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Journal de Théorie des Nombres
de Bordeaux 24 (2012), 201-229

Connected abelian complex Lie groups and
number fields

par Daniel VALLIÈRES

Résumé. Dans cet article, nous expliquons une façon d’associer
à tout corps de nombres certains groupes de Lie complexes et
connexes. Nous étudions en particulier le cas des corps de nombres
de degré 3 sur Q qui ne sont pas totalement réels et expliquons le
lien entre ceux-ci et les groupes de Cousin (“groupes toroidaux”)
de dimension complexe 2 et de rang 3.

Abstract. In this note we explain a way to associate to any
number field some connected complex abelian Lie groups. Further,
we study the case of non-totally real cubic number fields, and
we see that they are intimately related with the Cousin groups
(toroidal groups) of complex dimension 2 and rank 3.
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1. Introduction
The theory of complex multiplication started with Abel and was devel-

oped later on by Kronecker and Weber. Hilbert and his students Takagi,
Fueter and Hecke studied the theory further followed by Hasse and his stu-
dent Deuring who developed another approach which was more algebraic.
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They made fundamental use of elliptic curves and their reduction mod-
ulo various primes. Shimura, Taniyama and Weil extended this theory to
abelian varieties. It has always been a rich theory involving several different
areas of mathematics.

Kronecker conjectured that every abelian extension of a quadratic imag-
inary number field K can be generated by special values of the j-function
evaluated at some points in K which are also in the upper-half plane. It
turns out that this conjecture was false as noticed by Fueter. One has to
use special values of some modified elliptic functions, the so-called Weber
functions, in order to get Kab. We remark here that if the class number
of K is one, then one can just use the values of a single elliptic function
(associated with a single lattice Γ) evaluated at torsion points of C/Γ in
order to get Kab, a fact which could be considered as the analogue of what
is going on for the class number one number field Q and the periodic func-
tion z 7→ exp 2πiz. This is in fact what Takagi did in his Ph.D. thesis
under Hilbert’s supervision in the special case of Q(i) using the lemniscate
function.

Another student of Hilbert, Hecke, tried to generalize the theory for
quadratic imaginary number fields to other number fields, the so-called
CM -fields of degree 4 over Q. He considered his attempt as a failure. Nev-
ertheless, after the Bordin’s prize memoir of Leftschetz and the work of Weil
on the Riemann hypothesis in function fields, the theory of abelian varieties
gave a new perspective on the subject. The theory of complex multiplica-
tion of abelian varieties was developed by Shimura, Taniyama and Weil. To
any pair (K,Φ) where K is a CM -field and Φ a CM -type, there is another
CM -field associated to it called the reflex field. If K is an abelian extension
of Q and Φ is not lifted from any smaller CM -field, it turns out that its
reflex field coincides with K, and this is why the reflex field does not show
up in the classical theory of complex multiplication of elliptic curves, since
a quadratic imaginary number field clearly does not contain any smaller
CM -field (there are other instances when the CM -field K and its reflex
field coincide). Moreover, one first uses special values of Siegel modular
functions (or Hilbert modular functions) in order to get unramified abelian
extensions of its reflex field (even though it is known that in general, one
does not get the full Hilbert class field), and then one uses some modified
abelian functions in order to generate some abelian extensions again of the
reflex field. Furthermore, this theory gives an explicit formula for the action
of the Artin symbol on these algebraic points. In the classical case of elliptic
curves, the classical j-function is such a Siegel modular function and the
modified elliptic functions are the so-called Weber functions. We refer to
[7] and the expanded [8] for this theory and also to [6] for an emphasis on
the elliptic curve case.
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We see that this theory is a mixture of the following ingredients.
• The complex points of an abelian variety defined over C form a
complex torus, i.e. a compact complex abelian Lie group. This can
be viewed as the analytico-geometric point of view of the question.
• An abelian variety is a projective algebraic group, and this is the
point of view from algebraic geometry.
• The abelian functions on a complex torus (and their associated
theta functions) allow one to embed it in a projective space as an
algebraic group under a certain condition, namely the existence of
a polarization.
• The automorphic functions which can be viewed in our case as
functions on some moduli spaces of abelian varieties with extra
structure.

The following paper is just concerned with the analytico-geometric point
of view, i.e. with some complex abelian Lie groups.

Let p(X) be a polynomial with rational coefficients which is irreducible,
and let K = Q[X]/(p(X)) be the corresponding number field, which we do
not view as embedded in C. Suppose also that we are given a complete set
of representatives modulo complex conjugation for the embeddings of K,
say

Φ = {σ1, . . . , σr1 , σr1+1, . . . , σr1+r2},
where the first r1 embeddings are the real ones. Out of these data, one gets
a Minkowski map

µΦ : K → Cr1+r2 ,

defined as usual by the formula λ 7→ (σ1(λ), . . . , σr1+r2(λ)). If m is any
module of K, that is a free abelian group contained in K of rank [K : Q],
then µΦ(m) is a lattice in Cr1+r2 not necessarily of full rank (see Theorem
4). This gives a systematic way of associating to these data a connected
abelian complex Lie group, namely Cr1+r2/µΦ(m).

When K = Q, and m = Z, one gets C/Z which is an example of a non-
compact connected abelian complex Lie group, and as it is well-known the
singular values

exp
(

2πim
n

)
,

of the exponential function z 7→ exp(2πiz), viewed as a function on C/Z,
generate abelian extensions of Q and if fact all of them. Another way of
saying this fact is that, the values obtained by evaluating the exponential
function at the torsion points of C/Z generate abelian extensions of Q.
This is the so-called Kronecker-Weber theorem and a proof can be found
in Hilbert’s Zahlbericht for instance.

When K is a quadratic imaginary number field and m is a fractional ideal
of K one gets the usual complex tori of complex dimension 1 admitting
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complex multiplication by the full ring of integers of K. Embedding them
in a projective space gives a way to construct elliptic curves with complex
multiplication by the full ring of integers OK .

