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The local Jacquet-Langlands correspondence via
Fourier analysis

par Jared WEINSTEIN

Résumé. Soit F un corps local non archimédien et localement
compact, et soit B/F un corps de quaternions. La correspon-
dance de Jacquet-Langlands fournit une bĳection entre les re-
présentations lisses et irréductibles de B× de dimension > 1 et
les représentations cuspidales et irréductibles de GL2(F ). Nous
présentons une nouvelle construction de cette bĳection pour la-
quelle la préservation des facteurs epsilon est automatique. Nous
construisons une famille de paires (L, ρ), ou L ⊂ M2(F ) × B est
un ordre et ρ est une représentation d’une certaine sous-groupe
de GL2(F )×B× qui contient L×. Soit π ⊗ π′ une représentation
irréductible de GL2(F )×B× ; nous prouvons que π ⊗ π′ contient
une telle ρ si et seulement si π est cuspidale et correspond à π̌′

sous la correspondence de Jacquet-Langlands. On y voit tous les
π et les π′. L’égalité des facteurs epsilon est reduite à un calcul
Fourier-analytique sur un anneau quotient de L.

Abstract. Let F be a locally compact non-Archimedean field,
and let B/F be a division algebra of dimension 4. The Jacquet-
Langlands correspondence provides a bĳection between smooth
irreducible representations π′ of B× of dimension > 1 and irre-
ducible cuspidal representations of GL2(F ). We present a new
construction of this bĳection in which the preservation of epsilon
factors is automatic. This is done by constructing a family of
pairs (L, ρ), where L ⊂ M2(F ) × B is an order and ρ is a finite-
dimensional representation of a certain subgroup of GL2(F )×B×
containing L×. Let π ⊗ π′ be an irreducible representation of
GL2(F )×B×; we show that π⊗π′ contains such a ρ if and only if
π is cuspidal and corresponds to π̌′ under Jacquet-Langlands, and
also that every π and π′ arises this way. The agreement of epsilon
factors is reduced to a Fourier-analytic calculation on a finite ring
quotient of L.

1. Introduction
Let F be a non-Archimedean local field, i.e. a finite extension either of Qp

or of the field of Laurent series over the finite field Fp. Let B/F be a central
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division algebra of dimension n2. The Jacquet-Langlands correspondence
assigns to each irreducible admissible representation π′ of B× a square-
integrable representation π of GLn(F ). The passage π′ 7→ π is characterized
by a character relation. It also manifests as a relationship between epsilon
factors, see for instance [DKV84]. When n = 2, the collection of epsilon
factors of the twists of π by characters determines π up to isomorphism,
so that the Jacquet-Langlands correspondence is characterized completely
by its preservation of epsilon factors. In this case the reciprocity between
GLn(F ) and B× was proved by Jacquet and Langlands [JL70] in both the
local and global settings. In the case of a division algebra B in characteristic
0 it was established for all n by [Rog83]. The case of a general inner form
of GLn(F ) was carried out by Deligne, Kazhdan and Vignéras in [DKV84]
in characteristic 0 and Badulescu [Bad02] in characteristic p. Each of these
cases was accomplished by embedding the local problem into a global one
and then applying trace formula methods.

There has also been a great deal of effort to construct the Jacquet-
Langlands correspondence in an explicit manner using purely local tech-
niques. The simplest case is when π′ and π are both associated to a so-called
“admissible pair” (E, θ), where E/F is a field extension of degree n and θ
is a character of E×. (All supercuspidal π will arise this way if p - n.) In
this case the corresponding π was constructed explicitly by Howe [How77];
Gérardin [Gér79] constructed the representation π′ and proved that the
epsilon factors of π and π′ agree. Henniart [Hen93b] showed that if n is
a prime distinct from p the representations π and π′ so constructed have
the correct character identity. Using the technology of types laid down by
Bushnell and Kutzko in [BK93], Henniart and Bushnell construct the ex-
plicit correspondence in the case of n = p in [BH00]. The case of n a power
of p with p odd and π totally ramified is carried out in [BH05].

In this paper we present a novel approach to the passage π′ 7→ π in the
case n = 2 in such a way that the preservation of epsilon factors is man-
ifest in the construction. Our approach is entirely Fourier-analytic, and
there is no special treatment needed for the case p = 2. In that sense it
is similar to Gérardin-Li [GL85]. Unlike that paper, however, our method
is linked to the theory of strata developed for GLn in [BK93]. That the-
ory is summarized in Section 2.2. Roughly speaking, a stratum for GL2 is a
certain sort of character of a compact open subgroup of GL2(F ). Then irre-
ducible representations of GL2(F ) can be conveniently classified according
to which strata they contain. There is a notion of simple stratum: these
are parametrized by certain regular elliptic elements β ∈ GL2(F ). It can
be shown that an admissible representation of GL2(F ) contains a simple
stratum if and only if it is supercuspidal. A similar notion of stratum ex-
ists for B×, and strata for B× are easily seen to be more or less the same
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objects as simple strata for GL2(F ). It is therefore natural to try to define
the correspondence π′ 7→ π relative to each stratum.

Let S be a simple stratum associated to the regular elliptic element
β ∈ GL2(F ), and let S′ be the stratum in B× corresponding to S. We choose
an embedding of the field E = F (β) into B. Let ∆: E →M2(F )×B be the
diagonal map. We construct what we have called a “linking order” LS inside
M2(F )×B; this is a ∆(OE)-order defined by certain congruence conditions.
We then define an irreducible (and thus finite-dimensional) representation
ρS of the unit group L×S which is trivial on ∆(O×F ). In the case where E/F
is unramified, the construction of ρS comes from the Weil representation
of SL2 over a finite field. However, we also give a geometric construction
using `-adic cohomology which is well-suited to our purposes. Then loosely
speaking, the induction of ρS to GL2(F ) × B× will realize the Jacquet-
Langlands correspondence for those representations π which contain S.

To make this precise, we must pay careful attention to the role of the
center Z = F××F× of GL2(F )×B×. Choose a character ω of F× = F××1
which extends ρS |(F××1)∩L×S

. We will give a recipe for an extension of ρS
to the group KS = ∆(E×)ZL×S ⊂ GL2(F ) × B× whose restriction to Z is
(g, h) 7→ ω(gh−1). Call this representation ρS,ω.

Let ΠS,ω be the compactly supported induction of ρS,ω up to GL2(F )×
B×. Then ΠS,ω is the direct sum of irreducible representations π ⊗ π′ of
GL2(F ) × B×; here π must have central character ω and π′ must have
central character ω−1. We show that ΠS realizes the Jacquet-Langlands
correspondence relative to the stratum S and the character ω in the follow-
ing sense. First, we show that a representation π of GL2(F ) (resp., B×) of
central character ω (resp., ω−1) appears in ΠS if and only if π (resp., the
contragredient π̌) contains S (resp., S′). Then, we show that an irreducible
admissible representation π ⊗ π̌′ of GL2(F )×B× appears inside of ΠS,ω if
and only if the epsilon factors of twists of π and π′ agree up to a minus
sign:

(1.0.1) ε(πχ, s, ψ) = −ε(π′χ, s, ψ).

Here χ runs through sufficiently many characters of F× to determine π and
π′ uniquely. Therefore if π is a given supercuspidal irreducible representa-
tion of GL2(F ) which contains the stratum S, then HomGL2(F ) (π,ΠS) is a
sum of copies of a single supercuspidal representation π′ of B×. Then the
contragredient representation of π′ is the one corresponding to π under the
Jacquet-Langlands correspondence. It must be stressed that our approach
does not yield a proof of the Jacquet-Langlands correspondence de novo.
One must be able to deduce the correct character identity from Eq. 1.0.1.
For this, we refer the reader to [BH06], §56, where a proof of the correspon-
dences is sketched in a series of exercises. Our approach may nonetheless
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be of interest because it avoids the computation of any particular epsilon
factors.

The linking orders LS are constructed in Section 4. We also define cor-
responding additive characters ψS of the ring M2(F ) × B for which the
OF -module

L∗S =
{
x ∈M2(F )×B

∣∣∣∣ ψS(xLS) = 1
}

happens to be a two-sided ideal in LS . The required representation ρS of
L×S is inflated from a representation of the unit group of the finite k-algebra
RS = LS/L∗S . The additive character ψS descends to a nondegenerate ad-
ditive character of this ring, so that we have a theory of Fourier transforms
f 7→ FSf for functions f on RS . The characteristic property of ρS is that
its matrix coefficients f , considered as functions on RS supported on R×S ,
satisfy the functional equation

(1.0.2) FSf(y) = ±f(y−1)

for y ∈ R×S ; see Prop. 5.2.1 and Theorem 5.0.3. (The sign in this equation
depends only on S.) The functional equation in Eq. 1.0.2 on the level of
finite rings is used in Section 6 to deduce the functional equation in Eq. 1.0.1
concerning constituents of the induced representation of ρS up to GL2(F )×
B×.

