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Steinitz classes of some abelian and nonabelian
extensions of even degree

par Alessandro COBBE

Résumé. La classe de Steinitz d’une extension de corps de nom-
bresK/k est une classe d’idéaux dans l’anneau des entiersOk de k,
qui avec le degré [K : k] de l’extension détermine la structure de
OK comme Ok-module. Nous dénotons par Rt(k,G) l’ensemble
des classes qui sont classes de Steinitz d’une extension modérée
du k avec groupe de Galois G. Nous dirons que ces classes sont
réalisables pour le groupe G ; il est conjecturé que l’ensemble des
classes réalisables est toujours un groupe.

Dans cet article nous allons développer des idées contenues dans
[7] pour obtenir des résultats dans le cas de groupes d’ordre pair.
En particulier nous allons montrer que l’étude des classes de Stei-
nitz réalisables pour les groupes abéliens peut être réduit au cas
des groupes cycliques d’ordre une puissance de 2.

Abstract. The Steinitz class of a number field extension K/k
is an ideal class in the ring of integers Ok of k, which, together
with the degree [K : k] of the extension determines the Ok-module
structure ofOK . We denote by Rt(k,G) the set of classes which are
Steinitz classes of a tamely ramified G-extension of k. We will say
that those classes are realizable for the group G; it is conjectured
that the set of realizable classes is always a group.

In this paper we will develop some of the ideas contained in
[7] to obtain some results in the case of groups of even order. In
particular we show that to study the realizable Steinitz classes for
abelian groups, it is enough to consider the case of cyclic groups
of 2-power degree.

1. Introduction
Let K/k be an extension of number fields and let OK and Ok be their

rings of integers. By Theorem 1.13 in [18] we know that

OK ∼= O[K:k]−1
k ⊕ I

where I is an ideal of Ok. By Theorem 1.14 in [18] the Ok-module structure
of OK is determined by [K : k] and the ideal class of I. This class is called
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608 Alessandro Cobbe

the Steinitz class of K/k and we will indicate it by st(K/k). Let k be a
number field and G a finite group, then we define:

Rt(k,G) = {x ∈ Cl(k) : ∃K/k tame Galois, Gal(K/k) ∼= G, st(K/k) = x}.

It is conjectured that Rt(k,G) is always a subgroup of the ideal class
group, but up to now no general proof is known. The problem has been
studied in a lot of particular situations and the conjecture has actually
been verified for a lot of groups, including all the finite abelian groups (this
is a consequence of [17]). However from [17] it is not possible to deduce an
explicit description of Rt(k,G). If the order of G is odd, such a description
can be found in Lawrence P. Endo’s PhD thesis [9] (we will recall this result
in Theorem 4.1). Endo has also proved the following theorem concerning
the case of cyclic 2-power extensions.

Theorem 1.1. Suppose Gal(k(ζ2r)/k) is cyclic. Then

Rt(k,C(2r)) =W (k, 2r),

where W (k, 2r) is defined in the next section, unless k(ζ2r)/k is unramified
and Gal(k(ζ2r)/k) = 〈−52t〉, 0 ≤ t ≤ r − 2, in which case

Rt(k,C(2r)) =W (k, 2r)
1
2 .

If Gal(k(ζ2r)/k) is not cyclic, Endo was unable to provide any significant
definitive result, neither the problem has been solved by other authors. In
the last section of the present article we will show that we can reduce the
study of realizable classes for finite abelian groups to the case of cyclic 2-
power extensions, showing that the only difficulties in the abelian case are
actually the ones pointed out by Endo.

Also the case of nonabelian groups has been studied by a lot of authors
and the set of realizable classes Rt(k,G) has been described for a lot of
groups G, always showing that this set is actually a subgroup of the ideal
class group. In this paper we will use the notations and some results from
[7], in which the author considers some nonabelian groups obtained by
semidirect and direct products of abelian groups, with some restrictive hy-
potheses. In particular one of the results from [7] is an explicit description
of realizable classes for all semidirect products G = H o G with H,G both
abelian and of odd coprime order. In the present paper we apply the same
techniques from class field theory to the case of groups of even order. In
particular we will obtain an explicit description of Rt(k,G) where G is a
semidirect product as above, H being an elementary abelian 2-group and
G an abelian group of odd order (see Proposition 3.5).

This paper is a slightly shortened version of parts of the author’s PhD
thesis [8]. For earlier results see [1], [2], [3], [4], [5], [6], [7], [9], [10], [11],
[13], [14], [15], [16], [21], [22] and [23].
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2. Preliminary results
We start recalling the following two fundamental results.

Theorem 2.1. If K/k is a finite tame Galois extension then

d(K/k) =
∏
p

p
(ep−1) [K:k]

ep ,

where d(K/k) is the discriminant of the extension K/k and ep is the ram-
ification index of p.

Proof. This follows by Propositions 8 and 14 of chapter III of [12]. �

Theorem 2.2. Assume K is a finite Galois extension of a number field k.
(a) If its Galois group either has odd order or has a noncyclic 2-Sylow

subgroup then d(K/k) is the square of an ideal and this ideal repre-
sents the Steinitz class of the extension.

(b) If its Galois group is of even order with a cyclic 2-Sylow subgroup
and α is any element of k whose square root generates the quadratic
subextension of K/k then d(K/k)/α is the square of a fractional
ideal and this ideal represents the Steinitz class of the extension.

Proof. This is a corollary of Theorem I.1.1 in [9]. In particular it is shown in
[9] that in case (b) K/k does have exactly one quadratic subextension. �

Further, considering Steinitz classes in towers of extensions, we will need
the following proposition.