Even more generally, let K be a CM -field (that is a totally imaginary
number field which is a quadratic extension of a totally real number field
as, for instance, the cyclotomic fields or the quadratic imaginary fields) of
degree 2n and suppose moreover that m is a fractional ideal of K. Then
Cn/µΦ(m) is an example of a complex torus admitting a Riemann form.
Therefore, according to the Riemann bilinear relations which are part of
the classical theory of abelian functions as contained in [9] for instance,
one concludes that there exists a non-degenerate abelian function on this
torus, a phenomenon which is not always the case if n ≥ 2. Similarly as in
the imaginary quadratic number field case, one can use this fact in order
to embed these complex tori in a projective space and this gives a way to
construct abelian varieties with complex multiplication by the full ring of
integers of K.

We point out that the known proofs of the theory of complex multipli-
cation of abelian varieties make fundamental use of the GAGA principle.
In other words, one makes use of the compactness of the complex torus
especially for its application to explicit class field theory.

On the other hand, the case of Q, even though it is a really special
case, could excite the curiosity of someone and lead him to have a look
at the non-compact complex Lie groups Cr1+r2/µΦ(m) arising from some
number fields which are not totally complex. After the quadratic imaginary
number fields and the quartic CM -fields, the simplest fields which we could
think of are the non-totally real cubic number fields. While thinking about
this question, we discovered that some of the results presented here were
already known to F. Gherardelli who wrote a paper in 1989 on this matter,
but from a slightly different point of view, see [3]. Since we plan to study
this subject further, we supply here possible proofs and in fact we just
follow the classical line of thought in the case of complex tori.

We emphasize again that here, we are only concerned with the analytico-
geometric side of the question, and we postpone the study of meromorphic
functions on these connected abelian complex Lie groups to a further paper.
We just remark that in the case of non-totally real cubic number fields, these
functions are meromorphic functions of two complex variables having three
R-linearly independent periods and that these functions were first studied
by Cousin in [2].

This paper is divided as follows. Section 2 recalls some properties of con-
nected abelian complex Lie groups and especially the Remmert-Morimoto
decomposition theorem. Section 2.1 is concerned with the endomorphisms
of a connected abelian complex Lie group. The link with non-totally real
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cubic number fields starts in Section 3 where we compute the Remmert-
Morimoto decomposition of some connected abelian complex Lie groups
arising from such number fields. Section 3.2 is concerned with the compu-
tation of the ring of endomorphisms of these complex Lie groups, and at
last we explain an action of the class group on these complex Lie groups in
Section 3.3. The main result of this paper is probably Corollary 7.

2. Connected abelian complex Lie groups
It is well-known that any connected abelian real analytic Lie group is

isomorphic to one of the form Ra×Sm where S is the unit circle (here, Sm
is not the mth-sphere in the (m+ 1)-dimensional euclidean space which is
not even a group in general, but rather the cartesian product of S with itself
m times). See for instance [4]. On the other hand, the structure theorem for
connected abelian complex Lie groups is not as simple as in the real case.
The purpose of this section is to explain and state this structure theorem
(the Remmert-Morimoto decomposition, see Theorem 3).

In this section, except otherwise specified, morphisms (or isomorphisms)
are always understood to be morphisms in the category of complex Lie
groups (that is a morphism is a group homomorphism which is also C-
differentiable). First of all, we recall that a lattice Γ in Cn is a closed
discrete subgroup of Cn. It is well-known that they are of the form

Γ = Z · γ1 + . . .+ Z · γt,
where the γi are R-linearly independent, and t ≤ 2n. If t = 2n, we shall say
that Γ is a lattice of full rank.

Definition 1. Let Γ be a lattice in Cn. By a basis for Γ, we mean a set of
Z-generators γ1, . . . , γt which are also R-linearly independent.

Given a lattice Γ in Cn, the quotient Cn/Γ is our first example of a
connected abelian complex Lie group. It turns out that all such groups are
of this form:

Theorem 1. Let G be a connected abelian complex Lie group of complex
dimension n. There exists then a lattice Γ in Cn such that

G ' Cn/Γ.

Proof. The proof is standard. One point of view consists of working with
the universal covering group, whereas the other point of view uses the
exponential map of Lie theory. �

Definition 2. Let G be a connected abelian complex Lie group. Any iso-
morphism

ξ : G→ Cn/Γ,
will be called a lattice representation of G.
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Notation. If G is a connected abelian complex Lie group and ξ : G→ Cn/Γ
is a lattice representation, then there is an isomorphism between End(G)
and End(Cn/Γ) given by

φ 7→ ξ ◦ φ ◦ ξ−1.

We shall denote this isomorphism by ξ̃.

It goes without saying that every time we make a definition about a
connected abelian complex Lie group using a lattice representation, one
has to check that this property does not depend on the choice of it. For
instance, it makes sense to talk about the rank of a connected abelian
complex Lie group (one could use Lemma 2 below in order to see that):

Definition 3. Let G be a connected abelian complex Lie group and choose
a lattice representation G ' Cn/Γ. One defines the rank of G to be

rank(G) := rankZ(Γ).

Definition 4. A connected abelian complex Lie group G having no other
holomorphic functions then the constant ones will be called a Cousin group.

Remark. In the literature, a Cousin group is sometimes called a (H,C)-
group or a toroidal group.

For example, any complex torus is a Cousin group, since there are no non-
constant holomorphic maps on a compact complex manifold. On the other
hand, there are also non-compact connected abelian complex Lie groups
which are Cousin. We will encounter such examples later on in connection
with arithmetic.

So far, a connected complex abelian Lie group has two invariants. One is
the complex dimension and the other one is the rank. We introduce another
one.

Definition 5. Let G be a connected abelian complex Lie group, and choose
a lattice representation G ' Cn/Γ. We define the complex rank of G to be

rankC(G) := dimC(SpanC(Γ)).

Remark. One can easily check that this notion is also well-defined.

Remark. We shall also write rankC(Γ) for dimC(SpanC(Γ)).

It is simple to see that if rankC(G) < n then G is not Cousin, and since
we clearly have

rank(G) ≥ rankC(G),
we see that G Cousin implies that rank(G) ≥ n. Here is a simple lemma
whose proof is left to the reader.
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Lemma 1. Let Γ ⊆ Cn be a lattice of rank n+m for some m ≥ 0. Suppose
also that rankC(Γ) = n, then there exists a change of basis for which the
lattice Γ becomes

Zn ⊕ Λ,
where Λ is another lattice of rank m. Moreover, the imaginary part of the
lattice Λ, which we denote by Im(Λ), is of rank m as well.

