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Perfect powers in the summatory function of the
power tower

par Florian LUCA et Diego MARQUES

Résumé. Soit (an)n≥1 la suite donnée par a1 = 1 et an = nan−1

pour n ≥ 2. Dans cet article, on montre que la seule solution de
l’équation

a1 + · · ·+ an = ml

avec des entiers positifs l > 1, m et n est m = n = 1.

Abstract. Let (an)n≥1 be the sequence given by a1 = 1 and
an = nan−1 for n ≥ 2. In this paper, we show that the only
solution of the equation

a1 + · · ·+ an = ml

is in positive integers l > 1, m and n is m = n = 1.

1. Introduction
Let (an)n≥1 be the tower given by a1 = 1 and an = nan−1 for n ≥ 2. This

is sometimes referred to as the exponential factorial sequence and appears
in Sloane’s [7] as A049384. Sondow [8] and [9] showed that the number∑

n≥1
1/an

is Liouville; hence, transcendental.
Here, we prove the following result:

Theorem 1.1. The only solution of the equation
a1 + · · ·+ an = ml

is in positive integers l > 1, m and n is m = n = 1.

Before proceeding to the proof of Theorem 1.1, let us describe in a few
words the method of proof. Observe that an = nan−1 is a perfect power of
huge exponent. Moreover,

ml − an = an−1 + · · ·+ a1
and the right hand side is logarithmically small compared to the order of
magnitude of the two terms of the difference from the left hand side. This
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makes it possible to apply classical techniques from the theory of effec-
tive resolution of exponential Diophantine equations, like linear forms both
in archimedian and non-archimendian logarithms. While these techniques
have the draw back that the resulting bounds are huge (doubly or triply
exponential), the tower exponential growth of our sequence works to our
advantage and, in fact, as we will see, the “huge bound” is already surpassed
by the time we reached n = 9.

Now, let’s proceed to the details.

2. The proof
Assume that n > 1. We shall assume of course that the exponent l is

prime. Observe that if we put bn :=
∑

1≤k≤n an, then

b1 = 1,
b2 = 3,
b3 = 22 × 3,
b4 = 22 × 65539,
b5 ≡ 17 × 5 (mod 172),
b6 ≡ 7 × 2 (mod 72),
b7 ≡ 2 (mod 4),
b8 ≡ 2 (mod 4).

In particular, n ≥ 9 in our equation.
Observe next that an = nan−1 > ean−1 for n ≥ 3, so that an−1 < log an.

Furthermore, an ≥ 2an−1 holds for all n ≥ 2. Thus, for n ≥ 3, we have that

(2.1) 0 < ml − nan−1 ≤ an−1

(
1 + 1

2
+ 1

22 + · · ·
)
< 2an−1 < 2 log an.

The above relation (2.1) will be very important throughout the rest of the
proof.

2.1. The case l = 2. If n is odd, then an−1 is even, so an is a perfect
square. Thus, estimate (2.1) with l = 2 leads to

0 < m−
√
an <

2 log an√
an
< 1,

so we get a contradiction. The same contradiction is obtained when n is
even and a perfect square, since then an is also a perfect square.

From now on, we assume that n is even and not a perfect square. Thus,
n ≥ 10. We then have that

0 < m−
√
n× n(an−1−1)/2 <

2 log an
nan−1/2

= 2an−1 logn
nan−1/2

.
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Since n ≥ 10, the right hand side above is < 1, so n is a not a perfect
square. Now ∣∣∣∣√n− m

n(an−1−1)/2

∣∣∣∣ < 2an−1 logn
nan−1−0.5 .