The reader may be wondering if this sort of strategy may be extended
to the general case of GLn, where one still lacks a complete local proof of
the existence of the correspondences. It will not be difficult to extend the
definitions of LS , ρS , and ΠS,ω to this context. In doing so one would pro-
duce a recipe for some sort of correspondence π′ 7→ π for π supercuspidal
which satisfies Eq. 1.0.1 for a certain collection of characters χ. For n = 3,
we do not know if this collection of characters is enough to characterize
the Jacquet-Langlands correspondence. And for n > 4, the establishment
of Eq. 1.0.1 for all characters is not enough to characterize the correspon-
dence. Indeed, the epsilon factors of pairs of representations are required to
characterize the isomorphism class of a given representation π, see [Hen93a].
One would have to work harder to obtain access to the characters of the
representations π and π′ so constructed in order to prove the right identity.

The present effort fits into a larger program concerning the geometry
of Lubin-Tate curves. Suppose F has uniformizer πF and residue field k.
Let F0 be a formal OF -module of height 2 over the algebraic closure of
the residue field k of F . For each m ≥ 0, consider the functor that assigns
to each complete local Noetherian ÔFnr-algebra A having residue field k
the set of one-dimensional formal OF -modules F over A equipped with an
isomorphism F0 → Fk and a Drinfeld πmF -level structure. This functor is
represented by a formal curve Xm over ÔFnr . The inverse system of curves
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(Xm)m≥1 admits an action by a subgroup G of the triple product group
GL2(F ) × B× ×WF of “index Z”. It is known by the theorems of Deligne
and Carayol, see [Car86], that the `-adic étale cohomology of this curve
realizes (up to some benign modifications) both the Jacquet-Langlands cor-
respondence π′ 7→ π and the local Langlands correspondence σ 7→ π(σ) for
the discrete series of GL2(F ).

It would be very interesting to compute a system of semistable models of
the curves Xm over a ramified extension of ÔFnr ; then the special fiber of
the system ought to realize the supercuspidal parts of the correspondences
in its cohomology. This has already been done in the case of m = 1 by
Bouw-Wewers [BW04]; the generalization of this case for GLn was carried
out by Yoshida [Yos09]. But for m ≥ 2 the structure of this special fiber
is still unknown. Ignore the Weil group for the moment and consider the
action of (GL2(F ) × B×) ∩ G on the semi-stable reduction of the system
(Xm)m≥1. We conjecture that for a simple stratum S arising from an elliptic
element β ∈ GL2(F ), the special fiber contains a smooth component XS

whose stabilizer is exactly ∆(E×)L×S , such that for primes ` 6= p, the `-adic
versions of the representations ρS appear in the action of this group on
H1(XS ,Q`). In light of the preceding paragraphs this would be consistent
with the theorems of Deligne-Carayol. In future work we intend to give a
description of the structure of the special fiber of the stable reduction of
Xm which includes the action of the Weil group WF .

A different approach to the Jacquet-Langlands correspondence for GL2
has been advanced in A. Snowden’s thesis [Sno09].

This work was supported by a grant from the National Science Founda-
tion.

2. Preparations: The representation theory of GL2(F ) and B×

2.1. Basic Notations. In this paper, F will be a finite extension of Qp,
or else a finite extension of Fp((T )). For a finite extension E of F (possibly
F itself), we use the notation OE , pE , and kE for the ring of integers,
maximal ideal, and quotient field of E. Let qE = #kE , and let q = qF . We
fix a uniformizer πF for F . Let | |F be the absolute value on F ∗ for which
|πF |F = q−1.

We also fix a character ψF of F of level 1; this means that ψF vanishes
on pF but not on OF .

Let B/F be a division algebra of dimension 4; this is unique up to iso-
morphism. Let OB be its unique maximal order. We use NB/F and TrB/F
to denote the reduced norm and trace, respectively, from B to F ; some-
times we will omit the “B/F” from this notation. If G is the group GL2(F )
or B×, and g ∈ G, we will use the notation ‖g‖ to mean |det g|F or |N g|F
as appropriate.
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Let A be the algebra M2(F ) or B. For any additive character ψ of F , let
ψA be the character of A defined by ψA(x) = ψ(TrA/F x). Let µψA (or just
µψ) be the measure on A which is self-dual with respect to ψ.

Let µ×ψ be the corresponding Haar measure on A×: µ×ψ (g) = ‖g‖−2
A× µψ(g).

2.2. Chain Orders and Strata. In this subsection, A is the algebra
M2(F ) or B. We will closely follow the notation of [BH06] concerning chain
orders and strata for GL2, where the situation is somewhat simpler than
the general case of GLn.

First consider the case A = M2(F ). A lattice chain is an F -stable family
of lattices Λ = {Li} with each Li ⊂ F ⊕F an OF -lattice and Li+1 ⊂ Li, all
integers i. Let e(Λ) be the unique integer for which πFLi = Li+e(Λ). Let AΛ
be the stabilizer in A of Λ; that is, AL = {a ∈ A|aLi ⊂ Li, all i}. A chain
order in A is an OF -order A ⊂ A equal to AL for some lattice chain Λ. We
set eA = eΛ.

For example, suppose E/F is a quadratic field extension of ramification
index e. Identify E with F ⊕ F as F -vector spaces. Then Λ =

{
piE
}

is a
lattice chain with eL = e. Up to conjugation by an element of A×, every
lattice chain arises in this manner. We have the following description of A,
again only up to A×-conjugation:

A =


M2(OF ), e = 1,(
OF OF
pF OF

)
, e = 2.

Note also that A× ⊂ A× is normalized by E× ⊂ GL2(F ), and that OE ⊂ A.
For a chain order A ⊂M2(F ), let KA be its normalizer in GL2(F ). This

equals F ∗M2(OF ) if eA = 1. If eA = 2 then KA is the semidirect product of
A× with the cyclic group generated by a prime element of A.

Let PA be the Jacobson radical of A: this equals πFM2(OF ) for A =

M2(OF ) and
(

pF OF
pF pF

)
in the case that A =

(
OF OF
pF OF

)
. We have a

filtration of A× by the subgroups UnA = 1+Pn
A. This filtration is normalized

by KA.
All of the above constructions have obvious (and simpler) analogues in

the quaternion algebra B: If A = OB is the maximal order in B, then
the normalizer of A× in B× is all of B×. The Jacobson radical PA is the
unique maximal two-sided ideal of A, generated by a prime element πB; we
let UnA = 1 + PA and eA = 2.

Definition 2.2.1. Let A be the matrix algebra M2(F ) or the quaternion
algebra B. A stratum in A is a triple (A, n, α), where A is a chain order
if A = M2(F ) (resp. OB if A = B), n is an integer, and α ∈ P−nA . Two
strata (A, n, α) and (A, n, α′) are equivalent if α ≡ α′ (mod P1−n). The
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stratum (A, n, α) is ramified simple if E = F (α) is a ramified quadratic
extension of F , n is odd, and α ∈ E has valuation exactly −n. The stratum
is unramified simple if E is an unramified quadratic extension of F , α ∈ E
has valuation exactly −n, and the minimal polynomial of πnFα is irreducible
mod pF . Finally, the stratum is simple if it is ramified simple or unramified
simple.

There is a correspondence S′ 7→ S between simple strata in B and simple
strata in M2(F ). Given the simple stratum S′ = (A′, n′, α′), let E = F (α′).
Choose an embedding E ↪→ M2(F ), and let α be the image of α′. Finally,
let A ⊂M2(F ) be a chain order associated to E. Then S = (A, n, α). The
correspondence S′ → S is a bĳection between conjugacy classes of simple
strata in B and in M2(F ), respectively. The relationship between n′ and n
is as follows: n′ = n if E/F is ramified and n′ = 2n if E/F is unramified.

Let π be an irreducible admissible representation of GL2(F ). The level
`(π) is defined to be the least value of n/e, where (n, e) runs over pairs of
integers for which there exists a chain order A of ramification index e such
that π contains the trivial character of Un+1

A . If π is a representation of B×,
we define `(π) to be n/2, where n is the least integer for which π contains
the trivial character of Un+1

OB .
We shall call π minimal if its level cannot be lowered by twisting by

one-dimensional characters of F×.
When n ≥ 1, a stratum S = (A, n, α) of M2(F ) or B determines a

nontrivial character ψα of UnA/U
n+1
A by ψα(1 + x) = ψF (TrA/F (αx)). This

character only depends on the equivalence class of S.
If S is a stratum, we say that π contains the stratum S if π|UnA con-

tains the character ψα. From [BH06], 14.5 Theorem, we have the following
classification of supercuspidal representations of GL2(F ):

Theorem 2.2.2. A minimal irreducible representation π of GL2(F ) is su-
percuspidal if and only if exactly one of the following conditions holds:

(1) π has level 0, and π is contains a representation of GL2(OF ) inflated
from an irreducible cuspidal representations of GL2(kF ).

(2) π has level ` > 0, and π contains a simple stratum.

The classification of representations of B× is analogous:

Theorem 2.2.3. A minimal irreducible representation π of B× of dimen-
sion greater than one satisfies exactly one of the following properties:

(1) π has level 0, and π contains a representation of O×B inflated from
a character χ of k×B not factoring through the norm map k×B → k×.

(2) π has level ` > 0, and π contains a simple stratum.