As an immediate corollary, we get:

Corollary 1. Let G be a connected abelian complex Lie group of complex
dimension n, and suppose

rank(G) = rankC(G) = n,

then G ' (C×)n.

We already know that if G is a Cousin group, then rankC(G) = n. It
follows moreover from this last corollary that necessarily rank(G) = n+m
for some m ≥ 1.

We now give a characterization of Cousin groups which is quite handy.
We present the proof contained in the beautiful paper [1].

Theorem 2 (Irrationality condition). Let Cn/Γ be a connected abelian
complex Lie group, and suppose that rankC(Γ) = n. Then Cn/Γ is Cousin
if and only if there does not exist any non-zero L ∈ HomC(Cn,C) such that
L(Γ) ⊆ Z.

Proof. Because of Lemma 1, we can suppose that Γ = Zn ⊕ Λ for some
other lattice Λ. Let f ∈ Hol(Cn/Γ), since in particular f is Zn-periodic, f
has a Fourier expansion

f(z) =
∑
m∈Zn

amexp(2πizmt),

converging everywhere on Cn. The Λ-periodicity tells us that

f(z + λ) = f(z) for all λ ∈ Λ,

and in terms of Fourier series:∑
m∈Zn

amexp(2πi(z + λ)mt) =
∑
m∈Zn

amexp(2πizmt),

for all λ ∈ Λ. This last equation implies then the following one∑
m∈Zn

amexp(2πiλmt)exp(2πizmt) =
∑
m∈Zn

amexp(2πizmt),

for all λ ∈ Λ. Since the Fourier coefficients are uniquely determined, we get

am(exp(2πiλmt)− 1) = 0.
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In other words, am = 0 unless maybe λmt ∈ Z for all λ ∈ Λ. Consider then
the set

S = {m ∈ Zn |λmt ∈ Z for all λ ∈ Λ}.
We see that Cn/Γ is Cousin if and only if S = {0}.

We are just left to prove that S = {0} if and only if there does not
exist any non-zero L ∈ HomC(Cn,C) such that L(Γ) ⊆ Z, but this is clear
because if m ∈ S and m 6= 0 then the map z 7→ zmt is such a C-linear map.
Conversely if such a L exists and we express it in matrix notation using
the canonical basis of Cn, we see that it has to be of the form z 7→ zmt

for some non-zero m ∈ Cn, but since L(Zn ⊕ Λ) ⊆ Z, we necessarily have
m ∈ Zn. �

We end this section with the statement of the structure theorem for
connected complex abelian Lie groups.

Theorem 3 (Remmert-Morimoto decomposition). Any connected abelian
complex Lie group G is isomorphic to a group of the form

Ca × (C×)b ×G0,

where G0 is a Cousin group. Moreover, the decomposition is unique meaning
that if

Ca × (C×)b ×G0 ' Ca
′ × (C×)b′ ×G′0,

then
a = a′, b = b′, and G0 ' G′0.

Proof. The idea of the proof contained in [5] is to look at the unique closed
connected complex normal subgroup G0 such that G/G0 is a Stein group
and such that G0 is a Cousin group. One then shows that G ' G0 ×G/G0
and uses the fact that a Stein group is of the form Ca× (C×)b. The details
of the proof can be found in [5]. �

2.1. Endomorphisms of connected abelian complex Lie groups.
Let G be a connected abelian complex Lie group. We shall denote by
End(G) the ring of endomorphisms of G. One of the important uses of
lattice representations is that it allows one to study the ring of endomor-
phisms of a connected abelian complex Lie group.

Lemma 2. Let φ : Cn/Γ1 → Cm/Γ2 be a morphism of connected abelian
complex Lie groups. There exists then a unique C-linear map Lφ : Cn → Cm
such that Lφ(Γ1) ⊆ Γ2 and such that the following diagram is commutative:

Cn
Lφ−−−−→ Cmyπ1

yπ2

Cn/Γ1
φ−−−−→ Cm/Γ2
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where π1, π2 are the natural projections. Conversely, given such a C-linear
map, it gives by passage to quotient a unique morphism of connected abelian
complex Lie groups.

Proof. There are two points of view. The first one is to see πi as the cor-
responding exponential map in which case Lφ is given by the basic theory
of Lie groups. The second one consists in viewing πi as the correspond-
ing universal covering map and then use the lifting theorem plus the fact
that a holomorphic group homomorphism from Cn to Cm is necessarily
C-linear. �

Because of Lemma 2, one can associate to Cn/Γ two representations of
End(Cn/Γ). The first one is the analytic representation

ρa : End(Cn/Γ)→ EndC(Cn),
defined by φ 7→ Lφ. The second one is the rational representation: Note
that Lφ(Γ) ⊆ Γ for all φ ∈ End(Cn/Γ) and therefore, we can consider Lφ
as an endomorphism of the free abelian group Γ. In this way, we get the
rational representation

ρr : End(Cn/Γ)→ EndZ(Γ),
defined by φ 7→ Lφ.

Now, if we start with a connected abelian complex Lie group G and we
choose a lattice representation

ξ : G→ Cn/Γ,
then the compositions ρa ◦ ξ̃ and ρr ◦ ξ̃ give representations of End(G).
What happens if we choose another lattice representation? Well, it is not
hard to check that the corresponding representations are isomorphic.

Lemma 3. It is clear from the uniqueness in Lemma 2 that the analytic
representation of Cn/Γ is faithful. If we suppose moreover that rankC(Γ) =
n, then the rational representation is also faithful.

Proof. If Lφ1 = Lφ2 on Γ, we get that Lφ1 = Lφ2 on Cn since SpanC(Γ) =
Cn and therefore φ1 = φ2. �

Remark. Note that this last lemma applies to Cousin groups.

Corollary 2. Let G be a connected abelian complex Lie group of complex
dimension n, and suppose that rankC(G) = n, and rank(G) = n+m, then
End(G) is a free abelian group of rank smaller or equal to (n+m)2.

For the sake of conciseness, we shall denote Q ⊗Z End(G) by End0(G).
After tensoring with Q we get representations of End0(Cn/Γ) which we
denote by the same symbols:

ρa : End0(Cn/Γ)→ EndC(Cn),
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and
ρr : End0(Cn/Γ)→ EndQ(SpanQ(Γ)).

Moreover, the associated matrix representation, after we choose the canon-
ical basis of Cn, will be denoted by φ 7→Mφ.

