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Rational points on curves

par MICHAEL STOLL

RESUME. Ceci est la version longue de I'exposé invité que jai
donné aux Journées Arithmétiques de St. Etienne en juillet 2009.

Nous discutons I’état de ’art pour le probléme de trouver I'en-
semble des points rationnels sur Q d’une courbe C' (projective
lisse) géométriquement intégre. Nous nous concentrons sur les as-
pects pratiques de ce probleme dans le cas ou le genre de C' est
au moins 2, et par conséquent ’ensemble des points rationnels est
fini.

ABSTRACT. This is an extended version of an invited lecture I
gave at the Journées Arithmétiques in St. Etienne in July 2009.

We discuss the state of the art regarding the problem of finding
the set of rational points on a (smooth projective) geometrically
integral curve C' over Q. The focus is on practical aspects of this
problem in the case that the genus of C is at least 2, and therefore
the set of rational points is finite.

1. Introduction

As a preliminary remark, let me point out that the following report is
somewhat biased, in that it clearly reflects my own predilections. I have
tried to mention other approaches at least briefly and give some pointers to
the literature, but the main focus of this paper is on methods I have been
involved in myself.

1.1. The problem. Let C be a geometrically integral algebraic curve de-
fined over Q. We stick to Q here for simplicity. In principle, we can replace
Q by an arbitrary number field. In practice, however, many of the necessary
algorithms are only implemented for @, and even when they are available
for more general number fields, the computations are usually much more
involved. We consider the following problem.

Problem 1. Determine C(Q), the set of rational points on C.

We observe that a curve and its smooth projective model only differ in
a computable finite set of points (coming from points at infinity and from
singularities). Therefore we lose nothing if we assume that C' is smooth and
projective.

Classification math.. 11D41, 11G30, 14G05, 14G25.
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1.2. The structure of C(Q). Before we consider curves of ‘higher genus’
more specifically, let us recall what is known about the structure of the
set C'(Q) in general. There is a trichotomy, depending on the genus g of C,
which is the most important geometric (or even topological, if we think
of C' as a Riemann surface) invariant of the curve. This exemplifies the
belief that “Geometry determines arithmetic” — the structure of the set of
rational points on a variety should only depend on its geometry.
We have the following three cases.

e g=0:
In this case, we either have C'(Q) = (0 (this is always possible), or
else if there is a point Py € C(Q), then C' is isomorphic over Q to
the projective line P!. Any such isomorphism will give us a param-
eterization of C(Q) in terms of rational functions in one variable.
Probably the best-known example is the unit circle 2% + y? = 1,
whose points can be rationally parameterized in the following way.

_ 42 2
v (e )

As t runs through P}(Q) = QU {00}, its image runs through all the
rational points on the unit circle. So such a parameterization gives
us a finite description of the set C(Q).

e g=1:

We either have C(Q) = 0, or else if there is a point Py € C(Q),
then (C, Fy) is an elliptic curve. So C' has a geometrically defined
structure as an abelian group with Py as its origin. This implies
that C'(Q) is also an abelian group with origin Py. Mordell [35]
has shown that C(Q) is finitely generated. (Weil [56] has extended
this to elliptic curves and, more generally, Jacobian varieties over
arbitrary number fields.) In particular, we can describe C(Q) by
listing generators of this group.

e g>2:
This is the case of ‘higher genus’. Mordell [35] has conjectured, and
Faltings [21] has proved that the set C(Q) is always finite. In par-
ticular, we can describe C'(Q) by simply listing the finitely many
points.

We see that in each case, there is a finite description of C'(Q). The precise
version of Problem 1 above therefore asks for an algorithm that provides
this description.

Before we consider the higher genus case in detail, let us give a short
discussion of the other two cases.
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1.3. Genus zero. If C is a smooth projective geometrically integral curve
of genus 0 (over any field k), then C' is isomorphic to a smooth conic.
If we can compute in k, then we can find an explicit such isomorphism.
This can be done by computing a basis of the Riemann-Roch space of an
anticanonical divisor; the map to P? given by this basis provides the desired
isomorphism.

Now let £ = Q again. Like all quadrics, conics C' satisfy the Hasse Prin-
ciple: If C(Q) = 0, then C(R) = 0 or C(Q,) = 0 for some prime p, where Q,
is the field of p-adic numbers. For future reference, we make the following
definition.

Definition 2. The curve C has points everywhere locally, if C(R) # () and
C(Qyp) # 0 for all primes p.

The Hasse Principle then states that a curve that has points everywhere
locally must also have rational points.

Let us assume that C' is given by a ternary quadratic form with integral
coefficients. Then C(Q),) # ) whenever p does not divide the discriminant
of the quadratic form (we use the fact that smooth conics over finite fields
always have rational points, plus Hensel’s Lemma to lift to a p-adic point).
So there are only finitely many primes to check in addition to C(R). (One
should note, however, that in general one has to factor the discriminant,
which can be difficult.) For each given prime, Hensel’s Lemma gives us an
upper bound for the p-adic precision needed. So the check whether C has
points everywhere locally reduces to a finite computation. Therefore we can
decide if C(Q) is empty or not. This is still true for a number field in place
of Q.

If C(Q) # 0 and we know the ‘bad’ primes (those dividing the discrimi-
nant), then there is an efficient procedure that exhibits a point Py € C(Q),
see for example [45]. This can be seen as a ‘minimization’ process that
finds a Q-isomorphic curve with good reduction at all primes, followed by
a ‘reduction’ process based on lattice basis reduction [31] that brings the
curve into the standard form y? = zz, which has some obvious points. This
last (reduction) part of the procedure has, to my knowledge, not yet been
generalized to arbitrary number fields in a satisfactory way.

Given Py € C(Q), we can easily compute an isomorphism ¢ : C — P! by
projecting away from Fy. The inverse of ¢ then provides us with the desired
parameterization of C(Q).

1.4. Genus one. For curves of positive genus, the Hasse Principle no
longer holds in general. So there is no easy way to check if the curve has
rational points or not. If we cannot find a rational point, but C has points
everywhere locally, then we can try to use a descent computation. For
n > 2, n-descent consists in computing a finite number of n-coverings
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of C such that each of these n-coverings has points everywhere locally and
every rational point on C' is the image of a rational point on one of the
n-coverings. An n-covering is a morphism 7 : D — C of curves over Q
that over Q is isomorphic to the multiplication-by-n map E — E, where
E is C/Q considered as an elliptic curve. In principle, this computation
is possible for every C' and every n over every number field. In practice
however, this is feasible only in a few cases.

e 32 = quartic in x and n = 2 [11, 34];
e intersections of two quadrics in P? and n = 2 [46];
e plane cubics and n = 3 [18].

