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Pólya fields, Pólya groups and Pólya extensions:
a question of capitulation

par Amandine LERICHE

Résumé. Un corps de nombres K, d’anneau des entiers OK , est
dit de Pólya lorsque la OK-algèbre des polynômes à valeurs en-
tières sur OK possède une base régulière. Ces corps sont carac-
térisés par le fait que les idéaux caractéristiques sont principaux.
Par analogie avec le problème de plongement dans un corps de
nombres de classes égal à un, lorsque K n’est pas un corps de
Pólya, on tente de le plonger dans un corps qui est de Pólya. Dans
cet article nous étudions deux notions qui peuvent être considérées
comme des mesures de l’obstruction pour un corps au fait d’être
de Pólya : les extensions de Pólya L/K où les idéaux caractéris-
tiques de K étendus à L deviennent principaux, et le groupe de
Pólya qui est un sous-groupe du groupe de classes engendré par
les idéaux caractéristiques.

Abstract. A number fieldK, with ring of integers OK , is said to
be a Pólya field when theOK-algebra formed by the integer-valued
polynomials on OK admits a regular basis. It is known that such
fields are characterized by the fact that some characteristic ideals
are principal. Analogously to the classical embedding problem in
a number field with class number one, when K is not a Pólya
field, we are interested in the embedding of K in a Pólya field.
We study here two notions which can be considered as measures
of the obstruction for K to be a Pólya field: the Pólya extensions
L/K where the characteristic ideals of K extended to L become
principal, and the Pólya group which is the subgroup of the class
group generated by the classes of the characteristic ideals.

1. The regular bases problem: Pólya fields and Pólya extensions
LetK be an algebraic number field and denote by OK its ring of integers.

We first recall two notions, the integer-valued polynomials and the regular
basis, which were introduced by Pólya:

Definition 1.1. [12] An integer-valued polynomial on OK is a polynomial
P ∈ K [X] such that P (OK) ⊆ OK .
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Notations. The set formed by the integer-valued polynomials on OK is an
OK-algebra denoted by:

Int (OK) = {P ∈ K [X] |P (OK) ⊆ OK} .

For each n ∈ N, let In (OK) be the subset of K formed by 0 and the
leading coefficients of the polynomials in Int (OK) with degree n. This is
a fractional ideal of OK called the characteristic ideal of index n of OK
[5, Prop I.3.I].

Recall that Int (OK) is a free OK-module [5, Rem. II.3.7]: there is an
OK-module isomorphism from Int (OK) onto ⊕∞n=0In (OK), consequently,
Int (OK) is a non-finitely projective module; according to [3], it is a free
module. But a basis may be difficult to describe. Thus, Pólya tried to
characterize the fields K such that Int (OK) admits a “regular basis”:

Definition 1.2. [12] A basis (fn)n∈N of the OK-module Int (OK) is said
to be a regular basis if, for each n, the polynomial fn has degree n.

There exist fieldsK such that Int (OK) has no regular basis and Zantema
introduced the following definition:

Definition 1.3. [15] A number field K is said to be a Pólya field if the
OK-module Int (OK) admits a regular basis.

Recall that Int (OK) has a regular basis if and only if the characteristic
ideals In (OK) are principal and we obtain a regular basis of Int (OK) when
we choose, for each n, a polynomial fn of Int (OK) with degree n whose
leading coefficient generates the ideal In (OK) [5, II.1.4]. In particular, if
OK is a principal ideal domain, Int (OK) has a regular basis. However,
there exist rings of integers OK which are not principal ideal domain but
such that Int (OK) has a regular basis. For instance, that is the case for
K = Q[

√
−23]. Its class number is 3 but it is a Pólya field [5, II.4.5]. The

hypothesis “K is a Pólya field” is weaker than the hypothesis “OK is a
principal ideal domain”.

We know the classical embedding problem:
Is every number field contained in a field with class number one?