Corollary 3. Let G be a connected abelian complex Lie group of complex
dimension n, and suppose that rankC(G) = n, and that rank(G) = n+m,
then End0(G) is a finite dimensional Q-algebra of dimension smaller or
equal to (n+m)2.

It would be interesting to have some general structure theorems about
these finite dimensional Q-algebras. Particular cases have been worked out
but, as far as we know, the answer in general is not known.

Note also that given any connected abelian complex Lie group, there exist
some trivial endomorphisms which are just multiplication by n (denoted by
[n]). It is clear that the map

[n] : G→ G,

given by g 7→ n · g is a group homomorphism. Moreover, it is also holomor-
phic. Indeed, if n = 2, it is holomorphic because it is the composition of
two holomorphic maps, namely the diagonal map and the group law itself.
An induction then shows that the maps [n] are holomorphic for all n ≥ 1.
Since the inverse map is also holomorphic, we conclude that [n] is an en-
domorphism in the category of complex abelian Lie groups for all n ∈ Z.
Hence, End(G) always contains a subring isomorphic to Z. For most of
them, this is the end of the story. On the other hand, those having a ring of
endomorphisms strictly bigger than Z seem to have some connections with
arithmetic.

2.2. Matrix notation. Let Cn/Γ be a connected abelian complex Lie
group of rank t. When it is time to prove something particular about a
given connected abelian complex Lie group, it is often useful to express
everything in terms of matrices. Suppose that γ1, . . . , γt is a basis for the
lattice Γ. Suppose also that with respect to the canonical basis (e1, . . . , en)
for Cn the coordinates of γj are given by

γj = a1je1 + . . .+ anjen,

then the matrix
Ω = (aij) ∈ Mn×t(C)

will be called a period matrix of Γ.
If we are given a φ ∈ End(Cn/Γ) and if M = Mφ is the corresponding

matrix representing Lφ in the canonical basis of Cn, then there exists a
matrix A ∈ Mt(Z) such that

MΩ = ΩA.
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These are the so-called Hurwitz relations. The matrices A ∈ Mt(Z) are
called multipliers of Ω and the matrices Mφ ∈ Mn(C) are called multipli-
cations of Ω.

Lemma 4. Let Cn/Γ be a connected abelian complex Lie group of rank
n + m with m ≥ 1 and such that rankC(Γ) = n. One can find a basis for
which the period matrix of Γ has the form(

In−m τ1 τ2
0 Im τ

)
,

where τ1, τ2 ∈ Mn−m,m(R), τ ∈ Mm(C) and (Im τ) is the period matrix of
a complex torus of dimension m and Im(τ) has rank m.

Proof. Because of Lemma 1, we can assume that the lattice looks like Zn⊕Λ,
where Λ is another lattice such that Im(Λ) has rank m. We can thus find
a basis for which the period matrix looks like(

In−m 0 α1
0 Im α2

)
where α1 ∈Mn−m,m(C) and α2 ∈Mm(C). Since Im(Λ) has rank m, we can
also suppose that Im(α2) is invertible. Consider then the matrix(

In−m −Im(α1)Im(α2)−1

0 Im

)
which is clearly in GLn(R). We have(

In−m −Im(α1)Im(α2)−1

0 Im

)
·
(
In−m 0 α1

0 Im α2

)
=
(
In−m τ1 τ2

0 Im τ

)
where

τ1 = −Im(α1)Im(α2)−1 ∈ Mn−m,m(R),
and

τ2 = α1 − Im(α1)Im(α2)−1α2 ∈ Mn−m,m(R).
Moreover, τ = α2 and since Im(α2) has rank m we conclude that (Im τ) is
indeed the period matrix of a complex torus. This is what we wanted to
prove. �

Remark. For a Cousin group, these particular basis elements for which the
period matrix looks like the one above are usually called toroidal coordi-
nates in the literature. They are also called apt coordinates in [1].

If the period matrix of a connected abelian complex Lie group has the
shape discribed in the last lemma, then the irrationality condition (Theo-
rem 2) becomes quite simple (the proof is left to the reader):
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Lemma 5. Suppose that Cn/Γ is a connected abelian complex Lie group of
rank n+m, with m ≥ 1 and suppose also that the period matrix associated
with Γ has the form (

In−m τ1 τ2
0 Im τ

)
,

where τ1, τ2 ∈ Mn−m,m(R), τ ∈ Mm(C) and (Im τ) is the period matrix of
a complex torus of dimension m. Then Cn/Γ is a Cousin group if and only
if given any s ∈ Zn−m \ {0}, one has

s · (τ1 τ2) /∈ Z2m.

3. Non-totally real cubic number fields
In the theory of explicit class field theory for Q and also for CM -fields,

there are connected abelian complex Lie groups which are somehow at the
origin of any arithmetical investigation. These analytico-geometrical objects
can be realized with the help of the Minkowski map, and similar objects
can be constructed for any number field, not only for Q and for CM -fields.
We start by explaining this.

Definition 6. Let K be a number field, and let r = r1 + r2, where as
usual r1 (resp. 2r2) is the number of real (resp. complex) embeddings of
K. A complete set Φ = {σ1, . . . , σr} of representatives modulo complex
conjugation for the embeddings of K into C where the first r1 embeddings
are real will be called a type.

Remark. If K is a CM -field, a type is usually called a CM -type.

To any type Φ for K, one can associate the Minkowski map
µΦ : K → Cr,

defined by λ 7→ (σ1(λ), . . . , σr(λ)).

Theorem 4. Let K be a number field of degree n over Q and let Φ be a
type of K. Given any free Z-module m of rank n in K, the free Z-module
µΦ(m) is in fact a lattice in Cr. Moreover

• rank(µΦ(m)) = r1 + 2r2 = [K : Q],
• rankC(µΦ(m)) = r1 + r2 = r.

Proof. Indeed, suppose that a Z-basis for m is given by (β1, . . . , βn), then
this basis is in fact a Q-basis for the Q-vector space K (this can be checked
easily since Q-linearly dependence implies Z-linearly dependence). There-
fore, we have

disc(β1, . . . , βn) 6= 0,
by a classical result in algebraic number theory. In order to show that µΦ(m)
is a lattice, we just have to show that the vectors µΦ(β1), . . . , µΦ(βn) are
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R-linearly independent. Suppose they are not, then there exist numbers
λ1, . . . , λn ∈ R not all zero such that

λ1µΦ(β1) + . . .+ λnµΦ(βn) = 0.