By kB we mean the finite field OB/PB: this is a quadratic extension of k.
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The supercuspidal representations of GL2(F ) and B× are all induced
from irreducible representations of open compact-mod-center subgroups in
a manner which can be made explicit. Suppose S = (A, n, α) is a simple
stratum in M2(F ) or B. Let E ⊂ GL2(F ) be the subfield F (α). The def-
inition of ψα given above is well-defined on the subgroup U

bn/2c+1
A . Let

JS ⊂ GL2(F ) denote the group E×U
b(n+1)/2c
A and let C(ψα,A) denote the

set of isomorphism classes of irreducible representations Λ ∈ ĴS for which
Λ|
U
bn/2c+1
A

is a multiple of ψα.

Definition 2.2.4. A cuspidal inducing datum in A× is a pair (A,Ξ), where
A is a chain order in A and Ξ is a representation of KA of one of the
following types:

(1) A = M2(F ), A ∼= M2(OF ), and the restriction of Ξ to GL2(OF ) is
inflated from a cuspidal representation of GL2(k).

(2) A = B, and the restriction of Ξ to O×B contains a character of
inflated from a character of k×B not factoring through the norm
map k×B → k×.

(3) There is a simple stratum (A, n, α) and a representation Λ ∈
C(ψα,A) for which Ξ = IndKA

JS
Λ.

(4) The representation Ξ is the twist of a representation of one of the
above types by a character of F×.

In the first two cases we will say that (A,Ξ) has level zero.

The following construction of supercuspidal representations is found in
Section 15.5 of [BH06] in the case of A = M2(F ):

Theorem 2.2.5. If (A,Ξ) is a cuspidal inducing datum then πΞ = IndA×KA
Ξ

is an irreducible supercuspidal representation of A×. Conversely, every su-
percuspidal representation of A× arises in this manner. The cuspidal induc-
ing datum (A,Ξ) has level zero if and only if πΞ has level zero. Furthermore,
(A,Ξ) arises from the simple stratum S if and only if πΞ contains S.

2.3. Zeta functions and local constants. In this section we follow
Godement and Jacquet [GJ72], §3. Let A be the algebra B or M2(F ),
and let G = A×. Let ψ ∈ F̂ be an additive character of F . Let π be a
supercuspidal (not necessarily irreducible) representation of G, realized on
the space W . Let π̌ be the contragredient representation, with underlying
space W̌ . When w ∈W , w̌ ∈ W̌ , we let γw̌,w : G→ C denote the function

g 7→ 〈w̌, π(g)w〉 .

Let C(π) denote the C-span of the functions γw̌,w for w ∈W , w̌ ∈ W̌ . These
functions are compactly supported modulo the center Z of G.



The local Jacquet-Langlands correspondence 491

Let C∞c (A) be the space of locally constant compactly supported com-
plex-valued functions on A. For Φ ∈ C∞c (A) and f ∈ C(π), define the zeta
function

ζ(Φ, f, s) =
∫
G

Φ(g)f(g) ‖g‖s dµ×ψ (g).

When π is irreducible (and still cuspidal), there is a rational function
ε(π, s, ψ) ∈ C(q−s) satisfying

ζ
(
Φ̂, f̌ , 3

2 − s
)

= ε(π, s, ψ)ζ
(
Φ, f, 1

2 + s
)
,

where Φ̂ is the Fourier transform of Φ with respect to ψ. (Since π is cuspidal,
its L-function vanishes.) See [GJ72], Thm. 3.3.

The local constant further satisfies
(2.3.1) ε(π, s, ψ)ε(π̌, 1− s, ψ) = ωπ(−1)
where ωπ is the central character of π ([GJ72], p. 33).

2.4. Converse Theory. By the converse theorem, a supercuspidal repre-
sentation of GL2(F ) of B× is determined by the epsilon factors of all of its
twists by one-dimensional characters. We need an effective version of this
theorem, which states that a supercuspidal representation is determined up
to isomorphism by the data of its level together with the epsilon factors of
twists of π by a collection of characters of F× of bounded level.

Next, we observe that epsilon factors have the “stability” property. If χ
is a character of F ∗, let the level `(χ) be the least integer n such that χ
vanishes on 1 + pn+1

F . Then if π is an irreducible representation of GL2(F )
or B×, and χ is a character of F× with `(χ) > `(π), then ε(πχ, s, ψ) only
depends on χ and the central character of π (and of course ψ). This is Prop.
3.8 of [JL70] in the case of GL2(F ) and Prop. 2.2.5 of [GL85] in the case of
B×.

As χ varies through all characters of F×, the quantities ε(χπ, s, ψ) de-
termine π up to isomorphism. We may therefore conclude the following
explicit converse theorem:

Theorem 2.4.1. Let π1 and π2 be two minimal supercuspidal representa-
tions of GL2(F ) or B× having the same central character and equal level
`. Then π1 ∼= π2 if and only if
(2.4.1) ε(π1χ, s, ψ) = ε(π2χ, s, ψ)

for all characters χ ∈ F̂× for which `(χ) ≤ `.

Definition 2.4.2. For minimal supercuspidal representations π′ and π of
B× and GL2(F ) having the same central character, we say that π′ and π
correspond if the following conditions hold:

(1) π and π′ have the same level `.
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(2) The equation
ε(πχ, s, ψ) = −ε(π′χ, s, ψ)

holds for all characters χ with `(χ) ≤ `.

In view of Theorem 2.4.1, at most one π can correspond to a given π′,
and vice versa.

3. Zeta functions for GL2(F )×B×.
In this section we adopt the abbreviations A1 = M2(F ), A2 = B, G1 =

GL2(F ), G2 = B×.
Let A = A1 × A2. Let G = A× = GL2(F ) × B×. We will define zeta

functions for representations of G and use them to give a criterion for when
such a representation “realizes the Jacquet-Langlands correspondence.” We
will adopt the convention that if g ∈ G, then g1 and g2 are its projections
in GL2(F ) and B× respectively. Let Π be an admissible cuspidal represen-
tation of G. For Φ ∈ C∞c (A) and f ∈ C(Π), define the zeta function

ζ(Φ, f, s) =
∫

G
Φ(g)f(g) ‖g1‖s ‖g2‖2−s dµ×(g),

where µ× is a Haar measure on G.
Let ψ be an additive character of F , and let µ×ψ = µ×A,ψ = µ×A1,ψ

×µ×A2,ψ
;

this is a Haar measure on G. Let ψA be the additive character (x1, x2) 7→
ψA1(x1)ψA2(−y1). The Fourier transform of a decomposable test function
Φ = Φ1 ⊗ Φ2 ∈ C∞c (A) is Φ̂(x1, x2) = Φ̂1(x1)Φ̂2(−x2). Consequently if
f = f1 ⊗ f2 ∈ C(π1 ⊗ π2) is a decomposable matrix coefficient for a tensor
product representation π1 ⊗ π2 of G, then
(3.0.1) ζ(Φ̂, f, s) = ωπ2(−1)ζ(Φ̂1, f1, s)ζ(Φ̂2, f2, 2− s),
where ωπ2 is the central character of π2.

Proposition 3.0.1. Let Π be an admissible cuspidal semisimple (not neces-
sarily irreducible) representation of GL2(F )×B×. The following are equiv-
alent:

(1) For every irreducible representation π1 ⊗ π2 of GL2(F ) × B× ap-
pearing in Π, we have

ε(π1, s, ψ) = −ε(π̌2, s, ψ).
(2) The functional equation

(3.0.2) ζ(Φ, f, s) = −ζ(Φ̂, f̌ , 2− s)
holds for all Φ ∈ C∞c (A), f ∈ C(Π). (Here the integral is taken with
respect to the measure µ×A,ψ, and the Fourier transform is taken with
respect to the character ψA.)
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Proof. It will simplify our notation if we set s1 = s, s2 = 2− s. Let π1⊗ π2
be any irreducible representation of G1×G2 appearing in Π. For i = 1, 2, let
Φi ∈ C∞c (Gi) and fi ∈ C(πi) be such that ζ(Φi, fi, si) 6= 0. Let Φ = Φ1⊗Φ2
and f = f1 ⊗ f2. The respective functional equations for π1 and π2 are

ζ(Φ̂i, f̌i, 2− si) = ε
(
πi, si − 1

2 , ψ
)
ζ(Φi, fi, si), i = 1, 2.

Multiplying these together and applying Eq. 3.0.1 yields

ωπ2(−1)ζ(Φ̂, f̌ , 2− s) = ε
(
π1, s− 1

2 , ψ
)
ε
(
π2,

3
2 − s, ψ

)
ζ(Φ, f, s).

Therefore Eq. 3.0.2 holds if and only if

ε
(
π1, s− 1

2 , ψ
)
ε
(
π2,

3
2 − s, ψ

)
= −ωπ2(−1).

Combining this with the standard relation

ε
(
π2,

3
2 − s, ψ

)
ε
(
π̌2, s− 1

2 , ψ
)

= ωπ2(−1)

yields
ε
(
π1, s− 1

2 , ψ
)

= −ε
(
π̌2, s− 1

2 , ψ
)
.