In 1964, Golod and Schafarevitch [9] gave a negative answer to this ques-
tion. But, if we reformulate this question with a weaker hypothesis, here
comes the natural question:

Is every number field contained in a Pólya field?
The counter-example given by Golod and Schafarevitch for the classical

embedding problem (an imaginary quadratic field K = Q(
√
−d) with d =

2×3×5×7×11×13) is not a counter-example for the embedding problem
in a Pólya field since every quadratic field is contained in a cyclotomic field
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which is always a Pólya field (see example 1). For a field K the embedding
problem in a Pólya field L is equivalent to the following question:

Is there a field L containing K such that all the ideals In (OL) are
principal?

Recall that the Hilbert class field of an algebraic number field K is the
maximal unramified abelian extension of K. We denote it by HK . We know
that the Galois group of the extension HK/K is isomorphic to Cl(K), the
class group of K. Consequently, the degre [HK : K] is equal to the class
number hK of K. We also know that the ideals of OK become principal by
extension to OHK (the capitulation’s theorem). In other words, for every
ideal I of OK , IOHK is principal. But, the ring OHK itself is not necessarily
a principal ideal domain. By analogy, we introduce the following notion:

Definition 1.4. An extension L/K is said to be a Pólya extension if all
the characteristic ideals In (OK) extended to OL are principal.

Remarks. (1) If K is a Pólya field, then every extension L/K is a
Pólya extension.

(2) If L/K is a Pólya extension, then every extensionM of L is a Pólya
extension of K.

(3) For every number field K, HK/K is a Pólya extension.

The minimal degree of a Pólya extension of the fieldK could be a measure
of the gap for K with being a Pólya field.

In order to justify the terminology of Pólya extension, we link its defini-
tion with integer-valued polynomials. First, we extend the previous notions:

Definitions 1.1. Let L/K be a finite extension of K.
(1) The set of integer-valued polynomials on OK relatively to OL is:

Int (OK ,OL) = {P ∈ L [X] |P (OK) ⊆ OL} .

(2) The characteristic ideal of index n of OK relatively to OL is the set
In (OK ,OL) formed by the leading coefficients of the polynomials
in Int (OK ,OL) with degree n.

Proposition 1.1. The OL-module generated by Int (OK) is equal to the
set Int (OK ,OL). In particular,

In (OK)OL = In (OK ,OL) .

Proof. As Int (OK) ⊆ Int (OK ,OL), the OL-module generated by Int (OK)
is contained in Int (OK ,OL). We will prove the inverse containment. In
order to simplify, we note A = OK and B = OL. Let f ∈ Int(A,B) with
degree d. Let m be a maximal ideal of A. As Am is a discrete valuation
domain with a finite residue field, there exists a sequence (an)n∈N in A
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such that the following polynomials (fn)n∈N form a regular basis of the
Am-module Int(Am) [5, Thm. II.2.7]:

fn(X) =
n−1∏
k=0

X − ak
an − ak

.

The sequence (fn)n∈N is especially a basis of the L-vector space L[X].
Consequently, there exist α0, . . . , αd ∈ L such that

f(X) =
d∑
k=0
αkfk(X).

As fk(aj) ∈ Am for 0 ≤ j, k ≤ d, fk(aj) = 0 for 0 ≤ j ≤ d, fk(ak) = 1,
f(aj) ∈ B for 0 ≤ j ≤ d, the d+ 1 coefficients αk satisfy a system of d+ 1
linear equations whose matrix is triangular, unimodular with coefficients
in Am and whose all the second members are in B. As a consequence, the
αk are in Bm and the B-module Int(A,B) is contained in the Bm-module
generated by Int(A). Since this happens for every maximal ideal m of A,
Int(A,B) is contained in the B-module generated by Int(A). �

As a consequence, we have:

Proposition 1.2. The extension L/K is a Pólya extension if and only if
the OL-module Int (OK ,OL) has a regular basis.

