
explicit in u and v.

In the next subsection, we discuss the hypotheses of Theorem 3.1 and
give some relevant examples. In the second subsection we prove the theorem
and, in the last one, we give some interesting series expansions of some
quadratic irrational numbers deduced from the proof.

3.1. Some examples. The hypothesis bv ∈ aZ cannot be removed. We
can illustrate this by the same example used in subsection 2.1: consider the
root α = (

√
761− 5)/16 of the polynomial f(x) = 8x2 + 5x− 23 and take

u = 24, v = 17, u1 = 38398 and v1 = 27201. We have h = 1, and h1 = −1
(so the hypothesis 2|h1| < |a|−1

√
∆ is satisfied), but a calculation shows

that the xns for n ≥ 2 are not convergents to α.
Nevertheless, there are possible generalizations of Theorem 3.1 which

make use of weaker assumptions on bv (and/or v1). For example, assume
that a is of the form pi, where p is a prime number and i ≥ 2. If p di-
vides bv, then our proof of Theorem 3.1 may leads to the result that some
arithmetical subsequences of (un)n consist in arithmetical subsequences of
convergents to α. More generally, the same kind of results probably holds
under the assumption that any prime factor of a divides bv.

The hypothesis on 2|h1| cannot be removed. Let us give two examples of
that, the first in the case v1 /∈ aZ, the second in the case v1 ∈ aZ.

Consider the polynomial f(x) = 3x2− 2, which has α =
√

2/3 as a root.
Take u = 1, v = 1 (so h = 1), u1 = 4 and v1 = 5 (so h1 = −2 and v1 /∈ aN).
We have ∆ = 24, so 2|h1| <

√
∆ and 2|h1| > |a−1|

√
∆. The first terms of

the sequence (xn)n, starting from x0, are, after simplifications:

1 4
5

22
27

40
49

218
267

396
485

2158
2643

3920
4801

. . . ,

and, 1 being excluded, only 4/5, 40/49, 396/485, 3920/4801, etc. are con-
vergents to α, that is, the elements of the subsequence (x2n+1)n.
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Now, consider the polynomial f(x) = 2x2 − 1, and start with u = 1,
v = 1, u1 = 1 and v1 = 2. We then have v1 ∈ aZ,

√
∆ < 2|h1| < |a|

√
∆

(that is,
√

8 < 4 < 2
√

8), and a calculation shows that the successive xns
are, starting from x0:

1 1
2

2
3

7
10

12
17

41
58
. . . ,

that is, the x2n are convergents to α = 1/
√

2 whereas the x2n+1 are not,
since we have, for any n:

x2n = [1,
2n−1︷ ︸︸ ︷

2, . . . , 2] and x2n+1 = [1,
2n︷ ︸︸ ︷

2, . . . , 2, 1].

Apart from the case a = 1 (for which Theorem 3.1 asserts that it is
impossible), we do not know whether we could find a case for which the
convenient hypotheses of Theorem 3.1 are satisfied to get that both se-
quences (x2n)n and (x2n+1)n are arithmetical subsequences of convergents,
but such that the full sequence (xn)n is not.

3.2. Proof of Theorem 3.1. Without loss of generality, we assume
f ′(α) > 0, the other case being similar.

We write x0 := u0/v0 := u/v (with u = u0 and v = v0), x1 := u1/v1; for
any n ≥ 1, we define un+1 and vn+1 by identifying the numerators and the
denominators in the following equality (obtained by replacing xn by un/vn
and x0 by u/v in the expression of xn+1 given by relation (3.1)):

un+1
vn+1

= xn+1 = auun − cvvn
avun + (au+ bv)vn

.

Let hn := au2
n + bunvn + cv2n for any n ≥ 0. For some reason that will

become clearer in the next subsection, we write h instead of h0 (we thus
have h = 1). Note that for any n ≥ 1, we have hn < 0.

An elementary calculation shows that hn+1 = ahhn. We thus have(
un
vn
− α
)(
un
vn
− α
)

= hn
av2n
,

so, since un/vn − α < α− α =
√

∆/a (where ∆ = b2 − 4ac):

(3.2)
∣∣∣∣unvn − α

∣∣∣∣ < |h1|(ah)n−1
√

∆
1
v2n
.