We see now that (2) =⇒ (1): Apply Eq. 3.0.2 to an arbitrary matrix coeffi-
cient f = f1⊗f2 belonging to π1⊗π2 ⊂ Π. For the converse, one need only
note that every Φ ∈ C∞c (A) and f ∈ C(Π) is a finite sum of pure tensors,
and ζ(Φ, f, s) is linear in Φ and f . �

Combining Prop. 3.0.1 with the Converse Theorem 2.4.1 gives a necessary
and sufficient condition for a representation Π of GL2(F ) × B× to realize
the Jacquet-Langlands correspondence. When f ∈ C∞c (G) and χ ∈ F̂×, we
let χf be the function g 7→ χ(det(g1) N(g2)−1)f(g).

Corollary 3.0.2. Let Π be an admissible cuspidal semisimple represen-
tation of GL2(F ) × B× on which the diagonally-embedded group ∆(F×)
acts trivially. Assume either that every irreducible representation of GL2(F )
(resp., B×) appearing in Π is minimal of the same level `. Then the fol-
lowing are equivalent:

(1) Π is the direct sum of irreducible representations of G of the form
π1 ⊗ π̌2, where π1 and π2 correspond.

(2) The functional equation

(3.0.3) ζ(Φ, χf, s) = −ζ(Φ̂, χ−1f̌ , 2− s)

holds for all Φ ∈ C∞c (A), f ∈ C(Π), and for all characters χ ∈ F̂×
for which `(χ) ≤ `.

Proof. That (1) =⇒ (2) is clear from Prop. 3.0.1. Therefore assume (2).
Suppose π1 ⊗ π̌2 appears in Π. Since Π vanishes on ∆(F×), the central
characters of π1 and π2 agree. By Prop. 3.0.1 we find that ε(π1χ, s, ψ) =
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−ε(π2χ, s, ψ) for all characters χ of level no greater than `, so π1 and π2
correspond. �

4. Linking orders and congruence subgroups of GL2(F )×B×

Our goal now is to produce, for each simple stratum S in M2(F ), a
certain semisimple representation ΠS of GL2(F )×B× having the following
properties:

(1) ΠS vanishes on the diagonal subgroup ∆(F×) ⊂ GL2(F )×B×.
(2) The restriction of ΠS to the first factor GL2(F ) is a sum of exactly

those irreducible representations which contain S. Similarly, the
restriction of ΠS to the second factor B× is a sum of exactly those
irreducible representations of B× which contain the corresponding
stratum S′ in B.

(3) Matrix coefficients for ΠS satisfy the functional equation in Eq. 3.0.3
for sufficiently many χ.

We will present a similar construction for representations of level zero. In
light of Cor. 3.0.2, such a family {ΠS} is sufficient to establish the Jacquet-
Langlands correspondence.

The strategy for producing ΠS is as follows: We will first define an order
LS ⊂ M2(F ) × B. The required representation ΠS will be induced from a
certain representation of L×S . In this section we construct the orders LS and
gather some geometric properties in preparation for proving the properties
listed above.

4.1. Geometric preparations:M2(F ) and B. Let E/F be a separable
quadratic extension field of ramification degree e. Let OE be its ring of
integers, pE its maximal ideal, kE its quotient field and σ the nontrivial
element of Gal(E/F ).

Let A be the ring M2(F ) or B. Define an order A ⊂ A as follows: if
A = M2(F ), let A be the chain order equal to the endomorphism ring of
the lattice chain

{
piE
}
, as in Section 2.2. If A = B, let A = OB. Either

way, we may identify OE with an OF -subalgebra of A in such a way that
A ∩ E = OE .

There is a nondegenerate pairingA×A→ F given by (x, y) 7→ TrA/F (xy).
Let C be the complement of E in A with respect to this pairing, so that
A = E ⊕ C. Let sA : A → E be the projection onto the first factor. Note
that both the space C and the map sA are stable under multiplication by
E on either side. C is a (left and right!) E-vector space of dimension 1. It
satisfies the property that αv = vασ for all v ∈ C, α ∈ E. Let C = A ∩ C.

Lemma 4.1.1. We have

CC =
{

pE , E/F unramified and A = B

OE , all other cases.
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Proof. Since elements of E commute with CC, we must have CC ⊂ E; since
C ⊂ A this implies CC ⊂ E∩A = OE . Thus CC is an OE-submodule of OE ;
i.e. it is an ideal of OE .

If A = M2(F ) then A is the endomorphism ring of the lattice chain
{
piE
}
.

Consider the element σ ∈ Gal(E/F ): this certainly preserves each piE and
therefore belongs to A. For any α ∈ E, we have that (ασ)2 = NE/F (α)
belongs to the center F ⊂ M2(F ), but ασ does not itself belong to F ,
implying that TrA/F (ασ) = 0 and therefore that σ ∈ C. So σ ∈ C ∩A = C.
Consequently CC contains σ2 = 1, whence it is the unit ideal.

Now suppose A = B. Let vB : B× → Z denote the valuation on B. If
E/F is ramified, then a uniformizer πE of E has vB(πE) = 1, so that if
x ∈ C has valuation n, then π−nE x ∈ C is a unit. This implies that CC is the
unit ideal.

On the other hand if E/F is unramified, then every element of E has even
valuation in B. Considering that A = E ⊕ C, this means that C contains
an element πB of valuation 1, so that C = OEπB. Then CC = OEπ2

B = pE
as required. �

Now suppose that S = (A, n, α) is a simple stratum in A with E = F (α).
By replacing α with a sufficiently nearby element of A, it may be assumed
that E/F is a separable field extension. This may be done without changing
the character ψα of U bn/2c+1

A . Choose an additive character ν of E vanishing
on pn+1

E but not on pnE . Assume that ν = νσ if e = 1. Then define a character
νS of A by νS(x) = ν(sA(x)).

Whenever W is an OE-stable lattice of A, we may define the annihilator
of W with respect to νS :

W ∗ = {x ∈ A | νS(xW ) = 1} ;

then W ∗ is also an OE-module. Note that (pkEW )∗ = p−kE W ∗.

Lemma 4.1.2. The OE-module C∗ equals E ⊕ pnEC if E/F is unramified
and A = B. It equals E ⊕ pn+1

E C in all other cases.

Proof. Certainly we have E ⊂ C∗; all that remains is to find C∗∩C. This last
is an OE-submodule of the free rank-one OE-module C, so that it equals IC
for an ideal I ⊂ OE . For an element x ∈ OE to belong to I the condition
is νS(sA(xCC)) = ν(ICC) = 1. The lemma now follows from Lemma 4.1.1
and the definition of ν. �

For an integer m ≥ 1, we define an OE-submodule V m
A ⊂ C as follows:

V m
A =

{
p
bm/2c
E C, A = B and E/F unramified

p
b(m+1)/2c
E C, all other cases.
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The next proposition shows that V n
A ⊂ C is nearly a “square root” of the

ideal pnE :

Proposition 4.1.3. The module V n
A has the following properties:

(1) V n
AV

n
A ⊂ pnE . More precisely, if E/F is unramified then the value of

V n
AV

n
A is given by the following table:

n even n odd
A = M2(F ) pnE pn+1

E

A = B pn+1
E pnE

(2) If E/F is ramified, then V n
A = V n+1

A .
(3) If E/F is unramified, then the dimension of V n

A /V
n+1
A as a kE-

vector space is given by the following table:
n even n odd

A = M2(F ) 1 0
A = B 0 1

(4) With respect to the character νS, we have (V n
A )∗ = E ⊕ V n+1

A .

Proof. Claim (1) follows from Lemma 4.1.1. For claim (2): Since E/F is
ramified, n must be odd by definition of simple stratum; then b(n+ 1)/2c =
b((n+ 1) + 1)/2c. For claim (3), assume E/F is unramified. When A =
M2(F ) we have V n

A = p
b(n+1)/2c
E C, so that there is an isomorphism of kE-

vector spaces V n
A /V

n+1
A ≈ p

b(n+1)/2c
E /p

b(n+2)/2c
E , and this has dimension 1

or 0 as n is even or odd, respectively. When A = M2(F ) we have V n
A =

p
bn/2c
E C, so that there is an isomorphism of kE-vector spaces V n

A /V
n+1
A =

p
bn/2c
E /p

b(n+1)/2c
E , and this has dimension 0 or 1 as n is even or odd, respec-

tively.
Claim (4) follows directly from Lemma 4.1.2. �

4.2. Congruence subgroups and cuspidal representations. Keeping
the notations from the previous subsection, we let

HS = 1 + pnE + V n
A

H1
S = 1 + pnE + V n+1

A .

These are subgroups of A× because V n
A is an OE-module and because

V n
AV

n
A ⊂ pnE by Prop. 4.1.3. Note the inclusions UnA ⊂ H1

S ⊂ HS ⊂ JS

and H1
S ⊂ U

bn/2c+1
A .

Proposition 4.2.1. For a representation Λ ∈ C(ψα,A), we have that Λ|HS
is irreducible. Further, Λ|HS is the unique irreducible representation of HS

whose restriction to H1
S is a sum of copies of ψα|H1

S
.
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Proof. If E/F is ramified, the claims in the proposition are trivial, because
HS = H1

S and Λ is a one-dimensional character. If E/F is unramified, then
the same is true in the case that A = M2(F ) and n is odd, and as well in
the case that A = B and n is even.