Proof. L/K is a Pólya extension if and only if the characteristic ideals
In (OK) extended to OL are principal. By proposition 1.1, this is equiv-
alent to the fact that In (OK ,OL) is principal. Analogously to Int (OK),
Int (OK ,OL) admits a regular basis if and only if the ideals In (OK ,OL)
are principal. �

2. Factorial groups and Pólya groups
Here is another way of measuring the obstruction for a field K to be a

Pólya field. We introduce the group of factorial ideals and the Pólya group
of the field K.

Definition 2.1. The factorial group of K is the subgroup Fact (K) of the
nonzero fractional ideal group I(K) of OK generated by the characteristic
ideals of OK .

The factorial group is named by this way because the characteristic ideals
are the inverse of the factorial ideals introduced by Bhargava [1], [2]:

(n!)OK = In (OK)−1 .

Remarks. (1) For K = Q, (n!)Z = (n!) Z.
(2) For all m, n ∈ N, the ideal (n!)OK (m!)OK divides ((n+m)!)OK .
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For every maximal ideal m of OK , (OK)m is a discrete valuation domain.
We denote by vm the corresponding valuation and by N(m) the norm of m
(which is the cardinality of the residue field OK/m) and we consider the
arithmetic fonction wm defined by

wm(n) = wN(m)(n) =
∞∑
k=1

[
n

N(m)k

]
.

Remark. When K = Q et m = pZ, we have

wp(n) =
∞∑
k=1

[
n

pk

]
= vp(n!).

We find in [5] and [12] the decomposition of the characteristic ideals as
a product of maximal ideals:
Proposition 2.1. [12, Pólya] For each n ∈ N and for every maximal ideal
m in OK ,

vm (In(OK)) = −wm(n)
Notation. For each q ≥ 2, let Πq (K) be the product of all the maximal
ideals of OK with norm q:

Πq (K) =
∏

m∈Max(OK)
N(m)=q

m.

If q is not the norm of an ideal, then Πq (K) = OK
We deduce easily from the equality:

(n!)OK = Πn(K)×
∏

2≤q<n
Πq(K)wq(n)

that:
Proposition 2.2. Fact (K) is a free abelian subgroup of I(K) and the
nontrivial ideals Πq (K) form a basis of this subgroup.

Recall that the class group of OK is the quotient Cl(K) = I(K)/P (K)
of the group of fractional ideals I(K) of K by the group P (K) of nonzero
principal ideals.
Definition 2.2. [5] The Pólya-Ostrowski group or Pólya group is the image
Po (K) of the factorial group Fact (K) in the ideal class group Cl (K):

Po (K) = Fact (K) /P (K) ∩ Fact (K) .
In other words, the Pólya group of K is the subgroup of Cl(K) generated

by the classes of the characteristic ideals In (OK) or by the classes of the
ideals Πq (K). Now, we have several ways to say that the field K is a Pólya
field.
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Proposition 2.3. The field K is a Pólya field if and only if one of the
following assertions is satisfied:

(1) Int (OK) has a regular basis,
(2) for each n ∈ N, the ideal (n!)OK is principal,
(3) for each q ≥ 2, Πq (K) is principal,
(4) Po (K) = {1}.

Example 1. [15] Every cyclotomic field is a Pólya field.

Let m ∈ N and K = Q(ζm) where ζm denotes a m-th primitive root of
unity. There is an explicit expression of a generator of (n!)OK . Let p be
prime number. Recall that [10, Proposition 6.4.8]:

fp = min
{
f ≥ 1 | pf ≡ 1 (mod m

pvp(m) )
}

and ep = ϕ
(
pvp(m)

)
.

Following the decomposition of a prime number in a cyclotomic field we
have:

(n!)OK =
∏
q≤n

Πq(K)wq(n) =
∏
p-m
p
w
pfp

(n)×
∏
p|m

1− ζ

(
m

pvp(m)

)
m

wpfp (n)

Z [ζm] .