If the finite set of relevant n-coverings turns out to be empty, this proves
that C(Q) = 0. If we assume that Shafarevich-Tate groups of elliptic curves
do not contain nontrivial infinitely divisible elements (this assumption is
weaker than the standard conjecture that ILI(E/Q) is finite), then it follows
that if C(Q) = 0, then there must be an n such that there are no n-coverings
of C' with points everywhere locally. This means that we can, at least in
principle, verify that C' does not have rational points.

On the other hand, if C' does have rational points, then their preimages
on suitable n-coverings tend to be ‘smaller’ and can therefore be found more
easily by a search. So n-descent on C serves two purposes: it allows us to
show that no rational points exist, but it can also help us find a rational
point.

It should be noted that if a curve of genus 1 has infinitely many ratio-
nal points, the smallest point can be exponentially large in terms of the
coefficients of the defining equations. (This comes from the corresponding
property of generators of the group of rational points on an elliptic curve.)
This phenomenon is what can make life rather hard when we try to find
the rational points on a curve of genus 1.

1.5. Elliptic curves. We now assume that we have found a rational point
Py on our curve C of genus 1. Then, as mentioned above, (C, Fy) is an
elliptic curve, which we will denote E. By Mordell’s Theorem we know that
E(Q) is a finitely generated abelian group; our task is now to find explicit
generators of this group. By the structure theorem for finitely generated
abelian groups, we have

E(Q) = E(Q)tors ez s

where E(Q)tors is the finite subgroup of E(Q) consisting of all elements
of finite order. This finite subgroup is easy to find. The hard part is to
determine the rank r = rank E(Q).

We can use n-descent again. When we apply it to an elliptic curve, the set
of n-coverings with points everywhere locally has a natural group structure;
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this group is the n-Selmer group of E. Its order gives an upper bound
for the size of E(Q)/nE(Q), from which we can deduce an upper bound
for r. As before, this computation is always possible in principle (see [50]).
In practice, n-descent on an elliptic curve over QQ is currently feasible for
n = 2,3,4,8 and 9. See [16, 17] for a detailed description. In some cases,
we can use what is known about the conjecture of Birch and Swinnerton-
Dyer. If the conductor of E is not too large, we can compute the values
of the L-series of E and its derivatives at s = 1 to sufficient precision. If
L(E,1) #0, then r =0, and if L'(E, 1) # 0, then r = 1 [30].

A search for independent points in E(Q) gives a lower bound on 7. How-
ever, generators may be very large. In the same way as for general curves
of genus 1, descent can help us to find them. When r = 1, Heegner points
can be used if the conductor of F is sufficiently small.

Example 3. (See [17].) The group E(Q), where
E:y?* = a3 47823,
is infinite cyclic and generated by the point

p_ (2263582143321421502100209233517777
N 119816734100955612 ’

18639815258462330562483755 1485596770028144776655756)

119816734100955613
This point was found by a 4-descent on E. The Heegner point method is
not feasible here, because the conductor of E is 24 - 33 . 78232, which is a
bit too large.

A discussion of how one can try to find the set of rational points on an
elliptic curve, or more generally, on a genus 1 curve, would provide enough
material for at least one book. But this is a different story and will be told
at another occasion.

2. Checking existence of rational points

We now turn to curves of higher genus, meaning g > 2. The first question
we would like to answer is whether there are any rational points on the
curve C' or not.

2.1. Finding points. If C'(Q) is nonempty, we can usually find a rational
point by search. This is because (in contrast to the case of genus 1) we
expect the rational points to be fairly small. The following is a consequence
of Vojta’s Conjecture; see Su-Ion Ih’s thesis [29].

Conjecture 4. If C — B is a family of higher-genus curves, then there are
constants v and k such that

Hq(P) <~yHp(b)" for all P € Cy(Q)
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if the the fiber Cy is smooth.

Here Hp denotes a (non-logarithmic) height on the base B, and H¢ is a
suitable height function on C.

If C is hyperelliptic, one can use the ratpoints program [55] for the
point search.

Examples 5. Consider a curve
C:y*=fea®+ -+ fiz + fo

of genus 2, with f; € Z. Then the conjecture says that there are v and x
such that the z-coordinate p/q of any point P € C(Q) satisfies

pl, lq] < ymax{|fol,|fil,. .., [fel}".

In [7], we consider curves of genus 2 as above such that the coefficients f;
are integers with |f;| < 3. We will call these curves small genus 2 curves
in this paper. If such a curve has rational points, then there is one whose
z-coordinate is p/q with |p|, |¢| < 1519. In fact, for all but two such curves
(up to isomorphism), we even have [p|,|q| < 80. On the other hand, the
largest point known on one of these curves (which is very likely the largest
point there is) has height 209 040, which indicates that v and/or x cannot
be too small.

So usually we can assume that we know all the points in C'(Q). In par-
ticular, if we are unable to find a rational point on C', it is reasonable to
suspect that there are indeed no rational points. The problem now is to
prove this fact in some way.

2.2. Local points. One approach that we can try is to check if C' has
points everywhere locally. As before, this can be done by a finite computa-
tion, which is efficient modulo the determination of the ‘bad’ primes. This
usually comes down to factoring some kind of discriminant. In addition to
the bad primes, one also has to look at small primes. The reason is that
smooth curves of genus g may fail to have F,-points when p is small relative
to g. (By the Weil bounds, we have #C(F,) > p + 1 — 2g,/p, so there will
be [F,-points whenever p + 1 > 2g,/p.)

Example 6. (Poonen-Stoll [39]) About 84-85% of all curves of genus 2
have points everywhere locally. This percentage is a density: we consider
all genus 2 curves of the form y? = f(x) with f = fexS+- -+ fiz+ fo € Z[z]
such that max{|f;|} < N, and determine the proportion ay of curves with
points everywhere locally. Then limy_. o, an exists and has approximately
the value given above. Convergence seems to be rather fast, compare the
data given at the end of [8].