Then we would get in column notation

λ1



σ1(β1)
...

σr1(β1)
σr1+1(β1)

...
σr1+r2(β1)
σr1+r2+1(β1)

...
σr1+2r2(β1)


+ . . .+ λn



σ1(βn)
...

σr1(βn)
σr1+1(βn)

...
σr1+r2(βn)
σr1+r2+1(βn)

...
σr1+2r2(βn)


= 0,

where σj = σj−r2 for j = r1 + r2 + 1, . . . , r1 + 2r2. This would contradict
the fact that

disc(β1, . . . , βn) 6= 0.
We also conclude that

rank(µΦ(m)) = n = [K : Q].

Moreover, since the matrix (σi(βj)) has full rank we conclude as well that

rankC(µΦ(m)) = r = r1 + r2.

�

Thus, from any free Z-module m of rank n in K, we get a connected
abelian complex Lie group Cr/µΦ(m). But these are really special connected
abelian complex Lie groups since they are built out of some arithmetical
data.

From now on, we shall focus on the case where K is a cubic number field
which is not totally real; such a field cannot be Galois. We will also only
work with fractional ideals, even though some results might be true more
generally for any module of K. We do this only for the sake of simplicity.

3.1. The Remmert-Morimoto decomposition. Let K be a number
field, Φ a type of K and let also a be a fractional ideal in K. The first
question one might ask is: What is the Remmert-Morimoto decomposition
of Cr/µΦ(a)? If K is totally real, then Corollary 1 and Theorem 4 show
that Cr/µΦ(a) ' (C×)r1 . If K is a non-totally real cubic number field, we
have the following theorem.
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Theorem 5. Let K be a non-totally real cubic number field and a a frac-
tional ideal of K. The connected abelian complex Lie group C2/µΦ(a) is a
Cousin group.

Proof. We use Theorem 2. Let L ∈ HomC(C2,C) be such that L(µΦ(a)) ⊆
Z. Write also a = Zα1 + Zα2 + Zα3 for some αi ∈ K and where the sum
is direct. Note again that the αi are Q-linearly independent. Let us denote
the canonical basis of C2 by (e1, e2). Then the matrix corresponding to L
will be denoted by (z1 z2) for some zi ∈ C which cannot be both zero. The
hypothesis L(µΦ(a)) ⊆ Z implies that there exists n1, n2, n3 ∈ Z such that
in matrix notation, we have

(3.1)

σ1(α1) σ2(α1)
σ1(α2) σ2(α2)
σ1(α3) σ2(α3)

(z1
z2

)
=

n1
n2
n3

 .
Taking complex conjugation of this last equation, we obtain

(3.2)

σ1(α1) σ2(α1)
σ1(α2) σ2(α2)
σ1(α3) σ2(α3)

(z1
z2

)
=

n1
n2
n3

 .
Subtracting Equation 3.2 from Equation 3.1 we getσ1(α1) σ2(α1) σ2(α1)

σ1(α2) σ2(α2) σ2(α2)
σ1(α3) σ2(α3) σ2(α3)

z1 − z1
z2
−z2

 =

0
0
0

 ,
but the determinant of the 3 × 3 matrix is non-zero and therefore, we
conclude that z1 ∈ R and z2 = 0. Hence we are just left with the equation

z1

σ1(α1)
σ1(α2)
σ1(α3)

 =

n1
n2
n3

 .
If z1 6= 0 we would have

n2σ1(α1) = n1σ1(α2),

that is
σ1(n2α1 − n1α2) = 0.

Since the αi are Q-linearly independent, we conclude that n1 = n2 = 0 and
since in particular σ1(α1) 6= 0, one gets z1 = 0. Hence, z1 = 0 necessarily
and L is the trivial map. By Theorem 2, we see that C2/µΦ(a) is Cousin. �

Remark. As noted by the referee, the same proof works for any number
field satisfying r1 = 1 and r2 ≥ 1.
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3.2. The ring of endomorphisms. In this section, we study the struc-
ture of End(G) and End0(G) for Cousin groups and especially those of
complex dimension 2 and rank 3. Recall, that we always have Z ⊆ End(G),
since we have the multiplication-by-n endomorphisms denoted by [n].

Definition 7. Let G be a Cousin group. We shall say that G admits extra
multiplication if Z is strictly included in End(G) but not equal to it.

Lemma 6. Let Cn/Γ be a Cousin group of rank n + 1. Suppose that Γ =
Γ1 ⊕ Γ2 where rankZ(Γ1) = n and rankZ(Γ2) = 1, then rankC(Γ1) = n.

Proof. Let Wi = SpanC(Γi) for i = 1, 2 and suppose that rankC(Γ1) < n.
Since Cn/Γ is Cousin, we have thatW1 +W2 = Cn. Moreover, dimC(W2) =
1. Using the well-known formula

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2),
we get

dim(W1 ∩W2) = 1 + dimC(W1)− n < 1 + n− n = 1.
Thus, W1 ∩W2 = {0} and Cn = W1 ⊕W2. But then we get

Cn/Γ 'W1/Γ1 ×W2/Γ2.

Since the second factor is isomorphic to C×, we get a contradiction because
Cn/Γ is Cousin. �

Lemma 7. Let Cn/Γ be a Cousin group of rank n+1 and φ ∈ End(Cn/Γ).
If φ 6= 0, then Lφ ∈ GLC(Cn).

Proof. If Lφ is not surjective then rankZ(Lφ(Γ)) ≤ n. This rank cannot
be zero either, otherwise Lφ = 0 which is excluded. One can then find
a basis γ1, . . . , γn+1 of Γ and positive integers t1, . . . , ts, (s ≤ n), such
that t1γ1, . . . , tsγs is a basis for Lφ(Γ). By Lemma 6, γ1, . . . , γs are C-
linearly independent. Let W = SpanC(Lφ(Γ)) and take any C-linear map
T ∈ HomC(W,C) which satisfies T (γi) = 1 for i = 1, . . . , s. Then T ◦
Lφ is a non-zero linear form on Cn taking integer values on Γ. This is a
contradiction. �

Corollary 4. Let G be a Cousin group of complex dimension n and of rank
n+ 1 and let also φ ∈ End(G). If φ 6= 0 then φ is surjective.