In the following, we take v1 ∈ aZ. By the hypothesis bv ∈ aZ, an easy
induction then shows that, for any n ≥ 0, un ∈ abn/2cN and vn ∈ adn/2eN.

• If n is even
Let us write, un = an/2u′n and vn = an/2v′n. Inequality (3.2)

becomes
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∣∣∣∣unvn − α
∣∣∣∣ = ∣∣∣∣u′nv′n − α

∣∣∣∣ < |h1|(ah)n−1
√

∆
1
anv′n

2 = |h1|hn−1

a
√

∆
1
v′n

2 .

Since h = 1, the assumption 2|h1| ≤ a
√

∆ gives that |u′n/v′n−α| <
1/(2v′n

2) and so u′n/v′n is a convergent to α (same argument as in
the proof of Theorem 2.1).
• If n is odd

We write un = a(n−1)/2u′n and vn = a(n−1)/2v′n. Inequality (3.2)
now becomes

∣∣∣∣unvn − α
∣∣∣∣ = ∣∣∣∣u′nv′n − α

∣∣∣∣ < |h1|(ah)n−1
√

∆
1

an−1v′n
2 = |h1|hn−1

√
∆

1
v′n

2 .

Since h = 1, the assumption 2|h1| ≤
√

∆ gives that |u′n/v′n−α| <
1/(2v′n

2) and so u′n/v′n is a convergent to α.
The reader may check that, when v1 /∈ aZ, we only have un ∈ ab(n−1)/2cN

and vn ∈ abn/2cN; it does not change the previous study in the case n odd,
but when n is even, the convenient assumption to get that u′n/v′n is a
convergent to α is now: 2|h1| ≤ a−1

√
∆.

Now that we know that (x2n)n or (x2n+1)n, or even (xn)n (depending on
the assumed assumptions) is a sequence of convergents to α, it remains to
show that this is also an arithmetical subsequence of convergents to α.

Define, for any n ≥ 0:

Xn :=
(
un
vn

)
M :=

(
au −cv
av au+ bv

)
.

We thus have, for any n ≥ 1, Xn+1 =MXn.
Assume v1 ∈ aZ (otherwise, the study is essentially the same) and define

also X ′n :=
(
u2n/a

n

v2n/a
n

)
: thanks to a previous remark, the coordinates of

X2n are integers.
Observe that X2(n+1) =M2X2n and that

M2 =
(
a(au2 − cv2) −acv(2u+ w)
a2v(2u+ w) a(−cv2 + a(u+ w)2)

)
,

where w is the integer defined by bv = aw (recall the hypothesis bv ∈ aZ).
Dividing each entry of M by a, we put

M ′ :=
(
au2 − cv2 −cv(2u+ w)
av(2u+ w) −cv2 + a(u+ w)2

)
,

so we get X ′n =M ′X ′n−1 for any n ≥ 1.
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Note that, considered in the projective space, X2n and X ′n are equal.
Note also that, since det(M) = a, we have det(M ′) = 1, soM ′ ∈ PSL(2,Z).
Moreover, written as a homography, M ′ admits α as a fixed point, so it-
erating it starting from u0/v0 leads to an arithmetical subsequence of con-
vergents to α with common difference in LN, where L is the length of the
period of the continued fraction expansion of α. Note that the exact value
of this common difference can be easily computed with the help of the stan-
dard decomposition of the homography M ′ into product of generators of
the monoid PSL(2,N) which are z 7−→ z + 1 and z 7−→ −1/z.

The same argument applies when starting from Y ′n :=
(
u2n+1/a

n

v2n+1/a
n

)
,

and leads to the same result.
In the case a = 1, we do not need to considerM2 andM ′, sinceM already

belongs to PSL(2,N). Thus, in this case, the previous reasoning applies to
the full sequence (xn)n, and not only to each subsequences (x2n+1) and
(x2n) separately.

Thus, Theorem 3.1 is proved.