The counterpart to this result is the following conjecture.
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Conjecture 7. 0% of all curves of genus 2 have rational points.

In fact, heuristic considerations suggest the following. Let By be the
proportion of curves of size up to N that possess rational points (similarly
to ay above). Then Sy < N~1/2. See [54] for details and some experimen-
tal data.

This indicates that checking for points everywhere locally will usually
not suffice to prove that C'(Q) = (: the Hasse Principle is quite likely to
fail.

Example 8. (Bruin-Stoll [7]) Among the 196 171 isomorphism classes of
small genus 2 curves, there are 29 278 that are counterexamples to the Hasse
Principle.

2.3. Descent again. So we need another method of attack. One possi-
bility is again descent. We find a covering m : D — C' (more precisely, an
unramified covering of smooth projective geometrically integral curves that
over Q is a Galois covering). As before in the genus 1 case, this covering
has finitely many twists m¢ : D¢ — C such that D¢ has points everywhere
locally.

Example 9. Consider a hyperelliptic curve
C:y® = g(x)h()
with deg g, deg h not both odd. Then
D: u?=g(z), v*=h(z)
is an unramified Z/27Z-covering of C' with covering map 7 : D — C given
by (z,u,v) — (z,uv). Its twists are
Dy: du®=g(z), dv?=h(z), d e Q*/(Q*)2.
Every rational point on C' lifts to one of the twists, since g(x) must have
some square class d. If g and h have integral coefficients and p is a prime
divisor of d (we assume d to be a squarefree integer), then Dy does not have
p-adic points unless g and h have a common root mod p. This is the case

only when p divides the resultant of g and h. So we see that only finitely
many of the twists Dy can have points everywhere locally.

The idea of descent goes back to Fermat (‘descente infinie’). The state-
ment that only finitely many twists are relevant is a variant of a result due

to Chevalley and Weil [14], see Theorem 11 below.
Here is a concrete example.

Example 10. Consider the genus 2 curve

C:yff=—(2®+2 -1 +22+22+2+2) = f(2).
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C has points everywhere locally. This can be seen by observing that
f(18) € (@)% and f(4) € (Q3)*.
The first three values show that C'(R) # () and that C(Q,) # 0 for all

p # 2,3; the last two fill the remaining gaps.
The relevant twists of the obvious Z/2Z-covering are among

du?=—2>—z+1, d’ =zt 423+ 22+ 2 +2
where d is one of 1, —1, 19 or —19, since the resultant of the two factors is
19. If d < 0, the second equation has no solution in R; if d = 1 or 19, the
pair of equations has no solution over F3. This is because the first equation
implies that  mod 3 is one of 0 or —1, whereas the second equation implies

that x mod 3 is one of 1 or co.
So there are no twists with points everywhere locally, and therefore

Cc(Q) =0.
The general result is as follows.

Theorem 11 (Descent Theorem). Let m: D — C' be an unramified cover-
ing that is geometrically Galois. Its twists m¢ : D¢ — C are parameterized
by € € HY(Q,G) (a Galois cohomology set), where G is the Galois group of
the covering. We then have the following:

e C(Q = |J m(De(Q).

§eH(QG)

e Sel™(C) := {¢£ € HY(Q, G) : D¢ has points everywhere locally}
is finite (and computable).

Definition 12. In the situation of the Descent Theorem, we call Sel™(C)
the Selmer set of C' with respect to .

Corollary 13. If we find Sel™(C) = (), then C(Q) =0 as well.

This follows from the two statements in the theorem, since D¢(Q) is
empty unless D¢ has points everywhere locally.

2.4. Abelian coverings. In principle, we can use this approach with any
covering of C' in the above sense. However, in practice it is easier to restrict
to a special kind of coverings.

Definition 14. A covering m : D — C' as above is abelian if its Galois
group G is abelian.

The reason why abelian coverings are especially useful comes from the
following fact (which is a result of ‘Geometric Class Field Theory’; see [42]
for details). We let J denote the Jacobian variety of C. We assume for
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simplicity that there is an embedding ¢ : C' — J. (This means that there
is a divisor class of degree 1 on C' that is defined over Q, i.e., stable under
the action of the absolute Galois group of Q. If we can show that there is
no such divisor class, then it follows that C' does not have rational points,
since a rational point would provide us with a suitable divisor class.)
Then all abelian coverings of C' are obtained from n-coverings of J:

>/
(2.1) D—x-1%

1A

C——1J
Here X — J is an n-covering of J, meaning that there is an isomorphism
of X with J over Q that makes the triangle in the diagram commute, and
m: D — C'is the pull-back of X — J under ..

We call such a covering D — C' an n-covering of C'; the set of all n-
coverings with points everywhere locally is denoted Sel(")(C) and called
the n-Selmer set of C. Every abelian covering of C' can be extended to an
n-covering for some n. Therefore the Jacobian gives us a handle on all the
abelian coverings of C. The process of computing the set Sel(")(C) is called
an n-descent on C.

2.5. Computing n-Selmer sets in practice. In practice, computing
Sel(™(C) is usually quite hard, even though it is possible in principle. The
most difficult obstacle is that the computation requires arithmetic infor-
mation like ideal class groups and unit groups for number fields that can
be rather large. About the only fairly general situation where the fields
involved are manageable is the computation of the 2-Selmer group of a hy-
perelliptic curve C : y?> = f(x). In this case, the relevant number fields are
those generated by a root of each irreducible factor of f. This is a generaliza-
tion of the y?2 = g(z)h(z) example above, where all possible factorizations
are considered simultaneously. The paper [8] describes the procedure in
detail.

Example 15. (See [7, 8]) Among the small genus 2 curves, there are only
1492 curves C' without rational points and such that Sel®(C) # 0. So 2-
descent is a rather efficient tool in this case. Figure 1 at the end of [8] shows
that this is still mostly true also for larger coefficients.

2.6. A conjecture. In the example above, we have seen that 2-descent
shows that most of the small curves without rational points really do not
have rational points. This makes it plausible that perhaps we can deal with
the remaining curves by an n-descent with a suitable n > 2. Unfortunately,
the direct computation of the relevant Selmer sets is infeasible. Still, we can
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formulate the following conjecture. In [52], we argue that there are good
reasons for it to hold.