Therefore assume that E/F is unramified, and that A = M2(F ) and n is
even, or else that A = B and and n is odd. Then V n

A /V
n+1
A is a kE-module

of dimension 1. Let ψ1
α denote the restriction of ψα to H1

S . We have an
exact sequence

1→ H1
S/ kerψ1

α → HS/ kerψ1
α → V n

A /V
n+1
A → 1

in which H1
S/ kerψ1

α is the center. Thus HS/ kerψ1
α is a discrete Heisenberg

group. By the discrete Stone-von Neumann Theorem, there is a unique
irreducible representation ψ̃α of HS lying over ψ1

α.
If Λ ∈ C(ψα,A), then Λ|HS is a q-dimensional representation of HS whose

restriction to H1
S is a multiple of ψ1

α. By the uniqueness property of ψ̃α, we
must have Λ|HS = ψ̃α. The proposition follows. �

4.3. Linking Orders. It is time to investigate the geometry of the prod-
uct algebra M2(F ) × B. It will be helpful to use the abbreviations A1 =
M2(F ), A2 = B, A = M2(F ) × B. Suppose S = S1 = (A1, n1, α1) is a
simple stratum in M2(F ). Choose an embedding E = F (α1) ↪→ B and let
α2 ∈ B× be the image of α1 so that S2 = (A2, n2, α2) is the simple stratum
in B which corresponds to S. Here A2 = OB. For convenience of notation
we set n = n1. Let A = A1 × A2 and let ∆: E → A be the diagonal map
∆(a) = (a, a). We denote by s1 and s2 the projections A1 → E, A2 → E,
respectively. Let Ci be the complement of E in Ai.

Let ν be an additive character of E as in Section 4.1. We define a char-
acter νS of A by

νS(x1, x2) = ν(s1(x1)− s2(x2)).

Lemma 4.3.1. With respect to νS, the annihilator of the diagonally em-
bedded subring ∆(OE) ⊂ A is

(∆(OE))∗ = ∆(E) + pn+1
E × pn+1

E + C1 × C2.

Proof. Suppose (x1, x2) ∈ (∆(OE))∗; then for all β ∈ OE , v(β(s1(x1) −
s2(x2))) = 1. This means exactly that s(x1) ≡ s(x2) (mod pn+1

E ), so that
the pair (s(x1), s(x2)), being equal to (s(x1), s(x1)) + (0, s(x2)− s(x1)), lies
in ∆(E) + pn+1

E × pn+1
E as required. �

Let Vn = V n
A × V n

B ⊂ A. The following properties of Vn follow directly
from Prop. 4.1.3:

Proposition 4.3.2. The module Vn has the following properties:
(1) VnVn ⊂ pnE × pnE . Furthermore, if E/F is unramified then VnVn

equals pnE × pn+1
E or pn+1

E × pnE as n is even or odd, respectively.
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(2) If E/F is unramified, then Vn/Vn+1 is a left and right kE-vector
space of dimension 1, with the property that αv = vαq for α ∈ kE,
v ∈ Vn/Vn+1.

(3) If E/F is ramified, then Vn = Vn+1.
(4) With respect to ψS, the annihilator of Vn is (E × E)⊕Vn+1.

Definition 4.3.3. The linking order LS is defined by

LS = ∆(OE) + pnE × pnE + Vn.

Then LS is a (left and right) OE-submodule of A. It is easy to check
that LS is indeed an order; this is a consequence of item (1) of the previous
paragraph. We will also have use for a smaller subspace L◦S ⊂ LS , defined
by

L◦S = ∆(pE) + pn+1
E × pn+1

E + Vn+1.

Proposition 4.3.4. The linking order LS has the following properties:
(1) The group L×S is normalized by ∆(E×).
(2) With respect to νS, the annihilator of LS is L◦S.
(3) L◦S is a double-sided ideal of LS.
(4) If E/F is ramified, then LS/L◦S is a commutative ring of order q2,

isomorphic to k[X]/(X2).
(5) If E/F is unramified, then LS/L◦S is a noncommutative ring of

order q6 whose isomorphism class depends only on q (and not n).
(6) L×S ∩GL2(F ) = HS1, and L×S ∩B× = HS2.

Proof. Claim (1) is easy to check. For claim (2), we calculate the annihilator
of LS as follows:

L∗S = [∆(OE) + pnE × pnE + Vn]∗

= ∆(OE)∗ ∩ (pnE × pnE)∗ ∩ (Vn)∗

The three terms to be intersected are

∆(OE)∗ = ∆(E) + pn+1
E × pn+1

E + C1 × C2, by Lemma 4.3.1
(pnE × pnE)∗ = pE × pE + C1 × C2

(Vn)∗ = (E × E)⊕Vn+1, by Lemma 4.3.2

We claim the intersection is L◦S . Indeed, for a pair (x1, x2) to lie in L∗S ,
the first two equations imply s1(x1), s2(x2) ∈ pE and s1(x1) ≡ s2(x2)
(mod pn+1

E ), and the third implies (x1 − s1(x1), x2 − s2(x2)) ∈ Vn+1.
Claim (3) follows from the inclusion VnVn+1 ⊂ pn+1

E × pn+1
E , which is

easily checked.
For claims (4) and (5), let RS = LS/L◦S . Fix a uniformizer πE of E.
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In the case that E/F is ramified, we have Vn = Vn+1, so there is an
isomorphism

RS ∼=
∆(OE) + pnE × pnE

∆(pE) + pn+1
E × pn+1

E

.

The “numerator” of the right-hand side is the ring of pairs (x, x+ πnEy) ∈
OE ×OE with x, y ∈ OE . Define a map

RS → k × k
(x, x+ πnEy) 7→ (x, y),

where if z ∈ OE we have put z = z (mod pE). It is easily checked that
this map is an isomorphism of (additive) groups; the multiplication law
induced on k × k is (x1, y1)(x2, y2) = (x1x2, x1y2 + x2y1), which is to say
that RS ∼= k[X]/(X2).

Now suppose E/F is unramified. In this case V = Vn/Vn+1 is a vector
space over kE of dimension 1. We have VnVn ⊂ pnE × pnE . On the other
hand the image of pnE × pnE in RS may be identified with kE via (x1, x2) 7→
π−nE (x1 − x2). For v, w ∈ V , let v · w be the image of vw ∈ pnE × pnE under
this latter map. Then (v, w) 7→ v · w is a pairing V × V → kE which is
kE-linear in the first variable and satisfies w · v = (v · w)q. This pairing is
nondegenerate by part (1) of Lemma 4.3.2: One of the factors of VnVn is
always pnE . Choose an isomorphism φ : V → kE of kE vector spaces in such
a way that v · w = φ(v)φ(w)q.

We are now ready to describe the ring RS : let R be the k-algebra of
matrices

[α, β, γ] =

α β γ
αq βq

α

 ,
where α, β, γ ∈ kE . Any element of LS is of the form (x, x+πnEy)+v, where
x, y ∈ OE and v ∈ Vn. Define a map

LS → R

(x, x+ πnEy) + v 7→ [x, y, φ(v)];
it is easy to see that this map descends to a ring isomorphism RS → R.
Therefore RS is a noncommutative ring of order q6 whose isomorphism
class is independent of n.

For claim (6), we begin with the fact that any element b of L×S is of the
form (x + πny, x) + v, with x ∈ O×E , y ∈ OE , and v ∈ Vn = Vn

1 ×Vn
2 . If

such an element has B-component 1 we must have x = 1 and v = (v1, 0),
which is to say that b = (1 + πny, 1) + (v1, 0) ∈ (1 + pnE + V n)× {1} is an
element of HS . The argument for B× is similar. �

In the sequel, we will construct a representation ρS of the unit group L×S
inflated from a representation of the finite group (LS/L◦S)×. Then when ρS
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is extended to ∆(E×)(F× × F×)L× and induced up to GL2(F )×B×, the
result will realize the Jacquet-Langlands correspondence for representations
of GL2(F ) containing the stratum S. For completeness’ sake, we also want
to construct the correspondence for supercuspidal representations of level
0. To this end we define the linking order of level 0 by

L0 = M2(OF )×OB
and its double-sided ideal by

L◦0 = pFM2(OF )×PB.

Let E be the unique unramified quadratic extension of F and choose em-
beddings E ↪→ M2(F ), E ↪→ B so that M2(OF ) ∩ E = OB ∩ E = OE .
Let s1 : M2(OF )→ E and s2 : B → E be the projections as in the previous
section, let ν be an additive character of E vanishing on pE but not on OE ,
and let ν0 : A→ C× be the character ν0(x1, y1) = ν(s1(x1)− s2(y1)). Then
Prop. 4.3.4 has the following analogue in level zero:

Proposition 4.3.5. The linking order L0 has the following properties:
(1) L×0 is normalized by ∆(E×).
(2) With respect to ν0, the annihilator of L0 is L◦0.
(3) L0/L◦0 ∼= M2(kF )× kE.
(4) L×0 ∩GL2(F ) = GL2(OF ), and L×0 ∩B× = O×B.