3.3. Series expansions of some quadratic irrational numbers. We
remove here the assumptions bv ∈ aZ and 2|h1| ≤ |a|

√
∆. Again, without

loss of generality, we assume a > 0.
A simple calculation shows that, for any n ≥ 2, we have xn − xn−1 =
un/vn − un−1/vn−1 = −vhn−1/(vn−1vn) for any n. Thus, we have
xn − xn−1 = −vh1(ah)n−2/(vn−1vn). The sequence (vn)n is a linear re-
curring sequence determined by the choice of the values v0 = v, v1 and
v2 = avu1 + (au + bv)v1, and the characteristic polynomial of the matrix
M (see previous subsection), this polynomial being x2 − (2au+ bv)x+ ah.

Thus, writing α as x1 +
∑
n≥2(xn − xn−1) and since h1 < 0, we finally

get:

α = u1
v1

+ v|h1|
∑
n≥2

(ah)n−2

vn−1vn
,

with


v0 = v
v1 = v1
v2 = avu1 + (au+ bv)v1
vn = (2au+ bv)vn−1 − ahvn−2 for n ≥ 3.

When bv ∈ aZ, as we already noticed, vn is a multiple of abn/2c, so
vn−1vn is a multiple of an−1, and the general term of the series hence can
be simplified. In particular, in the case h = 1, the previous expression leads
to an expression of α made of Egyptian fractions (that is, fractions with
numerator equal to 1). For example, for α =

√
2 withm ∈ N∗, taking u = 3,

v = 2, u1 = 1 and v1 = 1 gives
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√
2 = 1 + 2

5
+ 2

145
+ 2

4901
+ 2

166465
+ · · · = 1 + 2

∑
n≥2

1
v′nv
′
n−1
,

where v′0 = 2, v′1 = 1, v′2 = 5, and v′n = 6v′n−1 − v′n−2 for n ≥ 3.
Note that, in this case, the sequence tn = v′nv′n−1 of denominators in the

series can also be expressed in the following simpler form: t2 = 5, t3 = 145
and tn = 34tn−1 − tn−2 − 24 for n ≥ 4.

Other rules of the same kind can be given in other cases: for example,
staying with

√
2 and starting with u/v = 17/12 and u1/v1 = 1 leads to

the equality
√

2 = 1 + 12
∑
n≥1 1/tn with t1 = 29, t2 = 28565 and tn =

1154tn−1− tn−2− 4896 for n ≥ 3. More generally, expressing vn as a linear
combination of the roots of the characteristic polynomial of M leads to an
expression of vnvn−1 which can be used to find a induction formula for tn.

Again for α =
√

2, taking u = 2, v = 1, u1 = 1 and v1 = 1 gives

√
2 = 1 +

∑
n≥2

2n−2

vnvn−1
,

where v0 = v1 = 1, v2 = 3 and vn = 4vn−1 − 2vn−2 for n ≥ 3. Since vn
belongs to 2b(n−1)/2cN for any n ≥ 0, vnvn−1 is multiple of 2n−2, and the
expression can be simplified to get Egyptian fractions (even if h is not equal
to 1). A study shows that we get

√
2 = 1

1
+ 1

3
+ 1

15
+ 1

85
+ 1

493
+ 1

2871
+ · · · ,

where the denominators tn are defined by the rule: t1 = 1, t2 = 3 and
tn = 6tn − tn−1 − 2 for n ≥ 3.

A last example, where h and |h1| are both different from 1, is given by
α =
√

2, u/v = 2/1 and u1/v1 = 4/3, which leads to the sequence
√

2 = 1
1

+ 1
3

+ 1
15

+ 1
85

+ 1
493

+ · · · ,

where the denominators are given by the rule t0 = 1, t1 = 3 and tn =
6tn−1 − tn−2 − 2 for n ≥ 2.

4. Newton’s method
We recall that the analytic expression of Newton’s method is given by

the following induction formula for all n > 0:

xn+1 := xn −
f(xn)
f ′(xn)

.

Definition. For any quadratic irrational number α, we denote by L(α) the
number of partial quotients belonging to the shortest period of its partial
quotients, and by K(α) the number of elements of the (shortest) aperiodic
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part of its continued fraction expansion (so K(α) = 0 when this aperiodic
part is empty).