Consequently, by the Kronecker-Weber theorem:

Corollary 2.1. Every finite abelian extension of Q is contained in a Pólya
field.

This is a positive answer to the embedding problem in a Pólya field in
the case of an abelian extension of Q.

Remark. Recall that if K is a galoisian extension of Q, an ambiguous ideal
of K is an ideal which is invariant under the action of the Galois group
Gal(K/Q), so that, if K/Q is a galoisian extension, the factorial group of
K is the group of ambiguous ideals of K. Actually, the subgroup I(K)G
formed by the ideals which are invariant under the action of G = Gal(K/Q)
is generated by the Πq (K). Then

Fact(K) = I(K)G,
Fact(K) ∩ P (K) = I(K)G ∩ P (K) = P (K)G,

Po(K) = I(K)G/P (K)G.
Thus, Po(K) is the subgroup of Cl(K) generated by the classes of the
ambiguous ideals of K. Hilbert describes this subgroup in the case when K
is a quadratic field:

Proposition 2.4. [8, §75] Let K = Q[
√
d] be a quadratic field where d is a

squarefree integer. Then, let s be the number of primes which are ramified
in the extension K/Q:
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(1) If K is a real quadratic field whose fondamental unit has norm +1,
then Po (K) has s− 2 independent generators and 2s−2 elements.

(2) In the other cases (K is an imaginary quadratic field or a real qua-
dratic field whose fondamental unit has norm −1), Po (K) has s−1
independent generators and 2s−1 elements.

We come back to Pólya extensions. Analogously, we introduce the fol-
lowing definition.

Definition 2.3. For every finite extension L/K, the Pólya group of the
set Int (OK ,OL) is the subgroup of Cl(L) generated by the classes of the
ideals In (OK ,OL). We denote it by Po (K,L).

Then, we generalize all the properties obtained on Int (OK):

Proposition 2.5. The following asssertions are equivalent:
(1) L/K is Pólya extension.
(2) Int (OK ,OL) has a regular basis.
(3) For each n ∈ N the fractional ideal In (OK ,OL) is principal.
(4) For every q, the ideal Πq(K)OL is principal.
(5) Po (K,L) is trivial.

Proof. The equivalence between (1) and (2) comes from Proposition 1.2.
The equivalence between (2) and (3) is proved by the same way than the
the assertion “Int (OK) has a regular basis if and only if the OK-modules
In (OK) are principal” [5, II.1.4]. Since In (OK)OL = In (OK ,OL) (Propo-
sition 1.1), Proposition 2.2 gives the equivalence between (3) and (4). The
equivalence (3)⇔(5) is deduced from Definition 2.3. �

3. Pólya groups in galoisian extensions of Q

In this section, we study the Pólya group of galoisian extensions of Q.
We recall that, if K is a galoisian extension of Q, for each prime number
p, the gp maximal ideals of OK over p have the same ramification index ep
and the same residue degree fp and we have :

epfpgp = [K : Q] .
Then

pOK =
∏
M|p
Mep = Πq (K)ep where q = pfp .

Consequently, following Ostrowski:

Proposition 3.1. [11] Let K be a finite galoisian extension of Q. Po(K)
is generated by the classes of the ideals Πq (K) where q = pf and the prime
number p is ramified in K/Q

Corollary 3.1. |Po(K)| divides
∏
p ep.
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Corollary 3.2. Let K/Q be a galoisian extension such that [K : Q] = qn
where q is a prime number. If Clq(K) denote the q-class group of K, then
we have the containment Po(K) ⊆ Clq(K).

Proof. According to the last corollary, the order of Po (K) divides
∏
p ep

but, since the extension K/Q is galoisian, for each prime number p ramified
in K/Q, ep | qn. �

Corollary 3.3. Let K be a galoisian extension of Q with degree n and class
number hK . If n and hK are relatively prime, then K is a Pólya field.

Proof. |Po(K)| divides a power of n and |Cl(K)| = hK . �

Corollary 3.4. [15, Proposition 2.5] Let K/Q be a finite abelian extension.
If only one prime p is ramified in the extension then K is a Pólya field.