Conjecture 16. If C(Q) = 0, then Sel™ (C) = 0 for some n > 1.

The case n = 1 is equivalent to checking for points everywhere locally
on C, since idg : C — C' is the only 1-covering of C.

Remarks 17.

(1) In principle, Sel™(C) is computable for every n. The conjecture
therefore implies that “C'(Q) = (07" is decidable. (Search for points
by day, compute Sel™(C) by night.)

(2) The conjecture implies that the Brauer-Manin obstruction is the
only obstruction against rational points on curves. (In fact, the
conjecture is equivalent to this statement.) See [52] for details.

3. The Mordell-Weil sieve

3.1. The idea. We now assume that we know explicit generators of the
Mordell-Weil group J(Q), where J is, as before, the Jacobian variety of the
curve C. By [56], J(Q) is a finitely generated abelian group. It is clear that
in the diagram (2.1) we only need to consider those n-coverings X of J that
actually have rational points. These n-coverings are of the form

JoP+—nP+QelJ with @ € J(Q);

the shift @ is only determined modulo nJ(Q).
The set we are interested in is therefore

{Q+nJ(Q): (Q+nJ(Q)Ne(C)#0} C J(Q)/nJ(Q).

By the above, it contains the subset of the n-Selmer set of C' that consists
of n-coverings of C' with rational points. We approximate the condition by
testing it modulo p for a set of primes p.

Let S be a finite set of primes of good reduction for C. Consider the
following diagram.

(3.1) C(Q ————J(Q) J(Q)/nJ(Q)

! l X

I @) —— [[ J(Fp) — ] J(Fp)/nJ (Fp)

peES peES peS

v

«

We can compute the maps « and 3, since they only involve finite objects. If
their images do not intersect, then it follows that C(Q) = (. This method
is known as the ‘Mordell-Weil Sieve’. It was first used by Scharaschkin in
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his thesis [41]. Flynn [24] used it on a number of genus 2 curves. In [7], it
is applied to the remaining undecided small genus 2 curves.

Example 18. If C' is a small genus 2 curve without rational points, then
either C fails to have points everywhere locally, or Sel(Q)(C) = (), or the
Birch and Swinnerton-Dyer Conjecture for J implies that C' has no embed-
ding into J (this is needed for 42 curves), or else the Mordell-Weil Sieve
with suitable parameters S and n proves that C(Q) is empty.

In order to obtain this result, one needs a carefully optimized imple-
mentation of the Mordell-Weil sieve. See [9] for details. The parameter the
complexity depends on most sensitively is the rank r of J(Q). If r < 3,
our implementation works quite well; it should be mentioned that it uses
not only information mod p for good primes p, but also information mod-
ulo powers of (small) primes, even when they are primes of bad reduction.
There are not yet enough worked examples where the rank is larger than 3,
so it is hard to say anything precise about the performance of the algorithm
in this case. At least there are isolated examples that show that it can still
work when r is as large as 6.

Poonen [36] shows that under reasonable assumptions, the following
should be true.

Conjecture 19 (Poonen Heuristic). If C(Q) = 0, then the maps o and
in Diagram (3.1) above will have disjoint images when n and the set S are
sufficiently large.

Conjecture 19 implies Conjecture 16 if we assume that II1(J/Q) has no
nontrivial infinitely divisible elements, see [52].

3.2. Satisfying the assumption on J(Q). We are assuming here that
we know explicit generators of J(Q). For the Mordell-Weil sieve as described
above, if we use it to show that C' has no rational points, it is actually
sufficient to know generators of a subgroup of finite index, if we can also
show that the index is coprime to m. The latter is usually not so hard;
see [27]. To achieve the former, we can use n-descent again, but this time
on the Jacobian J. This is feasible for hyperelliptic curves when n = 2
and in a few other rather special cases, see [40, 37, 48, 38]. As with elliptic
curves, large generators can be a problem, however.

Example 20. (See [7].) For the small genus 2 curve
C:y?=-320+2°—22*—222+22+3,

the Mordell-Weil group J(Q) is infinite cyclic, generated by [P + P» — W],
where the xz-coordinates of P; and P, are the roots of

562 + 37482925498065820078878366248457300623 T _|_ 581452628280824306698926561618393967033
34011049811816647384141492487717524243 544176796989066358146263879803480387888 ?
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and W is a canonical divisor.

The bound on r obtained from 2-descent on J need not be tight. The
difference to the actual value of r comes from 2-torsion elements of the
Shafarevich-Tate group III(J/Q). In some cases, it is possible to show that
there are non-trivial such elements, thereby improving the upper bound
on the rank. Two techniques that have been suggested and also used are
visualization [6] and the Brauer-Manin obstruction on certain related vari-
eties [1, 25, 32].

For ‘reasonable’ curves of genus 2, generators of a finite-index subgroup
of J(Q) can usually be determined. For hyperelliptic curves of genus at
least 3, it may still be possible in many cases, but the situation is already
less favorable. Beyond hyperelliptic curves and variations on that theme,
descent calculations appear to be rather hopeless with the currently avail-
able technology. There are some first attempts at 2-descent on Jacobians
of non-hyperelliptic curves of genus 3, however, so maybe the situation will
change at some point in the not-too-distant future.

3.3. An extension. If we take n in Diagram (3.1) to be a multiple of a
fixed number N, then we can restrict to a given coset X of NJ(Q) (since
this coset will be a union of cosets of nJ(Q)). Therefore the Mordell-Weil
sieve computation gives us a way of proving that the coset X does not
meet +(C). In this case, there are no rational points on C' that are mapped
into X under ¢.

Conjecture 16 can be extended to this situation.

Conjecture 21. Let Q € J(Q). If (Q + NJ(Q)) Nu(C) = 0, then there
aren € NZ and S such that the Mordell- Weil sieve with these parameters
proves this fact.

So if we can find an N that separates the rational points on C, i.e., such
that the composition C'(Q) = J(Q) — J(Q)/NJ(Q) is injective, then we
can effectively determine C(Q) if Conjecture 21 holds for C'. The procedure
simply considers each coset of NJ(Q) in turn. On the one hand, we run
a search on C to find a rational point that maps into the coset under
consideration; on the other hand, we run the Mordell-Weil sieve with the
aim of proving that no such point exists. If Conjecture 21 holds, then one
of these two computations has to produce a result. (In practice, we just run
the Mordell-Weil sieve. As long as the intersection of the images of o and g
is nonempty, we check the smallest representatives in J(Q) of the elements
of the intersection whether they come from the curve.)