Proof. Let ξ : G→ Cn/Γ be a lattice representation of G. We just have to
show the corresponding fact for Cn/Γ, so if φ ∈ End(Cn/Γ) is such, then
Lemma 7 implies that Lφ ∈ GLC(Cn) if φ 6= 0. This implies that φ itself is
surjective. �

Lemma 8. Let G be a Cousin group of complex dimension n and of rank
n+ 1. Let also φ ∈ End(G) and suppose that φ 6= 0, then ker(φ) is finite.
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Proof. Again, we choose a lattice representation ξ : G→ Cn/Γ and we just
have to prove the corresponding fact for endomorphisms of Cn/Γ. We saw
that if φ 6= 0 then Lφ is in fact an isomorphism of C-vector space. Moreover,
we have

ker(φ) ' L−1
φ (Γ)/Γ.

Since Lφ is an isomorphism, we get that L−1
φ (Γ) is also a free abelian group

of rank n+ 1, and we conclude that the kernel is finite. �

We saw that any nontrivial endomorphism of G is surjective and has
finite kernel. As in the classical case of complex tori, we shall call such a
map an isogeny.

Theorem 6. Let G be a Cousin group of complex dimension n and rank
n+ 1 and let φ ∈ End(G) and suppose that φ 6= 0. Let e be the exponent of
the finite group ker(φ), then there exists another ψ ∈ End(G) such that

• φ ◦ ψ = [e],
• ψ ◦ φ = [e].

Proof. Since ker(φ) ⊆ ker([e]) we get a morphism ψ ∈ End(G) satisfying
ψ ◦ φ = [e].

Now we claim that ker(ψ) ⊆ ker([e]). This is clear because if x ∈ ker(ψ),
then there exists y ∈ ker([e]) such that φ(y) = x, since

ker([e]) = φ−1(ker(ψ)).
We then get

[e](x) = [e](φ(y)) = φ([e](y)) = 0.
Hence, there exists a φ′ ∈ End(G) satisfying

φ′ ◦ ψ = [e].
We would like to show that φ = φ′, but this is indeed the case since

φ′ ◦ [e] = φ′ ◦ ψ ◦ φ = [e] ◦ φ = φ ◦ [e],
and we can conclude the desired equality because [e] is surjective. �

Theorem 7. Given any Cousin group G of complex dimension n and of
rank n + 1, we have that End0(G) is a division algebra, where we remind
the reader that a division algebra is an algebra such that every non-zero
element has a multiplicative inverse.

Proof. This is immediate from Theorem 6. �

Lemma 9. Let A be a non-trivial finite dimensional Q-algebra and suppose
it is a division algebra. Suppose also that we have a linear representation

ρ : A→ EndQ(V ),
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into a finite dimensional Q-vector space. Then, we necessarily have
dimQ(A) | dimQ(V ).

Proof. Note first that ρ has to be injective since A is a division algebra.
Hence we can identified A with ρ(A). We have that V becomes an A-vector
space, the action of A being given by

a · v := ρ(a)(v).
We then have the following following formula relating the different dimen-
sions:

dimQ(V ) = dimQ(A) · dimA(V ).
We conclude immediately that

dimQ(A) |dimQ(V ).
�

We now come back to non-totally real cubic number fields and Cousin
groups of complex dimension 2 and rank 3.
Corollary 5. Given any Cousin group G of complex dimension 2 and of
rank 3, we have

dimQ(End0(G)) = 1 or 3.
Proof. Take a lattice representation ξ : G → C2/Γ. Apply Lemma 9 with
A = End0(C2/Γ) and ρ = ρr the rational representation. �

Corollary 6. Let G be a Cousin group of complex dimension 2 and of rank
3. If G has extra multiplication, then End0(G) is a cubic number field, and
End(G) is an order in this cubic number field.
Proof. If End0(G) 6= Q we conclude that it is of dimension 3 over Q by
Corollary 5. Now it is known that the dimension of a simple algebra over
its center is a square. Hence this dimension has to be one. This shows that
A is commutative and hence a cubic number field.

Note then that since End(G) is without torsion, we have an injective
morphism

End(G) ↪→ End0(G).
We know that End(G) is a free abelian group, but since End0(G) is of
dimension 3 over Q, we see that the rank of End(G) has to be 3. Now,
because the map above is injective, we get that End(G) is a subring of a
cubic number field which is at the same time a free abelian group of rank
3. This is precisely the definition of an order in a number field. �

We shall now show that in the case of extra multiplication, End0(G)
cannot be totally real: It has to satisfy r1 = 1 = r2. How could one show
such a thing? We have to find how to produce embeddings of this number
field into C. This has to be related with the analytic representation.
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Theorem 8. If the Cousin group G of complex dimension 2 and of rank 3
has extra multiplication, then End0(G) is necessarily a cubic number field
which is not totally real.

Proof. Let ξ : G→ C2/Γ be a lattice representation. Because of Lemma 4,
we can also suppose that the period matrix of Γ has the form

Ω =
(

1 τ1 τ2
0 1 τ

)
,

where τ1, τ2 ∈ R and Im(τ) 6= 0. Let us denote End0(C2/Γ) by K and
End(C2/Γ) by O. We know that O is an order in K. Let us choose also the
canonical basis (e1, e2) of C2. Then the analytic representation becomes a
matrix representation O → M2(C) which we shall denote by

λ→M(λ) = (mij(λ)).
If we write the multiplications in terms of matrices, we get the Hurwitz
relations:

M(λ) · Ω = Ω ·A(λ), for all λ ∈ O,
where A(λ) = (aij(λ)) is some matrix in M3(Z). If we expand the Hurwitz
relations, we get the following matrix equality:(

m11 m11τ1 +m12 m11τ2 +m12τ
m21 m21τ1 +m22 m21τ2 +m22τ

)
=(

a11 + a21τ1 + a31τ2 a12 + a22τ1 + a32τ2 a13 + a23τ1 + a33τ2
a21 + a31τ a22 + a32τ a23 + a33τ

)
,

where we drop the λ’s for the ease of reading. Now looking at the (1, 1)-
entry of these two matrices we get that m11(λ) ∈ R for all λ ∈ O. Then,
looking at the (1, 2)-entry of these two matrices, we get that m12(λ) ∈ R
for all λ ∈ O. But then looking at the (1, 3)-entry, we get the following
equation

m12(λ)(τ − τ) = 0,
and therefore, we conclude that m12(λ) = 0 for all λ ∈ O since Im(τ) 6= 0.