Proposition 2.1. Suppose K/E and E/k are number fields extensions.
Then

st(K/k) = st(E/k)[K:E]NE/k(st(K/E)).

Proof. This is Proposition I.1.2 in [9]. �

We will use a lot of results proved in [7]. In this section we prove a few
facts we will use later.

For any integer n ∈ N and any prime l, we denote by n(l) the power of
l such that n(l)|n and l - n/n(l). We will always use the letter l only for
prime numbers, even if not explicitly indicated.
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Lemma 2.1. For any e|m the greatest common divisor, for l|e, of the
integers (l − 1) m

e(l) divides (e− 1)me .

Proof. This is Lemma 3.16 in [7]. �

Lemma 2.2. Let m,n, x be integers. If x ≡ 1 (mod m) and any prime q
dividing n divides also m then

xn ≡ 1 (mod mn).

Proof. Let q be a prime number dividing m. If x ≡ 1 (mod m) then there
exists b ∈ N such that

xq = (1 + bm)q = 1 +
q−1∑
i=1

(
q

i

)
(bm)i + (bm)q ≡ 1 (mod mq).

Let n = q1 . . . qr be the prime decomposition of n (qi and qj with i 6= j are
allowed to be equal). Assuming that xq1···qr−1 ≡ 1 (mod mq1 · · · qr−1) we
can conclude by the above calculation that

xq1···qr = (xq1···qr−1)qr ≡ 1 (mod mq1 · · · qr)

and the Lemma is proved by induction on the number r of prime divisors
of n. �

Definition. Let K/k be a finite abelian extension of number fields, let
JK and PK be the ideal group and the group of principal ideals of K
respectively. Then we define W (k,K) in the following equivalent ways (the
equivalence is shown in [7], Proposition 2.10):

W (k,K) = {x ∈ Jk/Pk : x contains infinitely many primes of absolute
degree 1 splitting completely in K}

W (k,K) = {x ∈ Jk/Pk : x contains a prime splitting completely in K}
W (k,K) = NK/k(JK) · Pk/Pk.

In the case of cyclotomic extensions we will also use the shorter notation
W (k,m) =W (k, k(ζm)).

Lemma 2.3. If q|n⇒ q|m then W (k,m)n ⊆W (k,mn).

Proof. Let x ∈ W (k,m). By the definition and by Lemma 2.11 of [7], x
contains a prime ideal p, prime to mn and such that Nk/Q(p) ∈ Pm

Q , where
m = m · p∞ and Pm

Q is the group of all principal ideals generated by an
element a ∈ N such that a ≡ 1 (mod m). Then by Lemma 2.2, Nk/Q(pn) ∈
P n

Q, with n = mn · p∞, and it follows from Lemma 2.12 of [7] that xn ∈
W (k,mn). �
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3. Some general results
We recall the following definition, from [7].

Definition. We will call a finite group G of order m good if the following
properties are verified:

(1) For any number field k, Rt(k,G) is a group.
(2) For any tame G-extension K/k of number fields there exists an

element αK/k ∈ k such that:
(a) If G is of even order with a cyclic 2-Sylow subgroup, then a

square root of αK/k generates the quadratic subextension of
K/k; if G either has odd order or has a noncyclic 2-Sylow
subgroup, then αK/k = 1.

(b) For any prime p, with ramification index ep in K/k, the ideal
class of (

p
(ep−1)m

ep
−vp(αK/k)) 1

2

is in Rt(k,G).
(3) For any tame G-extension K/k of number fields, for any prime ideal

p of k and any rational prime l dividing its ramification index ep,
the class of the ideal

p
(l−1) m

ep(l)

is in Rt(k,G) and, if 2 divides (l − 1) m
ep(l) , the class of

p
l−1

2
m
ep(l)

is in Rt(k,G).
(4) G is such that for any number field k, for any class x ∈ Rt(k,G) and

any integer n, there exists a tame G-extension K with Steinitz class
x and such that every non trivial subextension of K/k is ramified
at some primes which are unramified in k(ζn)/k.

In [7] we prove that abelian groups of odd order are good and, more
generally, we construct nonabelian good groups by an iteration of direct
and semidirect products.

Let G be a finite group of order m, let H = C(n1) × · · · × C(nr) be an
abelian group of order n, with generators τ1, . . . , τr and with ni+1|ni. Let

µ : G → Aut(H)
be an action of G on H and let

0→ H ϕ−→ G ψ−→ G → 0
be an exact sequence of groups such that the induced action of G on H
is µ. We assume that the group G is determined, up to isomorphism, by
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the above exact sequence and by the action µ. The following well-known
proposition shows a class of situations in which our assumption is true.

Proposition 3.1 (Schur-Zassenhaus, 1937). If the order of H is prime to
the order of G then G is a semidirect product:

G ∼= H oµ G.

Proof. This is Theorem 7.41 in [20]. �

We are going to study Rt(k,G), considering in particular the case in
which the order of H is even.

We also define

ηG =
{

1 if 2 - n or the 2-Sylow subgroups of G are not cyclic
2 if 2|n and the 2-Sylow subgroups of G are cyclic

and in a similar way we define ηH and ηG .
We say that (K, k1, k) is of type µ if k1/k, K/k1 and K/k are Galois

extensions with Galois groups isomorphic to G, H and G respectively and
such that the action of Gal(k1/k) ∼= G on Gal(K/k1) ∼= H is given by µ.
For any G-extension k1 of k we define Rt(k1, k, µ) as the set of those ideal
classes of k1 which are Steinitz classes of a tamely ramified extension K/k1
for which (K, k1, k) is of type µ.