5. Representations of L×S and the Fourier transform.
Keep the notations from the previous section: Let S = (A1, n1, α1) be a

simple stratum in GL2(F ), let S′ = (A2, n2, α2) be its corresponding simple
stratum in B×, let n = n1, let LS be the associated linking order, let RS
be its quotient ring by the ideal L◦S , and let νS be the associated additive
character on A = M2(F )×B. Let G = GL2(F )×B×. For g = (g1, g2) ∈ G,
write

‖g‖ = |det g1|F |N g2|F .
We let µS be the unique Haar measure on the additive group A which

is self-dual with respect to νS , and let FS be the Fourier transform with
respect to ψS :

FSf(y) =
∫

A
f(x)νS(xy)dµS(x).

There are translation operators L,R : G → AutC∞c (G), defined by
Lgf(y) = f(g−1y) and Rhf(y) = f(yh); we have the rules

(5.0.1) LgFS = ‖g‖2FSRg, RhFS = ‖h‖−2FSLh.
Let RS be the kE-algebra LS/L◦S as in the proof of Prop. 4.3.4.

Proposition 5.0.1. The measure of L◦S with respect to µS is #R−1/2
S .
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Proof. Let χLS be the characteristic function of LS . Then

FSχLS (y) =
∫
LS
νS(xy) dµS(x)

is supported on L⊥S = L◦S and equals µS(LS) there; i.e. FSχLS =
µS(LS)χL◦S . Similarly F2

SχLS = µS(LS)µS(L◦S)χLS . On the other hand,
since µS is self-dual, we must have F2

SχLS = χLS , implying µS(LS)µS(L◦S)
= 1. Since µS(LS) = #RSµS(L◦S), the result follows. �

Let C(RS) be the space of complex-valued functions onRS . Note that the
character νS vanishes on L◦S and therefore induces a well-defined additive
character of RS . We identify C(RS) with a subspace of C∞c (A).

Prop. 5.0.1 together with the key property that LS and L◦S are dual
lattices imply the following:

Proposition 5.0.2. The Fourier transform f 7→ FSf preserves the space
C(RS). For f ∈ C(RS), we have

(5.0.2) FSf(y) = #R−1/2
S

∑
x∈RS

f(x)νS(xy).

Recall that the data of S and S′ determine characters ψα1 and ψα2 of
the subgroups Un1

A1
and Un2

A2
of A×1 and A×2 , respectively. The product group

Un1
A1
×Un2

A2
= 1+pnEA1×pnEA2 is a subgroup of L×S , and the product character

ψS = ψα1 × ψ−1
α2 vanishes on

(
Un1

A1
× Un2

A2

)
∩ (1 + L◦S) = Un+1

A1
× Un+1

A2
.

Therefore if we let US be the image of Un1
A1
× Un2

A2
in RS , then ψS induces

a well-defined nontrivial character of US .
We are now ready to construct the special representation ρS . Its relevant

properties are as follows:

Theorem 5.0.3. There exists an irreducible representation ρS of R×S sat-
isfying the conditions:

(1) ρS vanishes on k× ⊂ R×S .
(2) ρS |US is a sum of copies of ψS.
(3) If f ∈ C(ρS) is a matrix coefficient, then FSf is supported on R×S

and satisfies FSf(y) = ±f(y−1), all y ∈ R×S . The sign is 1 if E/F
is ramified and −1 otherwise.

Remark 5.0.4. These three properties correspond to the three desired
properties of the representation ΠS listed at the beginning of Section 4.

Proof. First, consider the case where E = F (α) is a ramified extension of
F . Then by Prop. 4.3.4 we have an isomorphism RS ∼= k[X]/(X2) with
respect to which νS is a nontrivial additive character which vanishes on
k ⊂ RS . The subgroup US ⊂ R×S corresponds to {1 + aX | a ∈ k}. There
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is obviously a unique character ρS of R×S lifting ψS and vanishing on k×.
It takes the form

ρS(a+ bX) = Ψ(a−1b),
where Ψ: k → C× is a nontrivial character determined by ψS . That ρS
satisfies claim (3) is a simple calculation in the commutative ring RS .

The case of e = 1 is far more subtle. The required representation ρS is
related to the construction of the Weil representation of a symplectic group
over a finite field. We present a self-contained version of the construction
in the following section. �

5.1. Fourier transforms on the Heisenberg group. In this section, k
is the finite field with q elements and k2/k is a quadratic field extension. As
in the proof of Prop. 4.3.4, let R be the k-algebra of matrices of the form

[α, β, γ] =

α β γ
αq βq

α

 ,
where α, β, γ ∈ k2. Let U ⊂ R× be the subgroup of matrices of the form
[1, 0, γ], and let U1 ⊂ U be the subgroup consisting of those [1, 0, γ] for
which Trk2/k γ = 0. Note that the center of R× is k×U .

Let ` be a prime not dividing q, and let νk : k → Q×` be a nontrivial
additive character. Define an additive character νR of R by νR([α, β, γ]) =
νk(Trk2/k γ). Let F be the Fourier transform with respect to νR.

Theorem 5.1.1. For each character ψ of U which is nontrivial on U1,
there exists a representation ρψ of R× satisfying the properties:

(1) ρψ is trivial on k×.
(2) ρψ|U is a multiple of ψ.
(3) For a matrix coefficient f ∈ C(ρψ), the Fourier transform Ff is

supported on R× and satisfies Ff(y) = −f(y−1) for y ∈ R×.

The proof will occupy the rest of the section. To construct ρψ, we will
build a nonsingular projective curve X/k admitting an action of R×, and
find ρψ in the `-adic cohomology of X.

First, we recognize a relationship between R× and the unitary group
GU3. Let Φ be the matrix

Φ =

 1
−1

1

 ,
and let GU3(k) be the subgroup of matrices M ∈ GL3(k2) satisfying
M∗ΦM = λ(M)Φ for a scalar λ(M). (Here M∗ is the conjugate transpose
of M .) Then a large part of the Borel subgroup of GU3(k) is contained in
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R×. Indeed, if M ∈ R×, we can measure the defect of M from lying in
GU3(k) by a homomorphism δ : R× → k defined by

(5.1.1) Φ−1M∗ΦM = λ(M)

1 δ(M)
1

1

 .
Explicitly, δ([α, β, γ]) = αγq + αqγ − βq+1. Let R1 = ker δ; then R1 ⊂
GU3(Fq).

The algebraic group GU3 acts on the projective plane P2
k in the usual

manner; the group GU3(k) preserves the equation yq+1 = xqz + xzq in
projective coordinates. This equation defines a nonsingular projective curve
X1 of genus q(q − 1)/2 with an action of GU3(k). Let X = R× ×R1 X1;
this is a smooth projective curve with an action of R×. Let ` be a prime
distinct from the characteristic of k, and let ρ : R× → H1(X,Q`) be the
representation of R× on the first cohomology of X. The degree of ρ is
q2(q − 1). Note that ρ is trivial on k× ⊂ R×.

Since U lies in the center of R1, we have a decomposition ρ = ⊕ψρψ of ρ
into its irreducible ψ-isotypic components, where ψ runs over characters of
U which are nontrivial on U1; each has dimension q. We claim that ρψ is
irreducible. By the discrete Stone-von Neumann theorem there is a unique
irreducible representation ς of the p-Sylow subgroup H ⊂ R× which lies
over ψ, and furthermore deg ς = q. Since the restriction of ρψ to H lies over
ψ and has degree q, it must agree with ς. Therefore ρψ is irreducible.

Let T ⊂ R× be the subgroup of diagonal matrices, so that T ∼= k∗2. The
Lefshetz fixed-point theorem can easily be used to compute the restriction
of ρψ to T :

Proposition 5.1.2. The restriction of ρψ to T is exactly the direct sum of
those characters χ of T which are nontrivial on T/k×.

For a matrix coefficient f ∈ C(ρψ), we consider the Fourier transform
Ff . We claim that the Fourier transform Ff is supported on R×. Indeed,
if y ∈ R is not invertible then uy = y for all u ∈ U . It follows from this
that Ff(uy) = Ff(uy) = ψ(u)−1Ff(y) for all u ∈ U ; since ψ is nontrivial
we see that Ff(y) = 0.

Next we claim that for y ∈ R× we have

(5.1.2) Ff(y) = −f(y−1).

Formally, we have Ff(y) = f(y−1)F(1), so in fact is suffices to show that

(5.1.3) Ff(1) = −f(1).

It is enough to prove Eq. 5.1.3 in the case that f equals the character of ρχ.
This is because the character of ρψ generates C(ρψ) as an (R××R×)-module,
and because the property in Eq. 5.1.2 is invariant when we replace f by
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any of its (R× × R×)-translates. Therefore let f = Tr ρψ be the character
of ρψ.

We have
Ff(1) = 1

q3

∑
x∈R×

Tr ρψ(x)νR(x).