4. Chabauty’s method

4.1. The idea. Chabauty [13] used this method to prove Mordell’s Con-
jecture in the case that the rank r of J(Q) is smaller than the genus g of
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the curve. The idea is to consider the p-adic points J(Q)) as a p-adic Lie
group. The topological closure of J(Q) then is a Lie subgroup of dimension
at most 7. One then expects that this subgroup of positive codimension has
only finitely many points of intersection with the analytic curve ¢(C(Q))).
This is what Chabauty proves. Later, the method was taken up by Cole-
man [15] who used it to deduce upper bounds on the number of rational
points on the curve. The method can also be used to determine the set of
rational points in certain cases, see [23, 26, 57] for early examples of this.
The book [12] contains a description of the method when C' has genus 2.
We now describe the setting more concretely. Let p be a prime of good
reduction for C' (this assumption simplifies things, but is not strictly neces-
sary). We denote by Q4(Q,) the g-dimensional Q,-vector space of regular
1-forms on J, and similarly for C. Then ¢ induces an isomorphism of Q}(Q,)
and Qlc(Qp) that is in fact independent of our choice of the embedding &.
The p-adic logarithm on J is a continuous group homomorphism

log : J(Q,) — ToJ(Q,) = Q4(Q,)*

whose kernel consists of the elements of finite order. It induces a pairing

A 0@ X IQ) — Q@R [ w= (o lgR)

that becomes perfect if we replace J(Qp) by J(Q,)° ®z, Qp (where J(Q,)°
is a sufficiently small neighborhood of the identity). Since

rank J(Q) = r < g = dimg, Q}f(@p) )

there is a differential

0 # wp € QH(Q,) = QY(Qy)

that kills J(Q) C J(Qp) under the pairing (4.1).
Let Py € C(Q) be used as the base-point for the embedding ¢. Then the
above implies that every point P € C'(Q) must satisfy

P
A(P) = / wy = 0.
Py
The function A is a p-adic analytic function on C(Q,). On each residue class
mod p, it can be represented by an explicit converging power series. This
makes it possible to bound the number of zeros of A on such a residue class.
If we find the same number of rational points within the residue class, then
we know that we have found them all. Some of the zeros of A may occur at
transcendental points, however; in this case the upper bound on the number
of points is not tight. We can use information from the Mordell-Weil sieve
to rule out the spurious zeros; see [38] for some examples.
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4.2. Combination with the Mordell-Weil sieve. We can also switch
the roles of Chabauty’s method and the Mordell-Weil sieve and use Cha-
bauty’s method in a helping function. We still need to assume that r < g.
The idea is to use Chabauty’s approach to find a separating number N.
The key to this is the following result (see for example [51]).

Theorem 22. Suppose that p is a prime of good reduction for C' and that
wp € Q5(Qy) is a differential that kills the Mordell-Weil group J(Q). We
can assume that wy, is scaled so that it has a well-defined reduction w, # 0
mod p. If @, does not vanish on C(Fp) and p > 2, then each residue class
mod p on C' contains at most one rational point.

In this case, the number N = #J(F,) is separating, since we know that
the map C(Q) — C(F)) is injective (this is the statement of the theorem),
that ¢ : C(IF,) — J(IF,) is injective, and that J(Q)/NJ(Q) maps to J(F)).

Heuristic considerations indicate that the theorem applies for a set of
primes p of positive density whenever r < g and J is simple. (If J splits,
we can use one of the factors of J to do a similar computation.)

The most accessible case is when g = 2, since then we have a good
chance to determine J(Q). The ‘Chabauty condition’ r < ¢ then reduces
tor = 1. (When r = 0, the group J(Q) is finite, and we can easily find its
intersection with ¢(C'), so this case is essentially trivial.) In this case, the
differentials w, can be computed very easily, and we quickly find suitable
primes p. The search for a suitable separating number N can be integrated
with the Mordell-Weil sieve computation. This leads to a very efficient
implementation that determines C(Q) quite fast for genus 2 curves C' such
that rank J(Q) = 1. See [9] for a discussion.

Example 23. (See [54]) For the 46 436 small genus 2 curves with rational
points and such that r = 1, we determined C(Q). This computation takes
about 8-9 hours on current hardware (as of 2009).

5. Some odds and ends

In this section, we collect some remarks on extensions and variants of
the methods discussed above, and on some other approaches.

5.1. Larger rank. When r > g, we can still use the Mordell-Weil Sieve
to show that we know all rational points up to very large height. For this,
we increase n in the sieving procedure until we can prove that none of
the remaining cosets of nJ(Q) contains a point on C' of height smaller
than a given bound, except for the points we know. Once the bulk of the
computation is done, we can increase the height bound without much extra
cost.

If the desired height bound is not so large, it may be more efficient to
use lattice point enumeration. For this, we use the fact that the torsion-free
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quotient J(Q)/J(Q)tors = Z" is endowed with a positive definite quadratic
form h, the canonical height. The height bound for P € C(Q) translates
into a bound for A(1(P)); we can then enumerate all points in J(Q) (mod
torsion) up to that height bound and check if they come from the curve.

Example 24. (See [54]) Unless there are points of height > 1019 the
largest point on a small genus 2 curve has height (i.e., maximum absolute
value of the numerator and denominator of its z-coordinate) 209 040.

For these applications, it is not enough to know generators of a finite-
index subgroup of J(Q). We really need to know generators of the full
Mordell-Weil group. The ‘saturation’ step from a finite-index subgroup to
the full group requires the computation of canonical heights on J, and
we need a bound for the difference between the canonical height and a
suitable ‘naive height’ So far, the necessary theory and algorithms only
exist for g < 2 [22, 27, 47, 49]. Therefore, we are currently limited to curves
of genus 2. There is current work that aims at extending the tools so that
they can also be used for higher-genus hyperelliptic curves, so we may soon
be able to deal with a larger class of curves.