We will repeatedly use the following generalization of the Multiplication
Lemma on page 22 in [9] by Lawrence P. Endo.

Lemma 3.1. Let (K1, k1, k) and (K2, k1, k) be extensions of type µ, such
that (d(K1/k1),d(K2/k1)) = 1 and K1/k1 and K2/k1 have no nontrivial
unramified subextensions. Then there exists an extension (K, k1, k) of type
µ, such that K ⊆ K1K2 and for which

st(K/k1) = st(K1/k1)st(K2/k1).

Proof. This is Lemma 3.5 in [7]. �

Now we recall some further notations introduced in [7].
For any τ ∈ H we define

G̃k,µ,τ =
{

(g1, g2) ∈ G ×Gal(k(ζo(τ))/k) : µ(g1)(τ) = τνk,τ (g2)
}
,

where g2(ζo(τ)) = ζνk,τ (g2)
o(τ) for any g2 ∈ Gal(k(ζo(τ))/k),

Gk,µ,τ =
{
g ∈ Gal(k(ζo(τ))/k) : ∃g1 ∈ G, (g1, g) ∈ G̃k,µ,τ

}
and Ek,µ,τ as the fixed field of Gk,µ,τ in k(ζo(τ)).

Given a G-extension k1 of k, there is an injection of Gal(k1(ζo(τ))/k) into
G × Gal(k(ζo(τ))/k) (defined in the obvious way). We will always identify



Steinitz classes of some abelian and nonabelian extensions of even degree 613

Gal(k1(ζo(τ))/k) with its image in G ×Gal(k(ζo(τ))/k). So we may consider
the subgroup

G̃k1/k,µ,τ = G̃k,µ,τ ∩Gal(k1(ζo(τ))/k)
of G̃k,µ,τ . Let Zk1/k,µ,τ be its fixed field in k1(ζo(τ)).

If k1∩k(ζo(τ)) = k then Gal(k1(ζo(τ))/k) ∼= G×Gal(k(ζo(τ))/k) and hence
G̃k1/k,µ,τ = G̃k,µ,τ .

Further for any τ ∈ H and any prime l dividing the order o(τ) of τ we
define the element

τ(l) = τ
o(τ)
o(τ)(l)

in the l-Sylow subgroup H(l) of H.
Now we can state one of the principal theorems proved in [7].

Theorem 3.1. Let k be a number field and let G be a good group of order
m. Let H = C(n1)× · · · ×C(nr) be an abelian group of odd order n prime
to m and let µ be an action of G on H. Then

Rt(k,H oµ G) = Rt(k,G)n
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1

2
mn
o(τ) .

Furthermore G = H oµ G is good.

Proof. This is Theorem 3.19 of [7]. �

In this paper we will obtain some results also for abelian groups H of
even order, if all the other hypotheses of the above theorem continue to
hold.

Lemma 3.2. Let k1 be a tame G-extension of k and let x ∈W (k, k1(ζn1)).
Then there exist tame extensions of k1 of type µ, whose Steinitz classes
(over k1) are ι(x)ηHα, where

α =
r∑
i=1

ni − 1
2
n

ni
+ n1 − 1

2
n

n1
.

In particular there exist tame extensions of k1 of type µ with trivial Steinitz
class.

We can choose these extensions so that they are unramified at all infinite
primes, that the discriminants are prime to a given ideal I of Ok and that
all their proper subextensions are ramified.

Proof. If H is of odd order this is the result of Lemma 3.10 of [7]. Also
without this assumption, with the same techniques as in the proof of Lemma
3.10 of [7], we can construct an extension of type µ with discriminant

d =
(

r∏
i=1

q
(ni−1) n

ni
i

)
q

(n1−1) n
n1

r+1 Ok1 ,
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where q1, . . . , qr+1 are prime ideals of k in the class of x.
If H is of odd order or the 2-Sylow subgroup of H is not cyclic then

the result follows immediately by Theorem 2.2 (a). If this is not the case
then by Theorem 2.2 (b) we obtain extensions whose Steinitz classes have
x2α = xηHα as their square. We may construct infinitely many such µ-
extensions whose discriminants over k1 are relatively prime and so, by the
pigeonhole principle, there are two of them, which we call K1 and K2, with
the same Steinitz class y. Then the extension K given by Lemma 3.1 has
Steinitz class y2 = x2α.

As in the proof of Lemma 3.10 in [7] we can assume that all the additional
conditions are also verified. �

Lemma 3.3. Let k1 be a G-extension of k, let H be a group of even order n,
let τ ∈ H(2)\{1} and let x be any class in W (k, Zk1/k,µ,τ ). Then there exist
extensions of k1 of type µ, whose Steinitz classes (over k1) are ι(x)ηHαj ,
where:
(a) α1 = n

2
,

(b) α2 = (o(τ)− 1) n
o(τ)
,

Further there exist extensions whose Steinitz classes have ι(x)2αj as their
square. We can choose these extensions so that they satisfy the additional
conditions of Lemma 3.2.
Proof. (a) As in the proof of Lemma 3.11 (a) in [7] we can construct

an extension of type µ with discriminant

d(K/k1)
(
(q1q2)

n
2Ok1

)
,

where q1 and q2 are prime ideals of k in the class of x and (K, k1, k)
is a µ-extension of k1 with trivial Steinitz class, obtained by Lemma
3.2. Its Steinitz class has ι(x)2α1 as its square and we conclude as
in Lemma 3.2.

(b) In this case, as in the proof of Lemma 3.11 (b) of [7], we obtain an
extension of type µ with discriminant

d(K/k1)
(
(q1q2)(o(τ)−1) n

o(τ)Ok1

)
.