Notation. Let L/K be a finite extension. Consider the norm morphism
[14, Chap I. §5]:

NKL : I (L) 7→ I (K)
which is determined by its value on the maximal ideals N of OL

NKL (N ) =MfN (L/K)

where M = N ∩ OK and fN (L/K) = [OL/N : OK/M]. The morphism
NKL induces the morphism:

νKL : I ∈ Cl (L) 7→ NKL (I) ∈ Cl (K) .

On the other hand, the injective morphism:

jLK : I ∈ I (K) 7→ IOL ∈ I (L)

induces the morphism

εLK : I ∈ Cl (K) 7→ IOL ∈ Cl (L) .

We know that the morphism NKL generalizes the norm NL/K(x) of an
element x and the absolute norm of an ideal :

NKL (xOL) = NL/K(x)OK and
∣∣∣NQ
K(I)
∣∣∣ = Card(OK/I),

for every x ∈ L and every entire ideal I of K. Moreover, since the extension
L/K is separable, for each ideal of I (K), we have:

NKL ◦ jLK (I) = I [L:K].

We recall that, when we work with galoisian extensions of Q, the facto-
rial ideal groups and the Pólya groups behave nicely with respect to these
morphisms:
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Proposition 3.2. [6] If K and L are two galoisian extensions of Q such
that K ⊆ L then

(1) jLK (Fact (K)) ⊆ Fact (L) and εLK (Po (K)) ⊆ Po (L)

(2) NKL (Fact (L)) ⊆ Fact (K) and νKL (Po (L)) ⊆ Po (K)

Remark. Notice that, under the hypothesis of the previous proposition,
εLK (Po(K)) is the subgroup of Cl(L) we have denoted by Po(K,L).

Corollary 3.5. Let K and L be two galoisian extensions of Q such that
K ⊆ L.

(1) The extension L/K is a Pólya extension if and only if the image
εLK (Po (K)) is trivial in Po (L).

(2) If L is a Pólya field, then L/K is a Pólya extension.

Remark. When L/K is not a galoisian extension, the containments given
in Proposition 3.2 are not always true as shown by the following example:
Q[
√

5, 3√10]/Q[
√

5]

Example 2. Let K1 = Q[ 3
√
m] be a pure cubic field where m is cubefree and

not equal to ±1. Write m = ab2 where a and b are squarefree and coprime.
Then, according to [7, Thm 6.4.16], 3 is partially ramified in K1/Q if and
only if a2 ≡ b2 (mod 9).
For our example, we choose K1 = Q[ 3√10] and K = Q[

√
5]. Then 3 is

partially ramified in K1/Q and inert in K/Q. Let L be the compositum of
K and K1:

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

K1 = Q[ 3√10] K = Q[
√

5]

L = Q[
√

5, 3√10]

Q

Then,
3OK = m where N(m) = 32,

and
3OK1 = m1m

2
2 where N(mi) = 3.
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Consequently,
3OL = n1n

2
2 where N(ni) = 32.

According to these equalities, we have

Π9(L) = n1n2.

and
Π9(K)OL = mOL = 3OL = n1n

2
2.

If the containement jLK (Fact (K)) ⊆ Fact (L) was true, we would have
n2 ∈ Fact (L). As N(n2) = 32, n2 would be a power of Πq(L). This is
impossible.