5.2. Integral points. If we can determine the set of rational points on C|
we obviously have also found the integral points. However, we can deter-
mine the set of integral points in some cases even when we are not able to
find C(Q). For example, if C' is hyperelliptic, we can compute bounds for
integral points using Baker’s method of ‘Linear forms in logarithms’ The
currently best results in this direction [10] lead to bounds of a flavor like
|| < 100"

If we know generators of J(Q), we can use the Mordell-Weil sieve as
explained in the previous subsection to prove that there are no unknown
rational points below that bound. (The bound for h is something like 10%
with k of the order of several hundred or a couple of thousand. This is within
reach of our current implementation of the Mordell-Weil sieve method.
See [10] or [9] for details.) It follows that we already know all the integral
points on C.

Example 25. (See [10]) The integral solutions to

y\ [z
2) \5
have z € {0,1,2,3,4,5,6,7,15,19}.

Since we need to know generators of the full Mordell-Weil group for this
application, the remarks made at the end of the previous subsection also
apply here. In particular, we are currently restricted to curves of genus 2.
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5.3. Genus larger than two. We have seen that there are methods avail-
able that allow us to find out a lot about the rational points on a given
curve of genus 2. When the genus is larger, a number of difficulties arise.

If C is hyperelliptic (or perhaps of some other rather special form), it is
still possible to do 2-descent on C' and (to a certain extent) on J. For other
curves, there is so far no feasible way to obtain provable upper bounds on
the rank of J(Q). If we are willing to assume the Birch and Swinnerton-
Dyer conjecture for J (together with some related conjectures on L-series)
and the conductor of J is not too large, then we can use Tim Dokchitser’s
code [20] to compute (an upper bound for) the order of vanishing of L(s, J)
at s = 1, which gives a conditional upper bound on r. We may then be able
to find a set of generators of a finite-index subgroup of J(Q); this suffices to
apply Chabauty’s method or its combination with the Mordell-Weil sieve.

Another difficulty is the missing explicit theory of heights. This prevents
us from obtaining generators of the full Mordell-Weil group (or rather, it
prevents us from showing that we actually have generators). This means
that we cannot use the techniques described earlier in this section.

Here are some examples that show what can still be done with curves of
genus at least 3.

Example 26. (See [38]) In the course of solving 22 + y3 = 27 in coprime

integers, one has to determine the set of rational points on certain twists
of the Klein Quartic. These are rather special non-hyperelliptic curves of
genus 3. 2-Descent on J is possible here; Chabauty and Mordell-Weil sieve
techniques are successful.

Example 27. (See [53]) The curve ngn(ﬁ) classifying 6-cycles under the
iteration of x — x2 + ¢ has genus 4. Assuming the Birch and Swinnerton-
Dyer conjecture for its Jacobian, we can show that r = 3. We can then apply
Chabauty’s method to determine ng "(6)(Q). It follows that there are no
6-cycles consisting of rational numbers (under the assumptions made).

Example 28. (See [44]) What are the arithmetic progressions in coprime
integers that have the form (a2,b%, ¢?, d®)? This question leads to a number
of hyperelliptic curves of genus 4; every solution to the original question
gives rise to a rational point on one of these curves. There are three essen-
tially different curves. For two of them, the 2-Selmer set turns out to be
empty. For the last one, a 2-descent on its Jacobian is possible and shows
that the rank is 2. Chabauty, combined with a little Mordell-Weil sieve in-
formation, then succeeds in showing that there are no unexpected points.
This finally proves that the only arithmetic progression of the desired form
is the trivial one, (1,1,1,1).
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5.4. The method of Dem’yanenko-Manin. The method of Dem’ya-
nenko-Manin is an alternative method that can be used to determine C(Q)
in some cases. When it applies, it gives an effective bound on the height of
the rational points on C' (and not just on their number, as is the case with
Chabauty’s method).

The requirement here is that we have m independent morphisms C' — A,
where A is some abelian variety and m > rank A(Q). The idea is that
the images of points on C' under these independent morphisms want to
be independent in A(Q), but there is not enough room for them to be
independent. This leads to a bound on the height of the points.

If one looks at more or less ‘random’ curves C' that have two independent
maps to an elliptic curve F, say, then the two images on F of a rational
point on C' usually are independent in E(Q), invalidating the assumption.
So the method appears to be of fairly limited applicability.

There are cases, however, when the method can be used with profit.
In [19], it is applied to certain twists of the Fermat quartic that have two
independent maps to an elliptic curve. However, as Serre comments in [43],
it is hard to find nontrivial examples. See [28] for a more recent variation
on this theme.

In [33], Manin makes use of the growing number of degeneracy maps
Xo(p™) — Xo(p) in order to show that for any given prime p, the power
of p that divides the order of a rational torsion point on an elliptic curve
over Q (or over any fixed number field) is bounded.

5.5. Covering collections and elliptic curve Chabauty. The Descent
Theorem 11 tells us that we obtain all rational points on a given curve C
from the rational points on the various twists D¢ of a covering of C. If
we can find this collection of twists explicitly (this is sometimes called a
covering collection for C'), then we can attempt to determine their sets of
rational points instead of directly trying to find C(Q). This can be helpful
when the rank of J(Q) is too large to apply Chabauty’s method on C since
the ranks associated to the curves D¢ may well be sufficiently small.

The downside of this approach is that the covering curves have larger
genus than C, and so the methods described here are usually not applicable.
In some cases, the curves D¢ map to other curves of low genus. If we can find
their rational points, we can determine those on D¢. A very useful variant
arises when the target is an elliptic curve E; the map may be defined over
some number field K. The images of rational points on D, then satisfy
some additional constraints. This can be used to find these images by a
variant of Chabauty’s method (applied to the restriction of scalars of E
from K down to Q) when the rank of F(K) is less than the degree of K.
This is known as Elliptic curve Chabauty; see [2, 3, 4, 5, 57] for details and
examples.
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6. Concluding remarks

The last ten or fifteen years have seen tremendous progress in our ability
to determine the set of rational points on curves of higher genus, in partic-
ular on curves of genus 2. Given a curve C' of genus 2 over QQ, we can now
do the following.

e Search for rational points on C.

e Check if C has points everywhere locally.

e Perform a 2-descent on C, thus possibly showing that C(Q) is
empty.

e Perform a 2-descent on J, the Jacobian of C, thus obtaining an
upper bound on r = rank J(Q).

e Search for rational points on J, thus obtaining a lower bound on 7.

e Find generators of a finite-index subgroup of J(Q) if both bounds
agree.

e Compute canonical heights on J.

e Find generators of J(Q) if generators of a finite-index subgroup are
known, assuming that the bound for the difference between naive
and canonical height is not too large.

o If r <1, determine C(Q) using a combination of the Mordell-Weil
sieve and Chabauty’s method. (Termination of this is conditional on
Conjecture 21, but if the computation terminates, which is always
the case in practice, the result is provably correct.)

e If r > 2 and J(Q) is known, find all rational points on C up to very
large height.

e If J(Q) is known, find all integral points on C.