A result of Worley [11] says that if α is real irrational and∣∣∣∣α− pq
∣∣∣∣ < κq2 ,

then there exist integers k, r, s with |r| < 2κ, |s| < 2κ and p = rpk +
spk−1, q = rqk+sqk−1, where pk/qk is the kth convergent of α. Furthermore,
k is chosen in such a way as to be maximal subject to the condition that
qk ≤ q. So,

n(an−1−1)/2 = rqk + sqk−1,

where

(2.2) max{|r|, |s|} < 4an−1 logn√
n

,

and k is the largest positive integer such that qk < n(an−1−1)/2. In particular,
since

qk ≥ Fk ≥
(

1 +
√

5
2

)k−2

,

where Fk is the kth Fibonacci number, we have that

(2.3) k ≤ (an−1 − 1) logn
2 log

(
1+
√

5
2

) + 2 < 2an−1 logn.

We now look at the sequence (qk)k≥0. Let h be the minimal even period
of the continued fraction of

√
n. For every fixed ` ∈ {0, . . . , h − 1}, the

sequence (qhλ+`)λ≥0 is binary recurrent. Its two initial values are q` ≤ qh
and qh+` ≤ q2h. Its characteristic equation has roots

ζ = ph +
√
nqh and ζ−1 = ph −

√
nqh.

Here, (X,Y ) := (ph, qh) is the minimal solution of the Pell equation X2 −
nY 2 = 1. Then we can write

qhλ+` = c1ζλ + c2ζ−λ,
where

q` = c1 + c2 and qh+` = c1ζ + c2ζ−1.

Solving for c1 and c2, we get that

(2.4) c1 = qh+` − ζ
−1q`

ζ − ζ−1 , c2 = ζq` − qh+`
ζ − ζ−1 .

Now write k = hλ+ ` for some ` ∈ {1, . . . , h}. Then
q = (rc1 + sd1)ζλ + (rc2 + sd2)ζ−λ,
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where c1, c2 are given by (2.4) and d1, d2 are given by the same formulae
as c1, c2 except that with ` replaced by `− 1. Thus, we have arrived at the
relation
n(an−1−1)/2 = α1ζ

λ + α2ζ
−λ, where αi = rci + sdi for i = 1, 2.

Since n is even, it follows that 2(an−1−1)/2 divides the left hand side above.
It remains to study the exponent of 2 on the right hand side above. Observe
first that βi := (ζ−ζ−1)αi is an algebraic integer for i = 1, 2. Let β1 = 2tγ1,
where t ≥ 0 and γ1 is not a multiple of 2, meaning that γ1/2 is not an
algebraic integer. Then

t log 2 ≤ log(q2h + ζqh) < log(ζ2 + ζ2) = log(2ζ2),
giving that

t < 1 + 2 log(ζ)
log 2

.

For the above inequalities, we used the fact that

quh = ζ
u − ζ−u

2
√
n
< ζu with u = 1, 2.

We shall use the fact that
(2.5) ζ < e3

√
n logn

(see, for example, Theorem 13.5 on page 329 in [3]). Then,

(2.6) t < 1 + 6
√
n logn
log 2

< 9
√
n logn.

We then have that

(2.7) 2(an−1−1)/2−t divides γ1ζλ + γ2ζ−λ = −γ2ζ−λ
((−γ1
γ2

)
ζ2λ − 1

)
.

We now estimate the order at which 2 can appear in the expression

(2.8) Λ :=
(−γ1
γ2

)
ζ2λ − 1

via the following lower bound for linear forms in p-adic logarithms due to
Bugeaud and Laurent [1].

Let η1 and η2 be real algebraic numbers. Put K := Q[η1, η2] and let D
be the degree of K over Q. Let p be a prime ideal of OK, p be the rational
prime such that p | p, and let f be such that |OK/p| = pf . Assume that A1,
A2 are numbers such that

(2.9) logAi ≥ max
{
h(ηi),

f log p
D

}
,

where h(ηi) is the logarithmic height of the number ηi for i = 1, 2. Let

(2.10) Λ = ηb11 η
b2
2 − 1
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be nonzero, where b1 and b2 are nonzero integers. Put

(2.11) b′ = |b1|
D logA2

+ |b2|
D logA1

.