We conclude as in (a).
�

Lemma 3.4. Let k1/k be a G-extension of number fields, let H(2) be the
2-Sylow subgroup of H and let H̃ be such that H = H(2)× H̃. Let µH̃ and
µH(2) be the actions of G induced by µ on H̃ and H(2) respectively. Then

Rt(k1, k, µH̃)n(2) ⊆ Rt(k1, k, µ).
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Proof. Let x ∈ Rt(k1, k, µH̃) and let (K̃, k1, k) be a µH̃ -extension of k1 with
Steinitz class x, which is the class of

d(K̃/k1)
1
2 .

Let (K, k1, k) be a µH(2)-extension of k1 with trivial Steinitz class and such
that K/k1 and K̃/k1 are arithmetically disjoint (such an extension exists
because of Lemma 3.2). The Steinitz class of K/k1 is the class of(d(K/k1)

α

) 1
2

for a certain α ∈ k1. Then the extension (KK̃, k1, k) is a µ-extension and
its Steinitz class is the class of(

d(KK̃/k1)
α
n
n(2)

) 1
2

= d(K̃/k1)
n(2)

2

(d(K/k1)
α

) n
2n(2)

which is xn(2). �

At this point we can prove the following proposition.

Proposition 3.2. Let l 6= 2 be a prime dividing n and let τ ∈ H(l) \ {1},
then

ι
(
W
(
k, Zk1/k,µ,τ

)) l−1
2

n
o(τ) ⊆ Rt(k1, k, µ)

If 2|n then, for any τ ∈ H(2) \ {1},

ι
(
W
(
k, Zk1/k,µ,τ

))ηH n
o(τ) ⊆ Rt(k1, k, µ)

and
ι
(
W
(
k, Zk1/k,µ,τ

))2 n
o(τ) ⊆ Rt(k1, k, µ)2.

We can choose the corresponding extensions so that they satisfy the addi-
tional conditions of Lemma 3.2.

Proof. The first inclusion follows immediately by Proposition 3.12 of [7]
and by Lemma 3.4.

Now let us assume that 2|n, let τ ∈ H(2)\{1} and let x ∈W (k, Zk1/k,µ,τ ).
It follows from Lemma 3.1 and Lemma 3.3 that ι(x)ηHβ2 is in Rt(k1, k, µ)
and ι(x)2β2 is in Rt(k1, k, µ)2, where

β2 = gcd
(
n

2
, (o(τ)− 1) n

o(τ)

)
= n

o(τ)
.

So we obtain
ι(x)ηH

n
o(τ) ∈ Rt(k1, k, µ)

and
ι(x)2 n

o(τ) ∈ Rt(k1, k, µ)2.
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To conclude we observe that applying Lemma 3.1 to extensions (K1, k1, k)
and (K2, k1, k) of type µ which satisfy the additional conditions of Lemma
3.2, we obtain an extension (K, k1, k) which still satisfies the same condi-
tions. �

Proposition 3.3. Let a be a multiple of a positive integer n1. Let k be a
number field and let G be a finite group of order m such that for any class
x ∈ Rt(k,G) there exists a tame G-extension k1 with Steinitz class x and
such that every subextension of k1/k is ramified at some primes which are
unramified in k(ζa)/k.

Let H = C(n1)× · · · ×C(nr), with ni+1|ni, be an abelian group of order
n and let µ be an action of G on H. We assume that the exact sequence

0→ H ϕ−→ G ψ−→ G → 0,
in which the induced action of G on H is µ, determines the group G, up to
isomorphism. Further we assume that H is of odd order or with noncyclic
2-Sylow subgroup, or that G is of odd order. Then
Rt(k,H oµ G)

⊇ Rt(k,G)n
∏
l|n
l 6=2

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1

2
mn
o(τ)

∏
τ∈H(2)\{1}

W (k,Ek,µ,τ )
ηGmn

o(τ) .

Further we can choose tame G-extensions K/k with a given Steinitz class
(of the ones considered above), such that every nontrivial subextension of
K/k is ramified at some primes which are unramified in k(ζa)/k.
Proof. Let x ∈ Rt(k,G) and let k1 be a tame G-extension of k, with Steinitz
class x, and such that every subextension of k1/k is ramified at some primes
which are unramified in k(ζa)/k. Thus, since a is a multiple of n1, it follows
also that k1 ∩ k(ζn1) = k.

By Lemma 3.1, Lemma 3.4 in [7], Proposition 3.2 and Proposition 2.1
we obtain

Rt(k,H oµ G)

⊇ xn
∏
l|n
l 6=2

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1

2
mn
o(τ)

∏
τ∈H(2)\{1}

W (k,Ek,µ,τ )
ηHmn

o(τ) ,

from which we obtain the result we wanted to prove, if ηH = ηG.
With our hypotheses ηH 6= ηG implies that the order of H is odd, i.e.

that there does not exist any nontrivial τ ∈ H(2). Hence we obtain the
desired result also in this case. �

Proposition 3.4. Let τ, τ̃ ∈ H(2) \ {1} be elements such that τ, τ̃ , τ τ̃ are
all of the same order. Let k1 be a G-extension of k. Then

ι(W (k, Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ ))
n

2o(τ) ⊆ Rt(k1, k, µ).
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In particular, if Zk1/k,µ,τ = Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ and all the other
hypotheses of Proposition 3.3 hold1, then the factor

W (k,Ek,µ,τ )
mn

2o(τ)

can be added in the right hand side of the expression of that proposition,
giving more realizable classes. The additional condition of Proposition 3.3
is also satisfied.

Proof. Let
x ∈W (k, Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ ).