Therefore the matrix representation associated to the analytic represen-
tation has the form

λ 7→M(λ) =
(
m11(λ) 0
m21(λ) m22(λ)

)
,

where m11(λ) ∈ R for all λ ∈ O. Since the matrix representation is in
particular a ring homomorphism, we get

M(λ1λ2) = M(λ1)M(λ2),
for all λ1, λ2 ∈ O. This implies that the maps

λ 7→ m11(λ),
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and
λ 7→ m22(λ),

are in fact ring homomorphisms of O into C and they induce field embed-
dings of K into C which we shall denote by the same symbol. Moreover
m11 is a real embedding. We shall now show that m22 has to be a complex
embedding and this will end the proof that K is not totally real. Suppose
that m22(λ) ∈ R for all λ ∈ O, then looking at the second line of the matrix
equality above, we get the following three equations:
(3.3) m21 = a21 + a31τ

(3.4) m21τ1 +m22 = a22 + a32τ

(3.5) m21τ2 +m22τ = a23 + a33τ

Multiplying Equation 3.3 by τ1 gives
m21τ1 = a21τ1 + a31ττ1.

Subtracting Equation 3.4 from this last equation, we get
(3.6) a22 − a21τ1 −m22 = τ(a31τ1 − a32).
Multiplying Equation 3.3 by τ2, we get

m21τ2 = a21τ2 + a31ττ2.

Subtracting Equation 3.5 from this last equation, we get
(3.7) a23 − a21τ2 = τ(a31τ2 − a33 +m22).
Multiplying Equation 3.4 by τ2, we get
(3.8) m21τ1τ2 +m22τ2 = a22τ2 + a32ττ2.

Multiplying Equation 3.5 by τ1, we get
(3.9) m21τ2τ1 +m22ττ1 = a23τ1 + a33ττ1.

Subtracting Equation 3.9 from Equation 3.8, we get
(3.10) m22τ2 − a22τ2 + a23τ1 = τ(m22τ1 + a32τ2 − a33τ1).
Looking at Equation 3.6, 3.7 and 3.10, we see that we necessarily have the
following three equations
(3.11) a31τ1 − a32 = 0,

(3.12) a31τ2 − a33 +m22 = 0,

(3.13) m22τ1 + a32τ2 − a33τ1 = 0,
otherwise we would have a contradiction with the fact that Im(τ) 6= 0.
Moreover, these last three equations imply also the following three ones
(3.14) a22 − a21τ1 −m22 = 0,
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(3.15) a23 − a21τ2 = 0,

(3.16) m22τ2 − a22τ2 + a23τ1 = 0.
Now if a31 6= 0 and a21 6= 0 then we get a contradiction with the fact that
G is Cousin by Lemma 5. Therefore, one of them is necessarily zero. Now,
even though the computations are a little bit tedious, the idea is just that
in this last case, we shall get a contradiction with the hypothesis that

Z ( End(G).
First of all, suppose that both a31 = 0 and a21 = 0, then we get the following
equations

a31 = a21 = a32 = a23 = 0
and

m22 = a22 = a33.

Looking back at the first line of the matrix equation, we get
m11 = a11,

(m11 − a22)τ1 = a12,

(m11 − a33)τ2 = a13.

We know that a22 = a33 and therefore we necessarily have
m11 = a22 = a33 = a11,

otherwise, we would get again a contradiction with Lemma 5. Moreover,
a12 = a13 = 0.

But then, it would mean that every M(λ) for all λ ∈ O would be of the
form

M(λ) =
(
n 0
0 n

)
for some integer n, and this would be a contradiction with the fact that
Z ( End(G).

Hence, we are just left to prove that a31 = 0 implies a21 = 0 and vice-
versa. Suppose first that a31 = 0, then Equation 3.12 implies

m22 = a33 ∈ Z,
but then Equation 3.14 implies

a21τ1 = a22 −m22,

and Equation 3.15 implies
a21τ2 = a23.

This is again a contradiction with Lemma 5 unless a21 = 0.
Finally, if a21 = 0 Equation 3.14 implies

m22 = a22 ∈ Z,
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but then Equation 3.11 says

a31τ1 = a32,

and Equation 3.12 says
a31τ2 = a33 −m22,

and this is a contradiction unless a31 = 0. This is what we wanted to
prove. �

Remark. We note that we arrive at the following conclusion. After choosing
a lattice representation ofG, the analytic representation ρa ofK = End0(G)
is isomorphic to a matrix representation of the form

λ 7→
(
m11(λ) 0
m21(λ) m22(λ)

)
,

where m11 is a real embedding of K and m22 is a complex embedding of
K. We shall use this fact in the proof of Lemma 10.

We are now at the point where we ask: Are there any Cousin groups
which have extra multiplication? The answer is yes and we construct such
examples over here.

Theorem 9. Let K be a non-totally real cubic number field, and let Φ =
{σ1, σ2} be a type. Let as usual µΦ be the corresponding Minkowski map
and let also a be any fractional ideal of K, then

C2/µΦ(a)

is a Cousin group having extra multiplication. Moreover, for any λ ∈ OK
the matrix

ι(λ) =
(
σ1(λ) 0

0 σ2(λ)

)
,

induces an endomorphism of C2/µΦ(a) which we shall denote by the same
symbol ι(λ). The map

OK → End(C2/µΦ(a)),

defined by λ 7→ ι(λ) induces isomorphisms

OK ' End(C2/µΦ(a)),

and
K ' End0(C2/µΦ(a)).

Proof. It is clear that ι(λ) for any λ ∈ OK induces an endomorphism of
C2/µΦ(a) because if (σ1(α), σ2(α)) ∈ µΦ(a) then

ι(λ) ·
(
σ1(α)
σ2(α)

)
=
(
σ1(λ) 0

0 σ2(λ)

)
·
(
σ1(α)
σ2(α)

)
=
(
σ1(λ · α)
σ2(λ · α)

)
,
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and (σ1(λ · α), σ2(λ · α)) ∈ µΦ(a) since a is a fractional ideal. This also
implies that this Cousin group has extra multiplication. Consider the map
(3.17) ι : OK ↪→ End(C2/µΦ(a)), defined by λ 7→ ι(λ).
After tensoring with Q we obtain the map

K ↪→ End0(C2/µΦ(a))
which has to be an isomorphism since End0(C2/µΦ(a)) is a vector space of
dimension 3 over Q. We also conclude that End(C2/µΦ(a)) is an order in
K, and since it contains OK and OK is the maximal order, we do get that
the map ι in Equation 3.17 is an isomorphism. �

Now we can ask if all Cousin groups G of complex dimension 2 and rank
3 having extra multiplication such that End(G) is the maximal order in
a non-totally real cubic number field arise in this way. This is indeed the
case, but we begin with a lemma.