Here is the reason why jLK (Fact (K)) 6⊆ Fact (L) in the previous exam-
ple:

Proposition 3.3. Let K/Q be a galoisian extension and consider an ex-
tension L/K. We have the containment

jLK (Fact (K)) ⊆ Fact (L)

if and only if, for all maximal ideals p1, p2 of OL lying over a same prime
number,

(fp1 (L/K) = fp2 (L/K))⇒ (ep1 (L/K) = ep2 (L/K))

Proof. Let p be a prime number. Let e = ep(K/Q) and f = fp(K/Q). We
have

pOK = Πpf (K)e .
Suppose that for all maximal ideals p1, p2 of OL lying over p, we have
(fp1 (L/K) = fp2 (L/K))⇒ (ep1 (L/K) = ep2 (L/K)). Denote by f1, . . . , fr
the distincts residue degrees in the extension L/K of the maximal ideals
of OL lying over p and denote by e1, . . . , er the corresponding ramification
indices. Then,

Πpf (K)OL =
(
Πpff1 (L)

)e1
. . .
(
Πpffr (L)

)er
and

jLK (Fact (K)) ⊆ Fact (L)
Conversely, suppose that jLK (Fact (K)) ⊆ Fact (L). Then, there exist
α1, . . . , αs ∈ Z and f1, . . . , fs ∈ N such that

Πpf (K)OL =
(
Πpff1 (L)

)α1
. . .
(
Πpffs (L)

)αs
.

Since all the maximal ideals of L lying over p are in this decomposition,
necessarily, one has that, for all p1, p2 maximal ideals of OL lying over p,
fp1 (L/K) = fp2 (L/K) implies ep1 (L/K) = ep2 (L/K). �
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Corollary 3.6. Let K1 = Q[ 3
√
m] be a pure cubic field such that a2 6≡ b2

(mod 9) (where m = ab2 with the notations of the previous example). Then,
for every galoisian extension K/Q, one has:

jKK1
K (Fact (K)) ⊆ Fact (KK1) .

Proof. Following the description of the decomposition of a prime number
in a pure cubic field of [7, Cor. 6.4.15, Thm. 6.4.16], the prime numbers p
are never partially ramified except when p = 3. �

4. Linearly disjoined galoisian extensions
Let K be an algebraic number field and let K1, K2 be two finite exten-

sions of K. Denote by K1K2 the field generated by K1 and K2. Recall that
K1 and K2 are said to be linearly disjoined over K if a basis of K1 over K
is also a basis of K1K2 over K2 [4].

If K1 and K2 are linearly disjoined over K, then K1 ∩ K2 = K. The
converse is false in general. But, if K1/K is a galoisian extension and if
K1 ∩K2 = K then:

(1) K1 and K2 are linearly disjoined over K.
(2) K1K2/K2 is a galoisian extension.
(3) Gal(K1K2/K2) ' Gal(K1/K1 ∩K2)

In particular, ifK1/K andK2/K are galoisian extensions andK1∩K2 = K,
then K1K2 is a galoisian extension of K and Gal (K1K2) ' Gal (K1) ×
Gal (K2).

The following result is proved in [6]:

Proposition 4.1. Let K1 and K2 be two galoisian extensions of Q and
L = K1K2. If [K1 : Q] and [K2 : Q] are relatively prime , then

jLK1 (Fact (K1)) .jLK2 (Fact (K2)) = Fact (L) .

We are going to prove such a result but with a weaker hypothesis which
concerns the ramification indices.

Notation for the section. Let K be a galoisian extension of Q. Let K1, K2
be two galoisian extensions ofK such thatK1∩K2 = K and L = K1K2. The
extensions K1 and K2 are linearly disjoined over K. Let M be a maximal
ideal of L and

P1 = M ∩K1,P2 = M ∩K2 and p = M ∩K

Remarks. (1) When [K1 : K] and [K2 : K] are relatively prime, it is
easy to get the following equality :

e(M/p) = e(P1/p)e(P2/p).
The residue degrees satisfy analoguous equalities.
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(2) Clearly, without the hypothesis “[K1 : K] and [K2 : K] are relatively
prime”, this equality is not always true. For instance,

e2
(
Q(
√

3)/Q
)

= e2
(
Q(
√

7)/Q
)

= 2

and e2
(
Q(
√

3,
√

7)/Q
)

= 2 since e2
(
Q(
√

21)/Q
)

= 1.