For an algebraic number η ∈ K, we write ordp(η) for the exponent with
which p appears in the prime factorization of the principal fractional ideal
generated by η in K. Then the result from [1] which we will use is the
following:

Lemma 2.1. With the previous notations and conventions and assuming
that η1 and η2 are multiplicatively independent, we have that

ordp(Λ) ≤ 24p(pf − 1)D5

f5(p− 1)(log p)4 max
{

log b′ + log log p+ 0.4, 10f log p
D

, 10
}2

× logA1 logA2.

Indeed, the above result is Corollary 1 in [1] except that in [1] the ex-
pression (D/f) appears with the exponent 4 whereas in our case it appears
with exponent 5. This is because the p-adic valuation in [1] is normalized,
whereas ours is the exponent of a prime ideal so it is not normalized. This
explains the extra factor of (D/f).

We take η1 = −γ1/γ2, η2 = ζ, b1 = 1, b2 = 2m. Then K = Q[
√
n] and

D = 2. We take p = 2 and p be some prime factor of 2 in OK. Clearly,
f ≤ 2, so that (pf − 1)/f5 ≤ 1. On the one hand, by estimates (2.6) and
(2.7), we have that

(2.12) ordp(Λ) ≥ an−1 − 1
2

− 9
√
n logn > an−1

4
.

In order to get an upper bound on ordp(Λ), we use Lemma 2.1 in the case
when η1 and η2 are multiplicatively independent. It remains to estimate
A1 and A2. The conjugate of γ1 is γ2 and they are both algebraic integers.
Thus, only one of γ1/γ2 and its conjugate γ2/γ1 exceeds 1 in absolute value.
Hence, assuming say that |γ1| ≥ |γ2| and using also the fact that |γ1γ2| ≥ 1,
we get that

h(η1) ≤ log |γ1/γ2|
2

≤ log |γ1| ≤ log ((|r|+ |s|)(qh+` + ζq`))

< log
(
2(|r|+ |s|)ζ2

)
.(2.13)

Now using estimates (2.2) and (2.5), we get that

(2.14) 2(|r|+ |s|)ζ2 < 16an−1 logn√
n

e6
√
n logn < 16an−1e

6
√
n logn,

since
√
n > logn for n ≥ 10. Thus, we can take

(2.15) logA1 = 2 log an−1 > log(16an−1) + 6
√
n logn.
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In the same way, we can take

logA2 = log an−1 > 1.5
√
n logn > log ζ

2
.

Observe that 2λ ≤ 2k < 4an−1 logn by estimate (2.3). Finally, we can take

b′ = 1
2

+ 4an−1 logn
logA1

<
an−1

2
.

Now Lemma 2.1 gives us that

(2.16) ordp(Λ) ≤ 24 · 2 · 25

(log 2)4 (log an−1)2 logA1 logA2.

Comparing the above bound (2.16) with (2.12), we get
an−1

4
< 7000(log an−1)2(2 log an−1)(log an−1),

so
an−1 < 56000(log an−1)4,

giving an−1 < 1011, which is false for n ≥ 10. So, there are no solutions
with n > 1 to the given equation when l = 2 in case when η1 and η2 are
multiplicatively independent.

It remains to deal with the easier case when η1 and η2 are multiplicatively
dependent. Note that ζ is either the generator of the torsion free part of the
group of units of OK, or ζ = ζ21 , where ζ1 > 1 is a generator of the torsion
free part of the group of units of OK and it has norm −1. To deal with both
cases at once, we shall write ζ = ζδ1 , where δ ∈ {1, 2}. Write γ1/γ2 = εζσ1 ,
where ε = ±1. To bound |σ|, we use the height calculation (2.13), (2.14)
and (2.15) to get that

2 log an−1 > h(η1) = |σ| log ζ1
2

> |σ|

 log
(

1+
√

5
2

)
2

 ,
giving |σ| < 9 log an−1. Observe that

Λ = −εζ2δλ+σ1 − 1 divides ζ4δλ+2σ
1 − 1 divides ζ4δλ+2σ − 1.