We will use all the notations of the proof of Lemma 3.11 of [7] and we
also consider prime ideals q1, q2, q3 with analogous conditions.

We define ϕi : κ∗Qi → H, for i = 1, 2, 3, posing

ϕ1(gQ1) = τ,
ϕ2(gQ2) = τ̃ ,

and

ϕ3(gQ3) = (τ τ̃)−1.

In the usual way we obtain an extension of type µ with discriminant

d(K/k1)
(
(q1q2q3)(o(τ)−1) n

o(τ)Ok1

)
and Steinitz class ι(x)α3 (with the above hypotheses the 2-Sylow subgroup
of H can not be cyclic), where

α3 = 3(o(τ)− 1) n
2o(τ)

.

Thus by Lemma 3.1 and Proposition 3.2 we obtain that

ι(W (k, Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ ))
n

2o(τ) ⊆ Rt(k1, k, µ).

To prove that
W (k,Ek,µ,τ )

mn
2o(τ)

can be added in the expression of Proposition 3.3, it is now enough to
use Lemma 3.4 in [7], assuming that k1 ∩ k(ζo(τ)) = k and that every
subextension of k1/k is ramified (we can make these assumptions thanks
to the hypotheses of Proposition 3.3). �

1If the order of τ is 2 or 4 this condition is obviously verified (possibly, after renaming τ , τ̃
and τ τ̃).



618 Alessandro Cobbe

Lemma 3.5. Let (K, k1, k) be a tame µ-extension and let P be a prime in
k1 ramifying in K/k1 and let p be the corresponding prime in k. Then

x ∈W (k, Zk1/k,µ,τ ) ⊆W (k,Ek,µ,τ ) ⊆
⋂
l|eP

W (k,Ek,µ,τ(l))

where x is the class of p and τ generates ([UP],K/k1).

Proof. This is Lemma 3.14 in [7]2. �

Lemma 3.6. Let G be a good group of order m, let H be an abelian group
of order n prime to m, with trivial or noncyclic 2-Sylow subgroup, and let
µ be an action of G on H. Suppose (K, k1, k) is tamely ramified and of
type µ. Let ep be the ramification index of a prime p in k1/k and eP be the
ramification index of a prime P of k1 dividing p in K/k1. Then the class
of (

p
(epeP−1) mn

epeP
−vp(αn

k1/k
)
) 1

2

is in
Rt(k,G)n ·

∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1

2
mn
o(τ) .

Proof. If the order of H is odd, then this is Lemma 3.17 in [7]. So we can
assume that the order of H is even and the order of G is odd. By our
assumption αk1/k = 1 and, exactly as in the proof of Lemma 3.17 in [7], we
obtain

p
(epeP−1) mn

epeP
−vp(αn

k1/k
)

= p
(epeP−1) mn

epeP = p
ap(ep−1)mn

ep
∏
l|eP

p
bp,l(l−1) mn

eP(l) .

By the hypothesis that G is good we have that the class of the ideal(
p

(ep−1)m
ep

) 1
2 =

(
p

(ep−1)m
ep
−vp(αk1/k)) 1

2

is in Rt(k,G). By Lemma 3.5 if l|eP the class of p belongs toW (k,Ek,µ,τ(l)),
where τ generates ([UP],K/k1) and, in particular, τ(l) ∈ H(l)\{1}. Further
for any prime l dividing eP, (l−1) mn

eP(l) is even (in the case l = 2 this is due
to the fact that the inertia group at P must be cyclic, while the 2-Sylow
subgroup of H is not), i.e. l−1

2
mn
eP(l) ∈ N. Hence the class of(

p
(epeP−1) mn

epeP
−vp(αn

k1/k
)
) 1

2
=
(
p

(ep−1)m
ep

)nap
2 ∏

l|eP

p
bp,l

l−1
2
mn
eP(l)

2In this case we made no assumption concerning the parity of the order of H, so the result
holds also in the present setting.
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is actually in

Rt(k,G)n ·
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1

2
mn
o(τ) .

�

Lemma 3.7. Under the same hypotheses as in the preceding lemma, if
l|epeP, the class of

p
(l−1) mn

ep(l)eP(l)

is in
Rt(k,G)n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1

2
mn
o(τ) .

and, if 2 divides (l − 1) mn
ep(l)eP(l) , the class of

p
l−1

2
mn

ep(l)eP(l)

is in
Rt(k,G)n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1

2
mn
o(τ) .

Proof. As in the previous lemma we can assume that the order of H is
even, since the odd case has been proved in Lemma 3.18 of [7]. Thus if l is
a prime dividing ep, then l is odd and so 2 divides (l− 1) m

ep(l) and the class
of

p
l−1

2
m
ep(l)

is in Rt(k,G), by the hypothesis that G is good. We conclude that the class
of

p
l−1

2
mn

ep(l)eP(l) = p
l−1

2
mn
ep(l)

is in Rt(k,G)n.
If l divides eP, then (l − 1) mn

ep(l)eP(l) is even (by hypothesis the 2-Sylow
subgroup of H is not cyclic and thus n

eP(2) is even). We conclude by Lemma
3.5 that the class of

p
l−1

2
mn

ep(l)eP(l) = p
l−1

2
mn
eP(l)

is in W (k,Ek,µ,τ )
l−1

2
mn
o(τ) for some τ ∈ H(l) \ {1}. �

Proposition 3.5. Let k be a number field and let G be a good group of odd
order.

Let n > 1 be an integer, let H = C(2)(n) = C(2) × · · · × C(2) and let µ
be an action of G on H. Then

Rt(k,H oµ G) = Rt(k,G)2nCl(k)m2n−2
.