(3) This example contradicts Proposition 14.1.E of Ribenboim [13]
which says that, with our hypothesis and notation:

IM(L/K) ' IP1(K1/K)× IP2(K2/K),
where IM(L/K) (resp. IP1(K1/K), IP2(K2/K)) denotes the inertial
group of M (resp. P1, P2) in the extension L/K (resp. K1/K,
K2/K). It is true that under our hypotheses,

Gal (L/K) ' Gal (K1/K)×Gal (K2/K)

and the image of IM(L/K) in Gal (K1/K) is the subgroup
IP1(K1/K) and in Gal (K2/K) the subgroup IP2(K2/K). However,
we can not deduce from this Ribenboim’s isomorphism. In the pre-
vious example, we have IP1(K1/K) ' IP2(K2/K) ' Z/2Z. The
inertial group IM(L/K) is in fact the third subgroup of order 2 of
Gal (L/K) ' Z/2Z× Z/2Z.

Lemma 4.1. With the previous notation (but without the assumption that
the extensions are galoisian), we have

lcm (e(P1/p), e(P2/p)) |e(M/p).

If one of the extensions K1/K or K2/K is galoisian, then

e(M/p)|e(P1/p)e(P2/p).

Thus, if moreover (e(P1/p), e(P2/p)) = 1, then

e(M/p) = e(P1/p)e(P2/p).

Proof. From the relation e(M/p) = e(M/P1)e(P1/p), we deduce that
lcm (e(P1/p), e(P2/p)) divides e(M/p). If for instance, the extensionK2/K
is galoisian, then L/K1 is also galoisian. The image of the inertial group
IM(L/K1) by the restriction isomorphism:

σ ∈ Gal(L/K1) 7→ σ|K2 ∈ Gal(K2/K)

is a subgroup of the inertial group IP2(K2/K). Consequently, e(M/p) di-
vides e(P2/p). Then, e(M/p) divides e(P1/p)e(P2/p).

�
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Proposition 4.2. Let K, K1 and K2 be galoisian extensions of Q such
that K1 ∩ K2 = K, and let L = K1K2. If, for all prime ideal p of K,
(eK1/K(p), eK2/K(p)) = 1 then

jLK1 (Fact (K1)) .jLK2 (Fact (K2)) = Fact (L) ,
jLK1 (Fact (K1)) ∩ jLK2 (Fact (K2)) = jLK (Fact(K)) ,

εLK1 (Po (K1)) .εLK2 (Po (K2)) = Po (L) .

Proof. Fix a prime ideal p of K. Suppose that N(p) = pα. Let ei =
eKi/K(p), fi = fKi/K(p) and ϕi = fL/Ki(p) for i ∈ 1, 2. According to
the previous lemma, eL/K(p) = e1e2. The extension L/Q is galoisian,
fL/K(p) = f1ϕ1 = f2ϕ2.

Denote by Πi = Πpαfi (Ki) and Π = Πpαfiϕi (L). We have

pOKi = Πeii , pOL = Πe1e2 ,ΠiOL = Πe3−i (i = 1, 2) .

We obtain
〈Π1OL,Π2OL〉 = 〈Πe2 ,Πe1〉 =

〈
Πgcd(e1,e2)

〉
.

As gcd(e1, e2) = 1, 〈Π1OL,Π2OL〉 = 〈Π〉. The first equality is proved.

Let I ⊆ jLK1
(Fact (K1)) ∩ jLK2

(Fact (K2)). Without lost of general-
ity, we may assume that: I = Πpαfi (Ki)ki OL ∈ jLKi (Fact (Ki)), i.e I =
Πkii OL, ki ∈ Z for i ∈ {1, 2}. As a consequence, I = Πk1

1 OL = Πk2
2 OL,

Πk1e2 = Πk2e1 , then I ⊆
〈
Πlcm(e1,e2)

〉
. If gcd(e1, e2) = 1, I ⊆ 〈Πe1e2〉 =

〈Πpα(K)OL〉. The second equality is proved. The third follows from the
first one. �

Remark. The previous proof shows that, with the same notation, if for
some fixed prime ideal p of K one has (eK1/K(p), eK2/K(p)) = 1, then Π
is principal of OL if and only if and if the extended ideals ΠiOL are also
principal.