Applying the obvious inequality

ordp(Λ) ≤ ordp(ζf − 1) + 2 log(4δλ+ 2|σ|)
log p

,

with p = 2 and p a prime ideal dividing 2 in K, we get that

ordp(Λ) ≤ 1
log 2

(
log(|NK/Q(ζ3 − 1)|) + 2 log(8λ+ 2|σ|)

)
.

Here, NK/Q is the norm function from K to Q. Now

|NK/Q(ζ3 − 1)| = |(ζ3 − 1)(ζ−3 − 1)| < ζ3 + ζ−3 + 2 < ζ4,



Perfect powers in the summatory function of the power tower 709

so, by estimate (2.5), we have

log(|NK/Q(ζ3 − 1)|) < 4 log ζ < 12
√
n logn < an−1.

Since
8λ+ 2|σ| ≤ 16an−1 logn+ 18 log an−1 < a

2
n−1,

we get that

ordp(Λ) < 5
log 2

log an−1,

which together with the inequality (2.12) gives

an−1 <
20

log 2
log an−1 < 30 log an−1,

yielding an−1 < 200, which is again false for n ≥ 10.

2.2. Bounding l. Relation (2.1) gives

(2.17) 0 <
∣∣∣mln−an−1 − 1

∣∣∣ < 2an−1
nan−1

<
1

n(an−1−1)/2 ,

where we used the obvious inequalities nan−1/2 > 2an−1 > 2an−1 and logn <
n1/2 for n ≥ 9. In order to bound the left hand side of inequality (2.17), we
use the following result of Laurent, Mignotte and Nesterenko [5].

Lemma 2.2. Assume that η1 and η2 are real, positive and multiplicatively
independent algebraic numbers and let Λ be given by (2.10). Then, assuming
that Λ 6= 0, we have

log |Λ| ≥ −24.34D4
(

max
{

log b′ + 0.14, 21
D
,
1
2

})2
logA1 logA2,

where A1, A2 satisfy inequalities (2.9) (without the term f log p/D to the
right), and b′ is given by (2.11).

For us, we take η1 = m, η2 = n, b1 = l, b2 = −an−1 and we apply Lemma
2.2 above to bound the expression Λ appearing in the right hand side of
inequality (2.17). We first need to verify that η1 and η2 are multiplicatively
independent. Well, if they were not, then there exist positive integers ρ > 1,
a and b such that m = ρa and n = ρb. Thus,

ml − nan−1 = ρal − ρban−1 .

Since the above expression is positive, it follows that al > ban−1, therefore

ml − nan−1 ≥ ρban−1(ρ− 1) ≥ ρban−1 = nan−1 .

Comparing with estimate (2.1), we get

nan−1 < 2 log an = 2an−1 logn,
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which is of course false for n ≥ 9. Thus, η1 and η2 are multiplicatively
independent, so we can apply Lemma 2.2. We have D = 1 and we can take
logA1 = logm and logA2 = logn. Hence, we take

b′ = an−1
logm

+ l

logn
<

2l
logn
,

where the last inequality follows because ml > nan−1 . Lemma 2.2 tells us
that

log |Λ| ≥ −23.34
(
max{log b′ + 0.14, 21}

)2 logm logn.
Comparing this with inequality (2.17), we get

(2.18) an−1 − 1 ≤ 46.68
(
max{log b′ + 0.14, 21}

)2 logm.
Now clearly

l logm = logml < log(an + 2 log an) = log an + log
(

1 + 2 log an
an

)
< an−1 logn+ 1,

so

(2.19) logm < an−1 logn+ 1
l

<
(an−1 + 1) logn

l
.