From a practical point of view, what is missing to make this really satis-
fying is a way of determining a separating N when r > 2 (without previous
knowledge what C'(Q) is). If a separating N can be found, then the same
approach as used when combining the Mordell-Weil sieve with Chabauty’s
method will enable us to determine C(Q).

From a theoretical point of view, we would like to have a proof of Con-
jecture 21, since this will guarantee that our procedure terminates. (For
practical computations, we don’t really care about a proof as long as the
computation terminates; the result will be correct in any case.) The other
theoretical gap is that it is still open whether the rank r can be found ef-
fectively. This is related to the finiteness of III(.J/Q), which is only known
in very special cases.

For curves of higher genus than 2, some of the items on the list above
can still be done (in particular when C' is hyperelliptic), but we soon reach
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a point where things become infeasible. However, I believe that this is only
a matter of complexity and not of principle: given sufficient resources, we
should be able to perform the same kind of computation also with more
general curves. (Of course, some theoretical work still has to be done for
this, like an extension of the explicit theory of heights that we have at our
disposal when the genus is 2.)

Based on what we can actually do, on various heuristic considerations,
and on fairly extensive experimental data, I am convinced that it is actually
possible (in principle) to determine the set C(Q) algorithmically, when C
is a curve of genus > 2. A complete proof of this statement is likely to be
quite far away still, but the progress that has been made on the practical
side in recent years is very encouraging.

References

[1] M.J. BriGHT, N. BRUIN, E.V. FLYNN, A. LoGAN, The Brauer-Manin obstruction and 111[2],
LMS J. Comput. Math. 10 (2007), 354-377.

[2] N. BRUIN, Chabauty methods and covering techniques applied to generalized Fermat equa-
tions, CWI Tract 133, 77 pages (2002).

[3] N. BRUIN, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003),
27-49.

[4] N. BruiN, N.D. ELKies, Trinomials ax” +bz+c and ax®+bz+c with Galois groups of order
168 and 8-168, in: Algorithmic number theory, Sydney 2002, Lecture Notes in Comput. Sci.
2369, Springer, Berlin (2002), pp. 172-188.

[5] N. BRUIN, E.V. FLYNN, Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc.
357 (2005), 4329-4347.

[6] N. BruiN, E.V. FLYNN, Ezhibiting SHA[2] on hyperelliptic Jacobians, J. Number Theory
118 (2006), 266—291.

[7] N. BrRUIN, M. STOLL, Deciding existence of rational points on curves: an experiment, Ex-
periment. Math. 17 (2008), 181-189.

[8] N. BRUIN, M. STOLL, 2-cover descent on hyperelliptic curves, Math. Comp. 78 (2009),
2347-2370.

[9] N. BruiN, M. STOLL, The Mordell-Weil sieve: Proving non-existence of rational points on
curves, LMS J. Comput. Math. 13 (2010), 272-306.

[10] Y. BuGEAUD, M. MIGNOTTE, S. SIKSEK, M. STOLL, Sz. TENGELY, Integral points on hyper-
elliptic curves, Algebra Number Theory 2 (2008), 859-885.

[11] J.W.S. CasSELs, Second descents for elliptic curves, J. reine angew. Math. 494 (1998),
101-127.

[12] J.W.S. CassELs, E.V. FLYNN, Prolegomena to a middlebrow arithmetic of curves of genus 2,
London Math. Soc., Lecture Note Series 230, Cambridge Univ. Press, Cambridge, 1996.

[13] C. CHABAUTY, Sur les points rationnels des courbes algébriques de genre supérieur a l'unité,
C. R. Acad. Sci. Paris 212 (1941), 882-885.

[14] C. CHEVALLEY, A. WEIL, Un théoréme d’arithmétique sur les courbes algébriques, Comptes
Rendus Hebdomadaires des Séances de I’Acad. des Sci., Paris 195 (1932), 570-572.

[15] R.F. CoLEMAN, Effective Chabauty, Duke Math. J. 52 (1985), 765-770.

[16] J.E. CREMONA, T.A. FISHER, C. O’NEIL, D. SIMON, M. STOLL, Ezplicit n-descent on elliptic
curves. I. Algebra, J. reine angew. Math. 615 (2008), 121-155. II. Geometry, J. reine angew.
Math. 632 (2009), 63-84. III. Algorithms, in preparation.

[17] J.E. CrREMONA, T.A. FISHER, M. STOLL, Minimisation and reduction of 2-, 3- and 4-
coverings of elliptic curves, Algebra Number Theory 4 (2010), 763-820.



276

(18]
(19]
20]
(21]

(22]
23]

24]
25]
[26]
27]
(28]
(29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]

(39]

(40]
[41]
[42]

[43]

44]

Michael STOLL

B. CreuUTZ, Ezplicit second p-descent on elliptic curves, PhD Thesis, Jacobs University
Bremen, 2010.

V.A. DEM’JANENKO, Rational points of a class of algebraic curves (Russian), Izv. Akad.
Nauk SSSR Ser. Mat. 30 (1966), 1373-1396.

T. DOKCHITSER, Computing special values of motivic L-functions, Experiment. Math. 13
(2004), 137-149.

G. FALTINGS, Endlichkeitssatze fir abelsche Varietdten iber Zahlkorpern, Invent. Math. 73
(1983), 349-366.

E.V. FLYNN, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003-3015.
E.V. FLYNN, A flexible method for applying Chabauty’s theorem, Compositio Math. 105
(1997), 79-94.

E.V. FLYNN, The Hasse Principle and the Brauer-Manin obstruction for curves, Manu-
scripta Math. 115 (2004), 437-466.

E.V. FLYNN, Homogeneous spaces and degree 4 del Pezzo surfaces, Manuscripta Math. 129
(2009), 369-380.