We start with the existence result; it slightly extends the one given by
Burger in [1], and the proof is quite similar:
Theorem 4.1. Let (pn/qn)n be the sequence of convergents to a fixed qua-
dratic irrational number α, L an element of L(α)N, k a non-negative inte-
ger and n0 := K(α) + k. There exists an explicit function fα such that the
sequence defined by

x0 = pn0

qn0
and xn+1 = xn −

fα(xn)
f ′α(xn)

is the sequence (pn0+nL/qn0+nL)n.
Proof. Let us fix an α for which K(α) = 0, and let us choose for L
any positive multiple of L(α). We have α = [a0, . . . , aL−2, aL−1, 1/α] =
(aα + b)/(cα + d), where a, b, c and d are integers. (Classical facts about
continued fractions asserts that we can choose a = pL−1, b = pL−2, c = qL−1
and d = qL−2, where pn/qn is the n-th convergent to α — see [2].) We de-
fine u(x) by u(x) := (ax+ b)/(cx+ d) for all x 6= −d/c. If x = pi/qi, then
u(x) = pL+i/qL+i, so our goal is to find a function fα such that, for any x
close enough to α, the following equality holds:

x− fα(x)
f ′α(x)

= u(x).

This leads to a differential equation wich can be easily solved. Denoting
by α the conjugate of α, we get, on each interval I− :=]−∞,min(α, α)[, I :=
] min(α, α),max(α, α)[ and I+ :=] max(α, α),+∞[ the following solution
(up to a multiplicative constant, which can be fixed equal to 1):

fα(x) = |x− α|s · |x− α|t,
where s and t are such that s+ t = 1 and αs+ αt = −d/c.

We thus obtain that, when K(α) = 0, for any integer k ≥ 0, Newton’s
algorithm applied to the initial value x0 = pk/qk and the previous function
fα gives the sequence (pnL+k/qnL+k)n of convergents to α.

Let us now consider the case K(α) ≥ 1. We write K = K(α), so α
can be written as α = [ã0, . . . , ãK−1, a0, . . . , aL−1]. Let us start with k =
0, that is, x0 = [ã0, . . . , ãK−1]. Our aim is to get, for every n ≥ 0, the
equality xn = [ã0, . . . , ãK−1 +yn], where yn is defined by y0 = 0 and yn+1 =
[0, a0, . . . , aL−1 + yn] for all n ≥ 0. Let us denote by v the homography
defined by v(y) = [0, a0, . . . , aL−1 + y] and by ṽ the homography defined
by ṽ(x) = [ã0, . . . , ãK−1 + x]. Then, we have xn+1 = ṽ(yn+1) = ṽ(v(yn)) =
ṽ(v(ṽ−1(xn))). Now, we choose for u the function ṽ ◦ v ◦ ṽ−1 and we apply
to u the same method we previously used for the case K = 0. The case
x0 = [ã0, . . . , ãK−1+k] where k > 0 is solved with the same technique. �
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Let us explain now in which way the fα found in the proof of Theorem 4.1
is essentially the unique solution of the problem. We consider a quadratic
irrational number α for which K(α) = 0. Let u be any continuous function
for which u(pnL/qnL) = p(n+1)L/q(n+1)L for all n. Solving the differential
equation x−f(x)/f ′(x) = u(x) gives |f | = c·e

∫
1/(x−u(x)) which is a solution

to the problem.
To avoid theses too numerous and irrelevant solutions, it is then logical to

ask for a holomorphic property since the isolated zeroes theorem implies,
then, that there is (at most) one solution to the problem. The relation
f ′/f = 1/(x − u(x)) gives a natural corresponding property of f given in
the following

Definition. A function f defined in a neighborhood of α is said to be
reasonable if its logarithmic derivative F is continuous at α and if there
exists an ε > 0 such that the restrictions of F to the intervals ]α−ε, α[ and
]α, α+ ε[ are holomorphic.