Inserting bound (2.19) into bound (2.18), we get
l

logn
< 46.68

(
an−1 + 1
an−1 − 1

) (
max{log b′ + 0.14, 21}

)2
< 46.68

(
max{log b′ + 0.14, 21}

)2
.

If the maximum on the right above is 21, then l < 21000 logn. Otherwise,
we get that

l

logn
< 46.68

(
log

(
l

logn

)
+ log 2 + 0.14

)2
,

giving l < 4000 logn. Thus, in both cases, the inequality
(2.20) l < 21000 logn
holds.

2.3. The case l ≥ 3. Here, we assume that l ≥ 3. Recall that we have
already made the convention that l is prime. Relation (2.1) tells us that

0 < m− nan−1/l <
2 log an
n(l−1)an−1/l

≤ 2an−1
n2an−1/3

.

The right hand side above is obviously < 1 for n ≥ 9. This shows in
particular that an−1 is not a multiple of l and that n is not an lth power
either. Let us put an−1 = bl + r, where r ∈ {1, . . . , l − 1}. We work in
the field K := Q[n1/l, ζl], where ζl = e2πi/l is a primitive lth root of unity.
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This is a Kummerian extension of degree l(l − 1) of Q. We will need some
statistics on the field K.

We put d = [K : Q] for the degree of K over Q and note that
(2.21) d = l(l − 1).
We write ∆K for the discriminant of K. Let L1 := Q[n1/l] and L2 := Q[ζl].
The minimal polynomial of n1/l over Z is xl − n, therefore

|∆L1 | ≤

∣∣∣∣∣∣
∏

0≤i<j≤l−1
(n1/lζil − n1/lζjl )

2

∣∣∣∣∣∣ = n(l−1)ll−2 < (nl)l−1.

The discriminant of L2 satisfies |∆L2 | = ll−2. Since K is the compositum of
L1 and L2, we get that

|∆K| ≤ |∆L1 |[L2:Q]|∆L2 |[L1:Q] ≤ ((nl)l−1)l−1(ll−2)l

= (nl)l2 ll2 = (nl2)l2 .(2.22)
We next put RK for the regulator of K. We recall a result of Landau [4].

Lemma 2.3. Let K be a number field of degree d = r + 2s, where r and
2s are the number of real and complex embeddings of K, respectively. Let
w be the number of roots of unity in K. Let L be a real number such that
|∆K| ≤ L. Let

a = 2−rπ−d/2
√
L,

and define the function fK(L, σ) given by
fK(L, σ) := 2−rwaσΓ(σ/2)rΓ(σ)sσd+1(σ − 1)1−d.

Then RK ≤ min{fK(L, 2− t/1000) : t = 0, 1, . . . , 999}.

In the above Lemma 2.3, we put t = 0 (so, σ = 2), and L = |
√

∆K| and
get

RK ≤ 2−rwa22d+1 ≤ 2−rw(2−2sπ−d|∆K|)2d+1 = 2w|∆K|
πd
.

Since l ≥ 3, it follows that d ≥ 6. Observe that since the group of roots of
unity in K is cyclic, it follows that w is at most the largest positive integer
satisfying φ(w) ≤ d, where φ is the Euler function. Since φ(p) ≥ √p holds
for p = 4 and when p is an odd prime, it follows that φ(w) ≥

√
w/2. Thus,

w ≤ 2d2, so that
2w
πd
≤ 4d2

πd
< 1 for d ≥ 6.

We thus conclude that
(2.23) RK < |∆K| < (nl2)l2 .
Next, we go back to equation (2.1), write it as

ml − nan−1 = K, where 0 < K < 2an−1,
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and decompose the left hand side of it in K as
l−1∏
j=0

(m− nr/ln(an−1−r)/lζjl ) = K.

Let k1 = m− nr/ln(an−1−r)/l. Its norm in K is

NK/Q(k1) = NL1/Q(k1)[L2:Q] = K l−1 < (2an−1)l−1.