Further G = H oµ G is good.
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Proof. Clearly Ek,µ,τ = k, i.e. W (k,Ek,µ,τ ) = Cl(k) for any τ ∈ H(2) = H.
Thus, by Propositions 3.3 and 3.4,

Rt(k,H oµ G) ⊇ Rt(k,G)2nCl(k)m2n−2
.

The opposite inclusion comes from Theorems 2.1 and 2.2 and from Lemma
3.6. So we obtain an equality and, in particular, this gives the first property
of good groups. The other properties follow now respectively from Lemmas
3.6 and 3.7 and from Propositions 3.3 and 3.4. �

If G is cyclic of order 2n−1 and the representation µ is faithful, then the
above proposition is one of the results proved by Nigel P. Byott, Cornelius
Greither and Bouchaïb Sodaïgui in [3].

Example. The group A4, which is isomorphic to a semidirect product
of the form (C(2) × C(2)) oµ C(3), is good by Proposition 3.5. By a
classical result about realizable Steinitz classes for abelian extensions of
odd order, which we will recall in the next section (Theorem 4.1), we
know that Rt(k,C(3)) = W (k, 3). Further by the third characterization
of W (k, 3) = W (k, k(ζ3)) it is clear that Cl(k)2 ⊆ W (k, 3), since k(ζ3)/k
is an extension of degree 2. Now we can calculate the realizable classes for
A4:

Rt(k,A4) =W (k, 3)4Cl(k)3 ⊇ Cl(k)8Cl(k)3 = Cl(k)
and hence

Rt(k,A4) = Cl(k).
This result has been obtained by Marjory Godin and Bouchaïb Sodaïgui in
[10].

4. Abelian extensions of even degree
We will conclude this paper considering the case of abelian groups of

even order. To this aim we will use the preceding results and notations,
with the assumption that G is the trivial group, i.e. that G = H.

It follows by the paper [17] of Leon McCulloh that Rt(k,G) is a group for
any finite abelian group G. However, this result does not yield an explicit
description of Rt(k,G), which is known only if the order of G is odd and
in a few other cases.

Theorem 4.1. Let k be a number field and let G = C(n1) × · · · × C(nr)
with ni+1|ni be an abelian group of odd order n. Then

Rt(k,G) =
∏
l|n
W (k, n1(l))

l−1
2

n
n1(l) .

Proof. This result was proved by Endo in his PhD thesis [9] (in a slightly
different form), but it is also a particular case of Theorem 3.19 of [7], using
also Lemma 2.3. �
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Further we will also use the following proposition proved by Endo.

Proposition 4.1. For any number field k

W (k, 2n) ⊆ Rt(k,C(2n)).

Proof. This is Proposition II.2.4 in [9]. �

The equality of Theorem 4.1 is not true in general for abelian groups of
even order. Nevertheless it is not difficult to prove one inclusion.

Proposition 4.2. Let k be a number field and let G = C(n1)×· · ·×C(nr)
with ni+1|ni be an abelian group of order n. Then

Rt(k,G) ⊆
∏
l|n
W (k, n1(l))

l−1
2

n
n1(l) .

Proof. Let K/k be a tamely ramified extension of number fields with Galois
group G. By Theorem 2.1 and by Lemma 2.1 there exist bep,l ∈ Z such that

d(K/k) =
∏
ep 6=1

p
(ep−1) n

ep =
∏
ep 6=1

∏
l|ep

p
bep,l(l−1) n

ep(l) =
∏
l|n

∏
ep(l) 6=1

p
bep,l(l−1) n

ep(l) .

Since K/k is tame, the ramification index ep of a prime p in K/k divides
n1. Thus, defining

Jl =
∏

ep(l) 6=1
p
bep,l

n1(l)
ep(l) ,

we obtain
d(K/k) =

∏
l|n
J

(l−1) n
n1(l)

l

and by Lemma 2.13 of [7] and Lemma 2.3 the class of the ideal Jl belongs
to W (k, n1(l)). We easily conclude by Theorem 2.2. �

Proposition 4.3. Let l 6= 2 be a prime dividing n, then

W (k, n1(l))
l−1

2
n
n1(l) ⊆ Rt(k,G).

If 2|n then
W (k, n1(2))ηG

n
n1(2) ⊆ Rt(k,G)

and
W (k, n1(2))2 n

n1(2) ⊆ Rt(k,G)2.

We can choose the corresponding extensions so that they satisfy the addi-
tional conditions of Lemma 3.2.

Proof. This is a particular case of Proposition 3.2. �
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Lemma 4.1. If 2|n and n2(2) 6= 1 (in this case ηG = 1) then

W (k, n2(2))
n

2n2(2) ⊆ Rt(k,G).
We can choose the corresponding extensions so that they satisfy the addi-
tional conditions of Lemma 3.2.

Proof. This is a particular case of Proposition 3.4. �

Using this lemma we can easily prove a first interesting proposition,
which gives a characterization of realizable classes in a particular situation.

Proposition 4.4. Let k be a number field, let G = C(n1) × · · · × C(nr),
with ni+1|ni, be an abelian group of order n. If 2|n and n1(2) = n2(2), then

Rt(k,G) =
∏
l|n
W (k, n1(l))

l−1
2

n
n1(l)

and the group G is good.

Proof. One inclusion is Proposition 4.2.
The other inclusion follows by Proposition 4.3 and Lemma 4.1, using

Lemma 3.1.
Thus, in particular, the first and the fourth property of good groups are

verified. Now let K/k be a tamely ramified extension of number fields with
Galois group G. By Lemma 2.1 there exist bep,l ∈ Z such that

p
(ep−1) n

ep =
∏
l|ep

p
bep,l(l−1) n

ep(l) =
∏
l|ep

p
n1(l)
ep(l) bep,l(l−1) n

n1(l) .