These considerations allow us to understand the assumption made in
[1], [3] and [4] that L(α) is even, since theses studies are restricted to
the case f ′/f holomorphic in a neighborhood of α; asking for f ′α/fα to be
holomorphic only in the intervals ]α− ε, α[ and ]α, α+ ε[ allows us to avoid
this restriction; for example, for α = (1 +

√
5)/2, starting with x0 = 1 and

using

fα(x) =
∣∣∣∣∣x− 1 +

√
5

2

∣∣∣∣∣
5+
√

5
10

·
∣∣∣∣∣x− 1−

√
5

2

∣∣∣∣∣
5−
√

5
10

,

we get every convergents to the golden ratio.
All of this can be synthetized in the following

Theorem 4.2. For any quadratic irrational number α, there exists a x0
explicit in α and a (essentially unique) reasonable function fα, also explicit
in α, for which the sequence defined for every n > 0 as

xn+1 = xn −
fα(xn)
f ′α(xn)

corresponds to the sequence of convergents (pn0+nL/qn0+nL)n, where L ∈
L(α)N and n0 ≥ K(α)− 1.

It the same way, if we choose for x0 any Farey approximant to α which
does not come before pK−1/qK−1, then the sequence of the xn is an arith-
metical subsequence of the sequence of all successive Farey approximants
to α. More precisely, if pK+k/qK+k is a convergent to α and if we chose for
x0 the i-th Farey approximant which comes after pK+k/qK+k, then xn is
the i-th Farey approximant which comes after pnL+K+k/qnL+K+k.
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Let us remark also that, if we work with v := u−1 in spite of u, we
find another function, gα, obtained by simply exchanging s and t in the
expression of f . This new function “kills” the convergents, i.e. if we start
from x0 = pn0L+K+k/qn0L+K+k, then xn = p(n0−n)L+K+k/q(n0−n)L+K+k
for all n ≤ n0. For K(α) = k = 0, we then have xn0+1 =∞, and after that
we get an arithmetical subsequence of the convergents to α. This remark
allows us to understand that the choice x0 = 0 made in [1], [3] and [4] is
the real reason to the limitation, in those studies, to the case a0 = 0 and
L even. Indeed, in the case α = [0, a1, . . . , aL−1], and in this case only, our
study leads us to define u(x) = [0, a1, . . . , aL−1 + 1/x], and taking x0 = 0
gives, in the case L even, x1 = pL/qL. If L is odd, then x1 = ∞, and
x2 = pL/qL, etc.

Here is another part of the explanation of the difference that can be
made between the cases in which L(α) is even and odd.

Proposition 4.1. Using the notations of Theorem 4.2, let us take L =
L(α). If L is even, then fα is of class C1 in a neighborhood of α, and
f ′α(α) = 0. Else, limx→α(|f ′α(x)|) = +∞.

Proof. Instead of making a quite long and tiresome calculation, let us give
a qualitative argument. We write f instead of fα and assume, without loss
of generality, that f is positive on ]α, α+ ε[.

Classical facts about continued fractions assert that the even-indexed
convergents to a real number x are smaller than x and the odd-indexed ones
are bigger than x. So if L is even, then all the xn are bigger to α (or smaller,
this second case leading to the same study), so f is convex on ]α, α+ ε[, so
f ′(x) is increasing on this interval. Thus, f ′(x) converges to an l ∈ R∪{−∞}
as x ∈]α, α + ε[ tends to α. Since f > 0 on ]α, α + ε[, we have l ≥ 0. If
f ′(α) 6= 0, then Newton’s method applied to f converges quadratically to
α, and this contradicts the fact that the sequence obtained by Newton’s
method for this f is a arithmetical subsequence of the convergents to α,
since this subsequence converges with order 1 (α having periodic partial
quotients). So, we must have l = 0. The same argument starting from a
xn < α gives that the left derivative of f is also 0, and we are done in the
case L even.

If L is odd, then xn < α implies xn+1 > α, so, since f > 0 on ]α, α+ ε[,
f is concave on ]α, α+ ε[ (that is, −f is convex), so we find also that f ′(x)
tends to a limit l ∈ R+∗∪{+∞} when x ∈]α, α+ε[ tends to α. By the same
argument as before, the assumption l ∈ R+∗ leads to a contradiction since
Newton’s method would converge quadratically. So we must have l = +∞;
the same argument works in the same way on ]α − ε, α[, and the proof is
complete. �
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We may wonder if other arithmetical subsequences of convergents can be
obtained by Newton’s method. The following gives a partial answer.