E.V. FLYNN, B. POONEN, E.F. SCHAEFER, Cycles of quadratic polynomials and rational
points on a genus-2 curve, Duke Math. J. 90 (1997), 435-463.

E.V. FLYNN, N.P. SMART, Canonical heights on the Jacobians of curves of genus 2 and the
infinite descent, Acta Arith. 79 (1997), 333-352.

M. GIRARD, L. KuLEsz, Computation of sets of rational points of genus-3 curves via the
Dem’janenko-Manin method, LMS J. Comput. Math. 8 (2005), 267-300.

Su-IoN IH, Height uniformity for algebraic points on curves, Compositio Math. 134 (2002),
35-57.

V.A. KOLYVAGIN, Finiteness of E(Q) and II(E, Q) for a subclass of Weil curves, Izv. Akad.
Nauk SSSR Ser. Mat., Vol. 52 (1988), 522-540.

A.K. LENSTRA, H.W. LENSTRA, JR., L. LOVASzZ, Factoring polynomials with rational coef-
ficients, Math. Ann. 261 (1982), 515-534.

A. LoGAN, R. VAN LUUK, Nontrivial elements of Sha explained through K3 surfaces, Math.
Comp. 78 (2009), 441-483.

Y. MANIN, The p-torsion of elliptic curves is uniformly bounded (Russian), Izv. Akad. Nauk
SSSR Ser. Mat. 33 (1969), 459-465.

J.R. MERRIMAN, S. SIKSEK, N.P. SMART, Ezplicit 4-descents on an elliptic curve, Acta
Arith. 77 (1996), 385-404.

L.J. MORDELL, On the rational solutions of the indeterminate equations of the 3rd and 4th
degrees, Proc. Camb. Phil. Soc. 21 (1922), 179-192.

B. POONEN, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15
(2006), 415-420.

B. PoONEN, E.F. SCHAEFER, Explicit descent for Jacobians of cyclic covers of the projective
line, J. reine angew. Math. 488 (1997), 141-188.

B. POONEN, E.F. SCHAEFER, M. STOLL, Twists of X(7) and primitive solutions to x%+y3 =
27, Duke Math. J. 137 (2007), 103-158.

B. POONEN, M. STOLL, A local-global principle for densities, in: SCOTT D. AHLGREN (ed.)
et al.: Topics in number theory. In honor of B. Gordon and S. Chowla. Kluwer Academic
Publishers, Dordrecht. Math. Appl., Dordr. 467 (1999), 241-244.

E.F. SCHAEFER, Computing a Selmer group of a Jacobian using functions on the curve,
Math. Ann. 310 (1998), 447-471.

V. SCHARASCHKIN, Local-global problems and the Brauer-Manin obstruction, Ph.D. thesis,
University of Michigan (1999).

J.-P. SERRE, Algebraic groups and class fields, Springer GTM 117, Springer Verlag, 1988.
J.-P. SERRE, Lectures on the Mordell- Weil theorem. Translated from the French and edited
by Martin Brown from notes by Michel Waldschmidt. Aspects of Mathematics, E15. Friedr.
Vieweg & Sohn, Braunschweig, 1989.

S. SIKSEK, M. STOLL, On a problem of Hajdu and Tengely, in: G. Hanrot, F. Morain, and
E. Thomé (Eds.): ANTS-1X 2010, LNCS 6197, pp. 316-330. Springer Verlag, Heidelberg,
2010.



[45]
[46]

[47]
(48]

[49]
(50]
[51]
[52]
(53]
[54]
[55]

[56]
[57]

Rational points on curves 277

D. SmMON, Solving quadratic equations using reduced unimodular quadratic forms, Math.
Comp. 74 (2005), 1531-1543.

S. STAMMINGER, Ezxplicit 8-descent on elliptic curves, PhD thesis, International University
Bremen (2005).

M. STOLL, On the height constant for curves of genus two, Acta Arith. 90 (1999), 183-201.
M. StoLL, Implementing 2-descent on Jacobians of hyperelliptic curves, Acta Arith. 98
(2001), 245-277.

M. StoLL, On the height constant for curves of genus two, II, Acta Arith. 104 (2002),
165-182.

M. StoLL, Descent on Elliptic Curves. Short Course taught at IHP in Paris, October 2004.
arXiv:math/0611694v1 [math.NT].

M. STOLL, Independence of rational points on twists of a given curve, Compositio Math.
142 (2006), 1201-1214.

M. StoLL, Finite descent obstructions and rational points on curves, Algebra Number The-
ory 1 (2007), 349-391.

M. StoLL, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput.
Math. 11 (2008), 367-380.

M. STOLL, On the average number of rational points on curves of genus 2, Preprint (2009),
arXiv:0902.4165v1 [math.NT].

M. SToLL, Documentation for the ratpoints program, Manuscript (2009), arXiv:0803.3165
[math.NT].

A. WEIL, L’arithmétique sur les courbes algébriques, Acta Math. 52 (1929), 281-315.

J.L. WETHERELL, Bounding the number of rational points on certain curves of high rank,
Ph.D. thesis, University of California (1997).

Michael STOLL

Mathematisches Institut

Universitat Bayreuth

95440 Bayreuth, Germany.

E-mail: Michael.Stoll@uni-bayreuth.de

URL: http://www.mathe2.uni-bayreuth.de/stoll/


mailto:Michael.Stoll@uni-bayreuth.de
http://www.mathe2.uni-bayreuth.de/stoll/

	1. Introduction
	1.1. The problem
	1.2. The structure of C(Q)
	1.3. Genus zero
	1.4. Genus one
	1.5. Elliptic curves

	2. Checking existence of rational points
	2.1. Finding points
	2.2. Local points
	2.3. Descent again
	2.4. Abelian coverings
	2.5. Computing n-Selmer sets in practice
	2.6. A conjecture

	3. The Mordell-Weil sieve
	3.1. The idea
	3.2. Satisfying the assumption on J(Q)
	3.3. An extension

	4. Chabauty's method
	4.1. The idea
	4.2. Combination with the Mordell-Weil sieve

	5. Some odds and ends
	5.1. Larger rank
	5.2. Integral points
	5.3. Genus larger than two
	5.4. The method of Dem'yanenko-Manin
	5.5. Covering collections and elliptic curve Chabauty

	6. Concluding remarks
	References