We observe that the term Tr ρψ(x)νR(x) only depends on the conjugacy
class of x in R×. We first dispense with those terms in the above sum for
which x has eigenvalues in k×. The sum over these terms vanishes, because
for such an x we have Tr ρψ(xu)νR(xu) = ψ(u) Tr ρψ(x)νR(x) for all u ∈ U1.
All that remains are the elements x = [α, β, γ] with α ∈ k×2 \k×, and each
of these are conjugate to a unique element of the form tu, with t ∈ T\k×
and u ∈ U . Each such conjugacy class has cardinality q2, and the value of
Tr ρψ(tu) on such a class is −ψ(u). Therefore

Ff(1) = −1
q

∑
t∈T\k×

∑
u∈U

ψ(u)νr(tu).

This reduces to −q = −f(1) by a simple calculation, thus completing the
proof of Theorem 5.1.1.

Remark 5.1.3. The curve X is isomorphic (over k) to the Fermat curve
xq+1 + yq+1 + zq+1 = 0. It appears in the construction of the so-called
unipotent representation of GU3(k); see [Lus78].

There is also a connection to the theory of the discrete Weil represen-
tation. We have R× = T o H, where H is the p-Sylow subgroup of R×.
Furthermore, U ∩ H = U1 is the center of H. Write ψ1 for the (nontriv-
ial) restriction of ψ to U1. The group H/ kerψ1 is a discrete Heisenberg
group. By the Stone-von Neumann theorem, there is a unique irreducible
representation Vψ of H lying over ψ.

The group T embeds as a nonsplit torus in SL2(k), and the conjugation
action of T on H/ kerψ1 extends to an action of SL2(k) in a manner which
fixes each element of U1. The uniqueness property of Vψ means that if α ∈
SL2(k) and αVψ is the conjugate representation g 7→ Vψ(α(g)), then there
is an isomorphism W (α) : αVψ ∼= Vψ which is well-defined up to a scalar.
The operators W (α) give an a priori projective representation of SL2(k)
on the underlying space of Vψ which in fact lifts to a proper representation
W , the Weil representation. See for instance [Gér77]. The operators W (α)
together with the representation Vψ give a q-dimensional representation
of SL2(k) o H; restricting this to T o H/ kerψ1 = R×/ kerψ1 gives the
representation ρψ we have constructed in Theorem 5.1.1.

When W is restricted to a nonsplit torus of SL2(k), each nontrivial char-
acter appears at most once, see Theorem 3 of [GH08]; this implies the prop-
erty of ρψ given in Prop. 5.1.2. The equation of part (3) of Thm. 5.1.1 may
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be established once one has a formula for the character of the “Heisenberg-
Weil representation” of SL2(k) oH; for this, see Theorem 2.2.1 of [GH07].
We have chosen to provide a cohomological proof, however, because of its
relative simplicity and because we believe the curve X appears as a con-
nected component of the stable reduction of the Lubin-Tate curve, cf. the
introduction.

The case of e = 1 in Theorem 5.0.3 follows from Theorem 5.1.1 once we
observe the following:

(1) There exists an isomorphism RS → R.
(2) Under this isomorphism, νS is identified with an additive character

of the form νR described above.
(3) The subgroup US ∈ R×S is identified with U ⊂ R×.
(4) Choose an isomorphism ι : C→ Q`, then the complex character ψS

of US is identified with an `-adic character ψ of U .
(5) The condition that S = (M2(OF ), n, α) be a simple stratum implies

that the reduction of πnFα has irreducible characteristic polynomial,
which in turn implies that ψ is nontrivial on U1.

(6) The `-adic representation ρψ constructed in Theorem 5.1.1 with
respect to the data of νR and ψ may be transported via ι−1 to a
complex representation of R×S which satisfies the requirements of
Theorem 5.0.3.

5.2. The case of level 0. The linking order of level 0 is L0 = M2(OF )×
OB, and its quotient ring R0 is M2(k) × kE . The additive character ν0 is
of the form

ν0(x, y) = ν(TrM2(k)/k x− TrkE/k y),
where ν is a nontrivial additive character of k, and F0 is the Fourier trans-
form with respect to this character. Let θ be a character of k×E . Assume
that θ is regular, meaning that it does not factor through the norm map
k×E → k×. It is well-known that there is an irreducible cuspidal representa-
tion ηθ of GL2(kF ) corresponding to θ. The character of this representation
takes the value −(θ(α) + θ(αq)) on an element g ∈ GL2(kF ) with distinct
eigenvalues α, αq ∈ kE not lying in kF .

Let ρθ be the character ηθ ⊗ θ−1 of R×0 = GL2(kF )× k×E . The following
proposition concerns the Fourier transforms of matrix coefficients of ρθ.

Proposition 5.2.1. For f ∈ C(ρθ) we have that F0f is supported on R×0
and satisfies F0f(y) = −f(y−1) for y ∈ R×0 .

Proof. We reduce this to two calculations relative to the rings M2(k) and
kE , respectively. Let R1 = M2(k), R2 = kE , and for i = 1, 2 let νi be the
additive character of Ri defined by νi(x) = ν0(TrRi/k x), so that νS(x, y) =
ν1(x)ν2(−y).
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Write τθ,ν for the Gauss sum
∑
α∈k×E

θ(α)ν(TrkE/kF α). We claim that for
all f ∈ C(ηθ) we have that F1f is supported on R×1 = GL2(k) and satisfies

F1f(y) = −τθ,νf(y−1).

This is a straightforward calculation. It is a special case of a calcula-
tion of epsilon factors of irreducible representations of GLn which appears
in [Kon63]; these can always be expressed as a product of Gauss sums. See
also [Mac73], Chap. IV.

The corresponding analysis for R2 = kE is simpler: define a Fourier trans-
form F2 on C(R2) by Ff(y) = q−1∑

x∈k×E
f(x)ν2(−xy). Then the Fourier

transform of the character θ−1 is supported on k×E and equals q−1τθ−1,ν−1θ.
We may now complete the proof of the proposition. For a decomposable

element f = f1 ⊗ f2 of C(R1 × R2), we have F0f = F1f1 ⊗ F2f2. If this
same f is a matrix coefficient for ρθ = ηθ ⊗ θ−1 then we must have F0f =
−q−2τθ,ντθ−1,ν−1f(y−1). We now use the classical identity of Gauss sums
τθ,ντθ−1,ν−1 = #kE = q2, and the proof is complete. �

6. Construction of the Jacquet-Langlands Correspondence
The construction of the family of rings LS together with the representa-

tions ρS of L×S will now be used to construct certain representations ΠS of
GL2(F )×B×. We will then use Cor. 3.0.2 to show that the family ΠS real-
izes the Jacquet-Langlands Correspondence. This will involve showing that
the matrix coefficients of ΠS satisfy the functional equation in Eq. 3.0.2
for sufficiently many χ. The heart of that calculation has already been
completed in Theorem 5.0.3.

Recall that G = GL2(F )×B×; this group has center Z(G) = F××F×.
Let S = (A, n, α) be a simple stratum in M2(F ), and let S′ = (A′, n′, α′) be
its corresponding simple stratum in B. From these data we have constructed
a linking order LS and an irreducible representation ρS of L×S . Let ` = n/e,
so that every supercuspidal representation of GL2 containing S has level `,
and likewise for B×. The intersection of Z(G) with L×S is

Z(G) ∩ L×S =
{

(z1, z2) ∈ O×F ×O
×
F | vF (z1 − z2) ≥ `

}
.

Here vF is the valuation on F . By Theorem 5.0.3, ρS vanishes on the di-
agonally embedded subgroup ∆(F×) ∩ L×S . Choose a character ω of Z(G)
which vanishes on ∆(F×) and agrees with the central character of ρS on
Z(G) ∩ L×S . We identify ω with a character of F× via its restriction to
F× × {1}.

We now extend ρS to a representation on a larger group which contains
Z(G) and which intertwines ρS . Define a group KS by

KS = Z(G)∆(E×)L×S .
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(Recall that ∆(E×) normalizes L×S , so this is indeed a group.) There is a
unique extension of ρS to a representation ρS,ω of KS which satisfies the
conditions:

(1) ρS,ω|Z(G) = ω,
(2) For β ∈ E×, ρS,ω(∆(β)) = (−1)vE(β) if E/F is ramified,
(3) For β ∈ E×, ρS,ω(∆(β)) = 1 if E/F is unramified.

The group KS is open and compact modulo its center. We may now
define the representation ΠS,ω of G as the induction of ρS,ω with compact
support:

ΠS,ω = IndG
KS ρS,ω.

We wish to confirm that ΠS,ω satisfies the desired properties (1)-(3) listed
at the beginning of Section 4. It is already apparent that (1) ΠS,ω vanishes
on ∆(F×). For property (2) we have the following:

Theorem 6.0.1. ΠS,ω is the direct sum of representations of G of the form
π⊗ π̌′, where π (resp., π′) is a minimal supercuspidal irreducible represen-
tation of GL2(F ) (resp., B×) having central character ω and containing
the stratum S (resp., S′). Every representation of either group having the
above properties is contained in ΠS,ω.

Proof. Note that KS ⊂ JS × JS′ is a subgroup of finite index. Let

M = IndJS×JS′KS ρS,ω.