Next we shall need a result of Poulakis (see Lemma 1 in [6]). In what follows,
we use the standard notation that for an algebraic number γ of degree d
we write γ(1), . . . , γ(d) for its conjugates.

Lemma 2.4. Let K be an algebraic number field of degree d and α and
algebraic integer in K. Then there exists an algebraic integer β in K and
unit ε in OK such that

α = βε,
where

max{|β(j)| : j = 1, . . . , d} ≤ |NK/Q(α)|1/d exp(c1(d)RK),

where c1(d) = d(6d3/ log d)d.

Since 6 ≤ d < l2 and the function t 7→ t3/ log t is increasing for t ≥ 3, it
follows, using also (2.23), that we have the bound

c1(d)RK < exp
(
l2 log(3l6/ log l) + (2l2 + 2) log l + l2 logn

)
.

We now use also the fact that l < 21000 logn above (see (2.20)) we get a
function of n as an upper bound on the expression c1(d)RK. With Maple,
we checked that this is at most exp(2 · 1010(logn)3) for all n ≥ 3. Thus,

(2.24) c1(d)RK < exp(2 · 1010(logn)3).
In conclusion, there exists a number β ∈ OK and a unit ε in OK such that

(2.25) m− nr/ln(an−1−r)/l = βε,
and
(2.26) max{|β(j)| : j = 1, . . . , d} ≤ (2an−1)1/l exp(exp(2 · 1010(logn)3)).
Let us simplify this bound. For this, we show that

(2.27) (2an−1)1/2 > exp(exp(2 · 1013(logn)4)).
Indeed, since an−1 = (n− 1)an−2 ≥ e2an−2 , it suffices that

an−2 > exp(2 · 1010(logn)3),
and since an−2 > e

an−3 , it suffices that

an−3 > 2 · 1010(logn)3.
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Since an−3 = (n−3)an−4 and an−4 ≥ a5 > 20, it follows that it suffices that

(n− 3)20 > 2 · 1010(logn)3,

and this last inequality is true for all n > 6. From estimates (2.26) and
(2.27), we get that

(2.28) max{|β(j)| : j = 1, . . . , d} ≤ (2an−1)1/3+1/2 < an−1.

Next we discuss the units of K. Let r1 := r + s − 1 be the rank of the
free part of the group of units of K. We need the following result which is
Lemma 9.6 in [2].

Lemma 2.5. There exists in K a fundamental system ζ1, . . . , ζr1 of units
such that

r1∏
i=1
h(εi) ≤ 21−r1r1!2d−r1RK,

and such that the absolute values of the entries of the inverse matrix of
(log |ε(j)i |)1≤i,j≤r1 do not exceed r1!22−r1(log(3d))3.

Here is how we apply this lemma. We go back to (2.25) and write ε =
ζ
∏r1
i=1 ε

mi
i , where ζ is some root of unity and {ε1, . . . , εr1} is a system of

units as in Lemma 2.5. Taking the j’th conjugate, and absolute values, we
get

(2.29)
|m− nr/ln(an−1r)/lζ

(j)
l |

|β(j)|
=
r1∏
i=1
|ε(j)i |

mi .

Note that since 0 < m−nr/ln(an−1−r)/l, it follows that the complex numbers

m− nr/ln(an−1−r)/lζ
(j)
l

have real part at most 2m in absolute value and imaginary part at most
m in absolute value, so themselves have absolute value at most

√
5m. Fur-

thermore, from

1 < NK/Q(β) =
d∏
i=1
|β(i)| = |β(j)|

∏
1≤i≤d
i6=j

|β(i)| ≤ |β(j)|al2−1
n−1 ,

it follows that

(2.30) 1
|β(j)|

≤ al2−1
n−1

holds for all j = 1, . . . , r. Thus, putting

xj :=
m− nr/ln(an−1−r)/lζ

(j)
l

β(j) ,
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we get that

(2.31) |xj | <
√

5mal2−1
n−1 < 2

√
5a1/ln al

2−1
n−1 < a

l2
n .