Proposition 4.2. Let α be a quadratic irrational number such that L(α) =
2. There exists an x0 ∈ R and a reasonable function fα such that Newton’s
formula applied to fα starting from x0 gives all the convergents to α.

Proof. It is enough to consider the case α = [a, b], since the arguments
given for Theorem 4.2 show how to extend the purely periodic case to the
ultimately periodic one.

Let us define u(x) := a + a/(bx). It is easily seen that, denoting by un
the n-th iterate of u, we have un(p0/q0) = pn/qn, so the same study as in
Theorem 4.2 leads to the construction of the desired function. �

An extension of this result to other values of L can be made in the
following way:

Theorem 4.3. Let α be a quadratic irrational number whose convergents
are denoted by pn/qn. For any integer k ≥ K(α), there exists (explicit)
reasonable functions f0, . . . , fL−1 and an (explicit) initial value x0 such
that Newton’s formula applied circularily to the fi starting from x0 gives
the whole sequence of convergents (pn+k/qn+k)n≥0.

Before giving the proof, let us indicate that, by applying Newton’s meth-
od circularily, we mean that, for every integer m and any integer r such
that 0 ≤ r < L, we define xmL+r+1 as

xmL+r+1 = xmL+r −
fr(xmL+r)
f ′r(xmL+r)

.

Proof. Again, we consider only the case α = [a0, . . . , aL−1]. We begin with
the following lemma.

Lemma 4.1. For any integer k, there exists a unique homography uk
with integral coefficients for which, for all integer n ≥ 0, we have
uk(pnL+k/qnL+k) = pnL+k+1/qnL+k+1.

Proof. By a continuity argument, such a homography satisfies u(α) = α.
Let denote by uα the homography such that uα(x) = [a0, . . . , aL−1, x] for
all x. We have also uα(α) = α, so u and uα have α and α as fixed points,
so u and uα commute.

The conditions u(α) = α and u(pk/qk) = pk+1/qk+1 define a unique
homography with integral coefficients, denoted by uk. We then have

uk

(
pnL+k
qnL+k

)
= uk ◦ unα

(
pk
qk

)
= unα ◦ uk

(
pk
qk

)
= unα

(
pk+1
qk+1

)
= pnL+k+1
qnL+k+1

,

so we are done for the lemma. �
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To conclude the proof of Theorem 4.3, it is then enough to define fk from
uk as in Theorem 4.2. �

The same kind of consideration allows to build a finite set of functions
for which Newton’s method applied circularily to them gives subsequences
of convergents of the form (pφ(n)/qφ(n))n, where φ(N) is a finite union of
subsets of N of the form NiN + ki = {Nin+ ki, n ∈ N}, where the Nis and
the kis are integers.

Another consequence of the previous proof is the following result, which
shows that, in some sense, the “circular” way given in the previous theorem
is the only sensible way. (It is likely that this theorem could be extended:
apart from some possible exceptions, it is probably impossible to get arith-
metical subsequences of convergents with a common difference non multiple
of L(α) — possibly L(α)/2 for L(α) even.)

Corollary 4.1. For any quadratic irrational α for which L(α) ≥ 3, there
exists no reasonable function f such that Newton’s formula applied to f and
starting from any x0 gives the full sequence of convergents to α.

Proof. The proof of Theorem 4.3 gives the existence of a finite set of func-
tions uk holomorphic in a neighborhood of α (i = 1 . . . n) for which the
relationship x − f(x)/f ′(x) = uk(x) should be true for a converging se-
quence of x. By the isolated zeroes theorem, all of the uks must be the
same homography. By a conjugation, we assume that α has a purely peri-
odic continued fraction expansion. Hence, the matrix form of a homography
with integer entries and which admits α as a fixed point is necessarily of

the form
(
pL−1 + δ pL−2
qL−1 qL−2 + δ

)
, where L = L(α) and δ ∈ R.