Corollary 4.1. Let K, K1 and K2 be galoisian extensions of Q such that
K1 ∩ K2 = K and let L = K1K2. Assume that, for each ideal p of K,
(eK1/K(p), eK2/K(p)) = 1, then :

(1) L is a Pólya field if and only if L/Ki are Pólya extensions.
(2) If K1 and K2 are Pólya fields, then K1K2 is a Pólya field.

As a corollary, we obtain Zantema’s result [15, Thm 3.4]: let K1/Q and
K2/Q be two galoisian extensions whose degrees are relatively prime, if K1
and K2 are Pólya fields, then K1K2 is a Pólya field.

Remark. Taking into account the remark following the proof of Proposi-
tion 4.2, the previous corollary may be refined in the following way:
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Let K ⊆ L be two galoisian extensions of Q. If for every prime ideal p of
K, there exist two galoisian extensions K1 and K2 of Q such that:

(1) K1 and K2 are linearly disjoined over K and L = K1K2,
(2) (eK1/K(p), eK2/K(p)) = 1,
(3) K1 and K2 are Pólya fields,

then L is a Pólya field.
Application to biquadratic fields. We may apply the previous corollary
to biquadratic fields. LetK1 andK2 be two quadratic fields and L = K1K2.
Denote by DKi the discriminant of Ki. The assumption “for each ideal p of
K (eK1/K(p), eK2/K(p)) = 1” is obviously equivalent to “ (DK1 , DK2) = 1”.
Even if this condition is not satisfied, the previous technical remark leads
us to consider the third quadratic subfield of L:
Proposition 4.3. If Q[

√
a] and Q[

√
b] are two disctinct quadratic Pólya

fields such that 2 is ramified in at most two of the three extensions Q[
√
a],

Q[
√
b], Q[

√
ab], then the biquadratic field Q[

√
a,
√
b] is a Pólya field.

Then, using the following characterization of the quadratic Pólya fields
(see Proposition 2.4 and [5, Cor. II.4.5]), we can conclude that many bi-
quadratic fields are Pólya fields.
Proposition 4.4. [5, Cor. II.4.5] A quadratic field Q[

√
d] is a Pólya field

if and only if d is of one of the following forms where p and q denote two
distinct odd prime numbers:

(1) d = −1, or d = −2, or d = −p where p ≡ 3 (mod 4), or d = p,
(2) d = 2p, or d = pq where pq ≡ 1 (mod 4) and, in both cases, the

fondamental unit has norm 1 if p ≡ 1 (mod 4).
Proposition 4.5. Let p, q, r be three distinct odd primes. The following
biquadratic real fields are Pólya fields:

(1) Q[√p,√q],
(2) Q[√p,√qr] with qr ≡ 1 (mod 4).

Proof. (1) If p ≡ q ≡ 3 (mod 4) then 2 is not ramified in the extension
Q(√pq)/Q: we conclude with Proposition 4.3. If p ≡ 1 (mod 4) or
q ≡ 1 (mod 4), then 2 is not ramified in Q(√p)/Q or Q(√q)/Q.

(2) As qr ≡ 1 (mod 4), 2 is not ramified in Q(√qr)/Q.
�

More generally, we may verify that: if Q[
√
a] and Q[

√
b] are two distinct

quadratic Pólya fields, then the biquadratic field Q[
√
a,
√
b] is a Pólya field

except perhaps for (a, b) = (−1, 2), (−1, 2q), (2, p), (−2, p), (p, 2q) where p
and q denote two distinct odd primes with p ≡ 3 (mod 4).

To know wether these exceptions are Pólya fields or not, we would have
to look at them separately.
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