By Lemma 2.13 of [7] and Lemma 2.3, the class of the ideal p
n1(l)
ep(l) is con-

tained in W (k, n1(l)). Since (l − 1) n
n1(l) is even for any prime l dividing

ep, we easily conclude that also the second and the third property of good
groups hold for G. �

Corollary 4.1. Under the assumptions of Proposition 4.4, Rt(k,G) is a
subgroup of the ideal class group of the number field k.

The above corollary follows also from [17], which is however much less
explicit than Proposition 4.4. The above description of Rt(k,G) generalizes
the result concerning the group G = C(2)× C(2) in [21].

Corollary 4.2. If n is odd then D2n is a good group, it is isomorphic to a
semidirect product of the form

C(n) oµ (C(2)× C(2))
and

Rt(k,D2n) = Cl(k)n ·
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
(l−1) 2n

o(τ) .
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Proof. It is easy to see that

D2n ∼= Dn × C(2) ∼= C(n) oµ (C(2)× C(2)),

for a certain action µ : C(2)×C(2)→ Aut(C(n)). By the above proposition
C(2)× C(2) is good and

Rt(k,C(2)× C(2)) = Cl(k).

Thus we conclude by Theorem 3.1 that D2n is good and we obtain the
desired expression for Rt(k,D2n). �

An analogous result for a dihedral group Dn, where n is an odd integer,
is given in Theorem 3.26 of [7].

Lemma 4.2. Let k be a number field and let G = C(n1) × · · · × C(nr),
with ni+1|ni, be an abelian group of even order n. Then

Rt(k,C(n1(2)))
n

n1(2) ⊆ Rt(k,G),

where n1(2) is the maximal power of 2 dividing n1.

Proof. By hypothesis G = C(n1(2))× G̃, where G̃ is an abelian group. Let
x ∈ Rt(k,C(n1(2))) and let L be a tame C(n1(2))-extension whose Steinitz
class is x. Because of Lemma 3.2 there exists a tame G̃-extension K of
k whose discriminant is prime to that of L over k, with trivial Steinitz
class and with no unramified subextensions. The composition of the two
extensions is a G-extension and its discriminant is

d(L/k)
n

n1(2) d(K/k)n1(2).

If the 2-Sylow subgroup of G is not cyclic then the Steinitz class is the class
of

d(KL/k)
1
2 = d(L/k)

n
2n1(2) d(K/k)n1(2)/2,

that is
(x2)

n
2n1(2) = x

n
n1(2) .

Now we have to consider the case in which the 2-Sylow subgroup of G is
cyclic. The subextension k(

√
α) of L of degree 2 over k is also a subextension

of KL. We have k(
√
α) = k

(√
α

n
n1(2)

)
(the exponent n

n1(2) is odd) and so
the Steinitz class of KL/k is the class of the square root of

d(KL/k)
α

n
n1(2)

=
(d(L/k)
α

) n
n1(2)

d(K/k)n1(2),

that is exactly x
n

n1(2) . �
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Lemma 4.3. Let k be a number field and G = C(n1) × · · · × C(nr) an
abelian group of even order n, with ni+1|ni and n2(2) 6= 1. Then

Rt(k,G) ⊆ Rt(k,C(n1(2)))
n

n1(2) ·W (k, n2(2))
n

2n2(2) ·
∏
l|n
l 6=2

W (k, n1(l))
l−1

2
n
n1(l) .

Proof. LetK/k be a G-Galois extension whose Steinitz class is x ∈ Rt(k,G)
and let L be a subextension of K/k whose Galois group over k is the first
component of the 2-Sylow subgroup C(n1(2)) × · · · × C(nr(2)) of G. By
Theorem 2.3 of [7] and Proposition II.3.3 in [19]

ep,K = ep,K(2)e′p,K = #([Up],K/k);
ep,L = ep,L(2) = #([Up], L/k) = #([Up],K/k)|L,

where ep,L and ep,K are the ramification indices of p in L andK respectively
and e′p,K is odd. By Theorem 2.1 and Theorem 2.2, x is the class of∏

p

p

ep,K−1
2

n
ep,K .

The class x1 of the ideal ∏
p

p

ep,L−1
2

n
ep,L

is the n/n1(2)-th power of the Steinitz class of L/k and thus

x1 ∈ Rt(k,C(n1(2)))
n

n1(2) .

Since ep,L|ep,K(2) and 2ep,K(2)|n we can define x2 as the class of∏
p

p

(
ep,K (2)
ep,L

−1
)

n
2ep,K (2) =

∏
p

p

(
ep,K (2)
ep,L

−1
)
n2(2)
ep,K (2)

n
2n2(2) .

The only primes for which we obtain a nontrivial contribution are those for
which ep,L < ep,K(2) and for those we must have ep,K(2)|n2(2) (since ep,K(2)
must then be the order of a cyclic subgroup of C(n2(2))× · · · × C(nr(2)))
and thus, recalling Lemma 2.13 of [7] and Lemma 2.3,

x2 ∈W (k, n2(2))
n

2n2(2) .