Since u(∞) = u(p−1/q−1) = p0/q0 = a0, we have pL−1 + δ = a0qL−1, so
δ = a0qL−1 − pL−1.

Now, since u(pL−2/qL−2) = pL−1/qL−1, we have:

pL−1
qL−1

=
(pL−1 + δ) · pL−2

qL−2
+ pL−2

qL−1 · pL−2
qL−2

+ (qL−2 + δ)
.

Simplifying this equality and using the equality pL−1qL−2 − pL−2qL−1 =
(−1)L twice, we get that δ = −qL−2. Joining this equality with the first
one concerning δ gives −qL−2 = a0qL−1 − pL−1, so qL = pL−1.

We know, then, that the matrix form of the homography u is(
a0qL−1 pL−2
qL−1 0

)
. We should have u(a0) = a0 +1/a1 but, with the expres-

sion of u, we get also u(a0) = a0 + pL−2/(a0qL−1), so qL−1 = (a1/a0)pL−2.
Replacing qL−1 by this latter expression and simplifying by pL−2/a0 the
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matrix form of u, we get u =
(
a0a1 a0
a1 0

)
. We must then have

a0 + 1
a1 + 1

a2

= u
(
a0 + 1

a1

)
= a0 + 1

a1 + 1
a0

,

so a2 = a0. In the same way:
[a0, a1, a2, a3] = u([a0, a1, a2]) = u([a0, a1, a0]) = [a0, a1, a0, a1],

so a3 = a1. Assuming that ai = ai−2 for all i ≤ n, we get (for n even, but
the same calculation could be made for n odd):

[a0, . . . , an+1] = u([a0, . . . , an])
= u([a0, a1, . . . , a0, a1, a0])
= [a0, a1, . . . , a0, a1, a0, a1]),

so an+1 = a0. Thus, we have proved that L = 1 or L = 2. �

5. Some generalizations to other forms of continued fraction
expansion

A positive real number λ being given, the λ-continued fraction expansion
of a number x is an expression of the form

x = a0λ+ 1

a1λ+ 1
a2λ+ · · ·

:= [a0, a1, a2, . . .]λ,

where (an)n is a sequence in Z∗ (apart from a0, which may be equal to
zero). A natural definition of the λ-convergents pn/qn to x is given by the
formulae pn = anλpn−1 + pn−2 and qn = anλqn−1 + qn−2 with p0 = a0λ,
q0 = 1, p1 = a0a1λ2 + 1 and q1 = a1λ.

Since the ans are not assumed to be positive, there is no unicity of the
λ-expansion of an x in general. If λ < 2, every real number x admits a
λ-expansion; if λ > 2 the set of x that admit a λ-expansion is closed and
of null measure. Note also that the most well-known cases of λ-continued
fraction are Rosen continued fractions [5], which correspond to the case
λ = λk := 2 cos(π/k) with k integer, k ≥ 3 (the first values of λk are
λ3 = 1, λ4 =

√
2, λ5 = (1 +

√
5)/2 and λ6 =

√
3; λk is algebraic for all k,

but for k > 6 λk is not quadratic anymore).
Some of the results given in the present paper easily extend to λ-continued

fractions. Indeed, let us call λ-quadratic any number x which admits a peri-
odic λ-expansion. It is easily seen that Theorems 4.1 and 4.2, and Proposi-
tions 4.1 and 4.2 remain true in the context of λ-continued fractions, since
the fact that the partial quotients and the convergents are integers does
not intervene anywhere in these results. (In particular, for λ = 1, it can be
used with continued fractions with partial quotients in Z). It could also be
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extended to even more general continued fractions, in which no assumption
at all is made about the form of the partial quotients (the only constraint
being their periodicity.)

As regards the secant-like methods, it is also highly probable that some
extensions of our results to λ-continued fractions can be obtained. For ex-
ample, some tests lead us to think that Theorem 2.1 (with zn = 1 for all
n) holds for any α > 0 such that α2−mλα− 1 = 0 where m ∈ N∗ (that is:
α = [m]λ).
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