Now, writing x = (log |x1|, . . . , log |xr1 |)T , m = (m1, . . . ,mr1) and M for
the inverse matrix of (log |ε(j)i |)1≤i,j≤r1 , we see that by taking logarithms
in formulae (2.29) and solving for m1, . . . ,mr1 , we get that

Mx = m.
Combining this with Lemma 2.5, we get immediately that

max{|mj | : j = 1, . . . , r1} ≤ l2 (log an) (r1 − 1)!(r1!22−r1(log(3d))3)r1−1.

The factor l2 log an = log(al2n ) on the right hand side above is a bound on
log |xj | according to inequality (2.31). The remaining factor of the left is a
bound on the absolute value of any (r1 − 1)× (r1 − 1) minor of the matrix
M according to the last part of Lemma 2.5. The function t 7→ t!2/2t is
increasing for integer t ≥ 2, so

r1!2

2−r1
<

(l2)!
2l2
< l2l

22−l2 .

Since the function t 7→ (log(3t))3/2t is increasing for t ≥ 5, and l2 ≥ 9 > 5,
we get that

r1!22−r1(log(3d))3 < l2l
2
.

Thus,

(r1 − 1)!(r1!22−r1(log(3d))3)r1−1 < l2l
2(l2l2)r1−1 = l2l2r1 < l2l4 .

Hence,
max{|mj | : j = 1, . . . , r1} ≤ an−1(logn)l2l2+4.

To keep things easy, we show that an−1 > (logn)l2l2+4. Since an−1 >
(n− 1)an−2 > ean−2 , it suffices to show that

an−2 > (2l2 + 4) log l + log logn.
Now an−2 = (n − 2)an−3 and an−3 > 20, so it suffices to show in light of
(2.20) that

(n− 2)20 > (2(21000 logn)2 + 4) log(21000 logn) + log logn,
and the above inequality is true for all n > 6. Thus, we record that
(2.32) max{|mj | : j = 1, . . . , r1} < a2n−1.

We now take j1 and j2 to be two different conjugations, apply them to
equation (2.25) and subtract the resulting equations getting

nr/ln(an−1−r)/l(ζ(j1)
l − ζ(j2)

l ) = ζ(j1)β(j1)
r1∏
i=1

(ε(j1)
i )mi − ζ(j2)β(j2)

r1∏
i=1

(ε(j2)
i )mi .
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Now let p be some prime ideal of K dividing n. We look at the p-adic
valuation of the above formula. In the left hand side, it is at least

an−1 − r
l
.

In the right hand side, it is
(2.33)

ordp

(
ζ(j2)β(j2)

r∏
i=1

(ε(j2)
i )mi

)
+ordp

(ζ(j1)

ζ(j2)

)(
β(j1)

β(j2)

)
r∏
i=1

(
ε

(j1)
i

ε
(j2)
i

)mi
− 1

 .
Since ζ and ε1, . . . , εr1 are units, it follows that the first valuation above is
ordp(β(j2)). Assume this is c. Taking norms in K, we get that pc ≤ NK(k1) <
(2an−1)l, where p is the integer prime such that p divides p. Thus,

c = ordp(β(j2)) ≤ l log(2an−1)
log p

≤ l log(2an−1)
log 2

< 2l log an−1.

For the second valuation appearing in (2.33), we use the following linear
form in p-adic logarithms due to Kun Rui Yu [12].

Lemma 2.6. Let α1, . . . , αk be algebraic numbers contained in a field K of
degree d and b1, . . . , bk be integers such that Λ := αb11 · · ·α

bk
k − 1 is nonzero.

Let
B = max{|b1|, . . . , |bk|, 3}.

Let p be a prime ideal in OK sitting above an integer prime p. Let A1, . . . , Ak
be real numbers such that

(2.34) logAi ≥ max{h(αi), log p}, for i = 1, . . . , k.