Then M is a direct sum of irreducible representations of JS×JS′ of the form
Λ⊗Λ̌′. By Theorem 5.0.3, such a Λ⊗Λ̌′ lies over the character ψS = ψα⊗ψ−1

α′

of US ×US′ . Therefore we have Λ ∈ C(ψα,A) and Λ′ ∈ C(ψα′ ,A′). By The-
orem 2.2.5, π = IndGL2(F )

JS
Λ is an irreducible supercuspidal representation

of GL2(F ) containing S. Since ρS,ω has central character ω, the same is
true of π. The reasoning is similar for π′ = IndB×J ′S Λ′.

Now assume π is an irreducible supercuspidal representation of GL2(F )
containing S with central character ω. We claim that π is contained in
ΠS,ω|GL2(F ). Since ΠS,ω is induced from the representation ρS,ω of KS , the
restriction of ΠS,ω to GL2(F ) contains IndGL2(F )

KS∩GL2(F ) ρS,ω. Therefore to show
that π is contained in ΠS,ω|GL2(F ) it suffices to prove that π|KS∩GL2(F ) meets
ρS,ω|KS∩GL2(F ). By Prop. 4.3.4 we have

KS ∩GL2(F ) = F×HS .

The central characters of π and ρS,ω agree on F× by hypothesis. Therefore
it suffices to show that π|HS meets ρS |HS . By Theorem 2.2.5, π contains a
representation Λ ∈ C(A, ψα). This means that the restriction of π to HS

contains Λ|HS , which must agree with ρS |HS by Theorem 4.2.1. The case
of a representation of B× is similar. �
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The third required property of ΠS,ω, concerning the zeta functions at-
tached to matrix coefficients of this representation, shall follow from
Prop. 5.0.3. We will start by translating Prop. 5.0.3 into a statement con-
cerning the Fourier transforms of matrix coefficients of ΠS,ω.

For a function f on G, and a real number s, let fs be the function
fs(g) = f(g) ‖g1‖s−2 ‖g2‖−s .

If f ∈ C(ΠS,ω), we wish to consider Fourier transforms of the functions
fs. The functions fs are supported on KS , which is not compact, so their
Fourier transforms do not a priori converge. Nonetheless we may formally
define the Fourier transform f̂s by integrating fs(x)ψA(xy) over each of the
(compact) cosets of L×S in G. Since f is a linear combination of G ×G-
translates of vectors in C(ρS), which are in turn supported on L×S , we see
that the integral vanishes on all but finitely many of the cosets. We now
evaluate f̂s.
Proposition 6.0.2. For a matrix coefficient f ∈ C(ΠS,ω), we have

(6.0.1) f̂s = −f̌2−s.

Proof. We will first prove the corresponding statement relative to the Fou-
rier transform FS :
(6.0.2) FSfs = ±f̌2−s,

where the sign is 1 if E/F is ramified and −1 otherwise. It will suffice to
prove Eq. 6.0.2 for matrix coefficients f ∈ C(ρS) supported on the group
L×S . Indeed, glancing at the rules in Eq. 5.0.1 shows that the validity of
Eq. 6.0.2 is unchanged upon replacing f by LgRhf for elements g, h ∈ G,
and these translates span C(ΠS,ω) as f runs through C(ρS). But for f ∈
C(ρS), Eq. 6.0.2 follows from Theorem 5.0.3, because fs = f .

To derive Eq. 6.0.1 from Eq. 6.0.2 we must compare the Fourier trans-
forms f̂ and FSf . The first transform is taken relative to the additive
character ψA, while the second is taken relative to the character νS . The
characters are related by νS(x) = ψA(∆(β)−1x) for an element β ∈ E× of
valuation n; formally we have f̂ = ‖∆(β)‖−1RβFSf . Applying this to the
function fs, we see that

f̂s = ‖∆(β)‖−1RβFSfs
= ±‖∆(β)‖−1Rβ(f̌)2−s

= ±(Rβ f̌)2−s,

where the sign is positive if and only if E/F is ramified. If E/F is ramified,
then β ∈ E× has odd valuation, and Rβ f̌ = −f̌ because ρS,ω takes the
value −1 on such elements. If E/F is unramified, then ρS,ω(∆(β)) = 1, and
therefore Rβ f̌ = f̌ . The proposition follows. �



The local Jacquet-Langlands correspondence 509

We are ready to prove the appropriate functional equation for the zeta
functions attached to ΠS,ω. Recall that for an admissible representation Π
of G, and for Φ ∈ C∞c (A), f ∈ C(ΠS,ω), we defined the zeta function

ζ(Φ, f, s) =
∫

G
Φ(g)f(g) ‖g1‖s ‖g2‖2−s dµ×(g)

=
∫

G
Φ(g)fs(g) dµ(g)

where µ is a Haar measure on A.

Theorem 6.0.3. For all Φ ∈ C∞c (A) all f ∈ C(Πω), and all characters χ
of F× of conductor not exceeding `, we have

ζ(Φ, χf, s) = −ζ(Φ̂, χ−1f̌ , 2− s).

Proof. It suffices to prove the claim for χ = 1. Indeed, if f ∈ C(ΠS,ω),
then χf lies in C(ΠS′,χ2ω) for a different simple stratum S′ = (A1, n1, α

′
1).

(Explicitly: let β ∈ p−nE be such that (χ◦NE/F )(1+x) = ψF (TrE/F βx) for
all x ∈ pnE ; then α′1 = α1 + β.)

Assume therefore that χ = 1. We will take the measure dµ to equal dµψ,
the measure dual to the character ψA. Since ˆ̂Φ(x) = Φ(−x) we have that
ζ( ˆ̂Φ, f, s) = ζ(Φ, f, s) by a change of variable g 7→ −g in the integral. Now
we apply Prop. 6.0.1:

ζ(Φ, f, s) = ζ( ˆ̂Φ, f, s)

=
∫

G

ˆ̂Φ(g)fs(g) dµψ(g)

=
∫

G
Φ̂(g)f̂s(g) dµψ(g)

= −
∫

G
Φ̂(g)f̌2−s(g) dµψ(g)

= −ζ(Φ̂, f̌ , 2− s).
�

6.1. The construction in level zero. The preceding constructions carry
over easily to the case of level zero. Let E be an unramified quadratic
extension of F . Letting θ denote a regular character of k×E , we constructed
in Section 5.2 a representation ρχ of the unit group of the linking order
L0. Choose a central character ω of F××F× which agrees with the central
character of ρθ on (F××F×)∩L×0 = O×F×O

×
F . Extend ρθ to a representation

ρθ,ω of K0 = (F× × F×)L0 agreeing with ω on the center. Finally, let Πθ,ω

be the induced representation of ρθ,ω from K0 up to GL2(F )×B×.
Then Thm. 6.0.1 has the following analogue:
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Theorem 6.1.1. Let π be a minimal irreducible admissible representation
of GL2(F ) (resp., B×) with central character ω (resp., ω−1). The following
are equivalent:

(1) π has level zero, and the restriction of π to GL2(OF ) (resp., O×B)
contains a representation inflated from the representation ηθ of
GL2(k) (resp., the character θ of k×E .)

(2) π is contained in Πθ,ω|GL2(F ) (resp., π̌ is contained in Πθ,ω|B×).

Similarly, Prop. 6.0.3 has this analogue:

Theorem 6.1.2. For Φ ∈ C∞c (A), f ∈ C(Πω,θ), we have

ζ(Φ, χf, s) = −ζ(Φ̂, χ−1f̌ , 2− s)
for all characters χ of F× which are trivial on 1 + pF .

The proofs of Thm. 6.1.1 and Prop. 6.1.2 run exactly the same as those
of Thm. 6.0.1 and Prop. 6.0.3.

6.2. Conclusion of the construction. Our construction of the Jacquet-
Langlands correspondence is nearly complete.

Theorem 6.2.1. For every irreducible representation π′ of B× of dimen-
sion greater than one, there is a supercuspidal representation π of GL2(F )
for which π and π′ correspond. Every supercuspidal representation of
GL2(F ) arises this way.

Proof. By Theorem 2.2.2 we may twist π′ to assume either that π̌′ contains
a simple stratum S′, or else that it is level zero. In the first case, let S =
(A, n, α) be the corresponding stratum in M2(F ). Applying Theorem 6.0.1,
π̌′ is contained in ΠS,ω|B× , where ω is the central character of π′. Suppose
π is a representation of GL2(F ) appearing in HomB×(π̌,ΠS,ω). Then π⊗ π̌′
appears in ΠS,ω.

Applying Theorem 6.0.1 again, we find that π contains S. Combining
Cor. 3.0.2 with Prop. 6.0.3 shows that π′ and π correspond.

The logic is the same if π′ has level zero: In this case π̌′ contains a charac-
ter of O×B inflated from a character θ of a quadratic extension of k, so that
π̌′ is contained in Πθ,ω|B× . Proceeding as above, we find a representation π
of GL2(F ) corresponding to π′.

If π is a given supercuspidal representation of GL2(F ), the argument
above may be reversed to find a representation π′ of B× which corresponds
to it. This concludes the proof. �
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