Let x3 be the class of

∏
p

p

e′
p,K
−1

2
n
ep,K =

∏
p

p
ap

e′
p,K
−1

2
n
e′
p,K

∏
p

p
bp
e′
p,K
−1

2
n

ep,K (2) ,

where ap and bp are integers such that
n

ep,K
= ap

n

e′p,K
+ bp

n

ep,K(2)
.
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By Lemma 2.1 there exist bp,l ∈ Z such that

∏
p

p
ap

e′
p,K
−1

2
n
e′
p,K =

∏
l|n
l 6=2

∏
p

p
bp,l

n1(l)
e′
p,K

(l)
l−1

2
n
n1(l)

and thus by Lemma 2.13 of [7] and Lemma 2.3 the class of this ideal is in∏
l|n
l 6=2

W (k, n1(l))
l−1

2
n
n1(l) .

By the same lemmas the class of

∏
p

p
bp
e′
p,K
−1

2
n

ep,K (2)

is in
W (k, n1(2))

n
n1(2) ,

which is contained in
Rt(k,C(n1(2)))

n
n1(2)

by Proposition 4.1. Hence

x3 ∈
∏
l|n
l 6=2

W (k, n1(l))
l−1

2
n
n1(l) Rt(k,C(n1(2)))

n
n1(2) .

By an easy calculation

ep,K − 1
2

n

ep,K
= ep,L − 1

2
n

ep,L
+
(
ep,K(2)
ep,L

− 1
)

n

2ep,K(2)
+
e′p,K − 1

2
n

ep,K

and we conclude that x = x1x2x3, obtaining the desired inclusion. �

Theorem 4.2. Let k be a number field, let G = C(n1)× · · · ×C(nr), with
ni+1|ni, be an abelian group of order n. If 2|n and n2(2) 6= 1 then

Rt(k,G) = Rt(k,C(n1(2)))
n

n1(2) ·W (k, n2(2))
n

2n2(2) ·
∏
l|n
l 6=2

W (k, n1(l))
l−1

2
n
n1(l) .

Proof. ⊆ This is Lemma 4.3.
⊇ This follows by Proposition 4.3, by Lemma 4.1 and by Lemma 4.2,

using Lemma 3.1.
�

Remark. The only unknown term in the expression for Rt(k,G) in the
above theorem is Rt(k,C(n1(2))). But we really need to determine only
its square, because it appears with an even exponent. This simplifies the



626 Alessandro Cobbe

problem, because this allows us to consider directly the discriminants of
the extensions.

In the second part of the section we consider the case in which the 2-
Sylow subgroup of G is cyclic, i.e. 2|n and n2(2) = 1.

Lemma 4.4. If the 2-Sylow subgroup of G is cyclic, i.e. 2|n and n2(2) = 1,
then

Rt(k,G) ⊆ Rt(k,C(n1(2)))
n

n1(2) ·
∏
l|n
l 6=2

W (k, n1(l))
l−1

2
n
n1(l) .

Proof. LetK/k be a G-Galois extension whose Steinitz class is x ∈ Rt(k,G)
and let L be the subextension of K/k whose Galois group over k is the 2-
Sylow subgroup C(n1(2)) of G. By Theorem 2.3 of [7] and Proposition II.3.3
in [19]

ep,K = ep,K(2)e′p,K = #([Up],K/k);
ep,L = ep,L(2) = #([Up], L/k) = #([Up],K/k)|L,

where ep,L and ep,K are the ramification indices of p in L andK respectively,
e′p,K is odd and ep,K(2) = ep,L(2). Let α ∈ k be such that k ( k(

√
α) ⊆ L.

Since k(
√
α) = k

(√
αn/n1(2)

)
, by Theorem 2.1 and Theorem 2.2, x is the

class of ∏p p
(ep,K−1) n

ep,K

α
n

n1(2)


1
2

.

As in the proof of Lemma 4.3 we can define3

x1 ∈ Rt(k,C(n1(2)))
n

n1(2) ·
∏
l|n
l 6=2

W (k, n1(l))
l−1

2
n
n1(l) .

as the class of the ideal ∏
p

p

e′
p,K
−1

2
n
ep,K .

By Theorem 2.1 and Theorem 2.2,∏p p
(ep,L−1)n1(2)

ep,L

α


n

2n1(2)

is an ideal, whose class x2 is the n/n1(2)-th power of the Steinitz class of
L/k. Thus

x2 ∈ Rt(k,C(n1(2)))
n

n1(2) .

3The analogous element in Lemma 4.3 was called x3.
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By an easy calculation∏p p
(ep,K−1) n

ep,K

α
n

n1(2)


1
2

=
∏
p

p

e′
p,K
−1

2
n
ep,K

∏p p
(ep,L−1)n1(2)

ep,L

α


n

2n1(2)

and we conclude that x = x1x2, from which we obtain the desired inclusion.
�

Theorem 4.3. Let k be a number field, let G = C(n1)× · · · ×C(nr), with
ni+1|ni, be an abelian group of order n. If 2|n and n2(2) = 1 then

Rt(k,G) = Rt(k,C(n1(2)))
n

n1(2)
∏
l|n
l 6=2

W (k, n1(l))
l−1

2
n
n1(l) .

Proof. ⊆ This is Lemma 4.4.
⊇ This follows by Lemma 3.1, Proposition 4.3 and Lemma 4.2.

�

Thus in any case we reduce the study of the realizable Steinitz classes
for abelian groups to that of 2-power order cyclic groups. As a consequence
of our results we also prove the following corollary.

Corollary 4.3. Let k be a number field, let G be an abelian group of order
n and let G(l) be its l-Sylow subgroup for any prime l|n. Then

Rt(k,G) =
∏
l|n

Rt(k,G(l))
n
n(l) .

Proof. This is immediate by Theorem 4.1, Theorem 4.2 and Theorem 4.3.
�

In [7] we prove a similar result concerning a relation between the realiz-
able classes for two groups and for their direct product, in a quite general
situation, which however does not include abelian groups of even order.
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