Then
(2.35)

ordp(Λ) ≤ 12
(6(k + 1)√

log p

)2(k+1)
pd log(e5kd) logA1 logA2 · · · logAk logB.

We take k := r1 + 2,

α1 = ζ
(j1)

ζ(j2) , α2 = β
(j1)

β(j2) , αi =
ε

(j1)
i−2

ε
(j2)
i−2

i = 3, . . . , k.

We take b1 = b2 = 1 and bi = mi−2 for i = 3, . . . , k. Observe that by (2.32)
it follows that we can take B = a2n−1. Clearly p ≤ n. Observe that α1 is a
root of 1 so it has a zero logarithmic height, and we can take logA1 = logn.
As for α2, any conjugate of it has absolute value, by estimates (2.28) and
(2.30), at most

|α(s)
2 | < a

l2
n−1,
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therefore h(α2) < l2 log an−1. So, we take logA2 = l2 log an−1 and observe
that it fulfills the condition (2.34) for i = 2. Finally, note that

|α(s)
i | = |ε

(s1)
i−2 |

2 ∏
j 6=s1,s2

|ε(j)i−2| for i = 3, . . . , k

for some two conjugations s1 and s2 depending on s, so it follows that
h(αi) ≤ dh(εi−2) for i = 3, . . . , k.

We claim that we can take logAi = L5h(εi−2), where L = 21000 logn. Note
that with this choice logAi ≥ d3h(αi) > h(αi). Furthermore, by a result of
Voutier [10], we have that

d2h(εi−2) ≥ d(log log d)3

4(log d)2 ,

and the function appearing on the right is > 0.1 when d = l(l − 1) ≥ 6.
Thus,

logAi > L(d2h(εi−2)) > 0.1L > logn,
so condition (2.34) is fulfilled for i = 3, . . . , k. Note that k = r1 + 2 ≤
l(l− 1) + 2 ≤ l2 − 1. Finally, it is clear that our form Λ is nonzero. Lemma
2.6 now tells us that

ordp(Λ) < 12
(

6l2√
log 2

)2l2

n2l2 log(e5l4)L5l2 log(a2n−1)(logn)(l2 log an−1)

×
r1∏
i=1
h(εi).

The last product is estimated by Lemma 2.5 as
r1∏
i=1
h(εi) < r1!2RK < ((l2)!)2RK < (l2)2l2RK < (nl6)l2 ,

where for the last inequality we used inequality (2.23). Using the fact that
l < L and collecting alike terms we get

ordp(Λ) < 24(49n3L15)L2(logn)(log(e5L4))L2(log an−1)2.

Thus, comparing the p-adic valuations we get the master inequality
an−1 − L
L

≤ 2L log an−1 + 24(49n3L15)L2(logn)(log(e5L4))L2(log an−1)2,

which leads to
an−1 < 26(49n3L15)L2(logn)(log(e5L4))L2(log an−1)2.

Since an−1 is very large, it follows that √an−1 > (log an−1)2, yielding

an−1 < 262(49n3L15)2L2(logn)2 log(e5L4)2L4.
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To see why this wrong observe the following easy estimates:
n5 ≥ 95 > 21000 and n > logn.

Thus, L < n6. Also, 49 < n2 and
log(e5L4) < 5 + 4 logL < 5 + 24 logn < 29n < n3.

Thus,
an−1 < n

4 · (n2+3+6·15)2L2
n2+6+4·6 = n190L2+36,

and since an−1 = (n− 1)an−2 , we get that

an−2 < (190L2+36) logn
log(n− 1)

< 201L2+40 < 201n12+40 < 202n12 < n15,

and since an−2 ≥ (n− 2)an−3 , we get that

an−3 ≤ 15 logn
log(n− 2)

< 17,

which is of course false for n ≥ 9. This finishes the proof of the theorem.
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