Lemma 10. Let C2/Γ be a Cousin group of complex dimension 2 and rank
3. Suppose it has extra multiplication so that

K = End0(C2/Γ)
is a non-totally real cubic number field (Theorem 8). Let ρa be the analytic
representation. Then

ρa ' σ1 ⊕ σ2,

where σ1 is the unique real embedding of K and σ2 is one of the two complex
embedding of K.

Proof. By the remark following Theorem 8, we know that ρa is isomorphic
to a matrix representation K → M2(C) of the form

λ 7→
(
m11(λ) 0
m21(λ) m22(λ)

)
,

where m11 is the real embedding of K and m22 is one of the two complex
embedding. Since this is a representation, we have that

M(λλ′) = M(λ)M(λ′),
for all λ ∈ K. This means the following:(

m11(λ) 0
m21(λ) m22(λ)

)
·
(
m11(λ′) 0
m21(λ′) m22(λ′)

)
=(

m11(λ)m11(λ′) 0
m21(λ)m11(λ′) +m22(λ)m21(λ′) m22(λ)m22(λ′)

)
Therefore, we get

m21(λλ′) = m21(λ)m11(λ′) +m22(λ)m21(λ′),
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and since K is commutative, we have
m21(λ)m11(λ′) +m22(λ)m21(λ′) = m21(λ′)m11(λ) +m22(λ′)m21(λ),

for all λ, λ′ ∈ K. Hence we get
m21(λ)

m11(λ)−m22(λ) = m21(λ′)
m11(λ′)−m22(λ′) ,

as long as λ, λ′ /∈ Q. Call this constant p, i.e.

p = m21(λ)
m11(λ)−m22(λ) ,

for all λ /∈ Q, and consider the matrix

P =
(

1 0
−p 1

)
.

A simple computation shows that

P ·M(λ) · P−1 =
(
m11(λ) 0

0 m22(λ)

)
,

for all λ ∈ K, and this is exactly what we wanted to show. �

Remark. In the classical case of complex tori (the compact case), it is easy
to show that ρr ' ρa ⊕ ρa. There is thus no difficulty whatsoever to define
the notion of type, because it is known that the rational representation is
just the sum of the embeddings. More precisely, let Cn/Γ be an abelian
manifold (meaning a complex torus admitting a Riemann form) having
complex multiplication by the CM -field K of degree 2n over Q, i.e. we
have an embedding

ι : K ↪→ End0(Cn/Γ).
We then have associated to these data an analytic and a rational repre-
sentation. These induce representations of the CM -field K, and since it is
known that

ρr '
⊕

σ∈HomQ−alg.(K,C)
σ,

and ρr ' ρa ⊕ ρa, we get
ρa ' σ1 ⊕ . . .⊕ σn,

for some σi where none of them are complex conjugate to each other. This
defines then the CM -type Φ = {σ1, . . . , σn}, and one says in this case that
(Cn/Γ, ι) is of type (K,Φ).

Definition 8. Let G be a Cousin group of complex dimension 2 and rank
3 having multiplication by the non-totally real cubic number field K, i.e.
we have an isomorphism

ι : K → End0(G).
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We know by Lemma 10 that ρa ' σ1 ⊕ σ2 where σ1 is the real embedding
of K and σ2 is one of the two complex embedding of K. This defines a type
Φ = {σ1, σ2} of K. In this case, we shall say that (G, ι) is of type (K,Φ).

Theorem 10. Let K be a non-totally real cubic number field, Φ = {σ1, σ2}
a type, and let (G, ι) be a Cousin group (of complex dimension 2 and rank
3) of type (K,Φ). Suppose moreover that

ι(OK) = End(G).
Then there exists a fractional ideal a in K such that

G ' C2/µΦ(a).

Proof. Let ξ : G→ C2/Γ be a lattice representation. Through the following
maps

OK
ι→ End(G) ξ̃→ End(C2/Γ) ρr→ EndZ(Γ),

we can consider Γ as an OK-module. More precisely, if we set S = ρr ◦ ξ̃
the OK-action is given by

λ · γ = S ◦ ι(λ)(γ),
for all λ ∈ OK and all γ ∈ Γ.

Let γ0 ∈ Γ be different from zero and set
Γ′ = OK · γ0 ⊆ Γ.

The map OK → Γ′ defined by
λ 7→ λ · γ0,

is an isomorphism of OK-module. Hence, we conclude that Γ′ is a free
Z-module of rank 3. There exists then a strictly positive integer m such
that

mΓ ⊆ Γ′.
Fix such a m, we then get a morphism of OK-module

f : Γ→ OK , defined by γ 7→ f(γ),
where f(γ) is defined by the equation

mγ = f(γ) · γ0.

Let a = f(Γ), then a is an ideal of OK . Set γ1 = γ0/m, we have
Γ = a · γ1 = S ◦ ι(a)(γ1).

Since (G, ι) is of type (K,Φ), we can find a basis such that the associated
matrix representation M ′ is of the form

(3.18) M ′(ι(λ)) =
(
σ1(λ) 0

0 σ2(λ)

)
,
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for all λ ∈ OK . Let (b1, b2) be the coordinates of γ1 with respect to this
basis. Then

Γ = S ◦ ι(a)(γ1) = M ′ ◦ ι(a)(b1, b2)t = {(σ1(α)b1, σ2(α)b2) |α ∈ a}.

Now, it is clear that b1 6= 0 and b2 6= 0, otherwise Γ would be contained in
either

C× {0} or {0} × C,

but this is impossible since rankZ(Γ) = 3. After the change of basis

ei 7→ b−1
i ei,

we get that that the new matrix representation, say M , is still of the form

M(ι)(λ) =
(
σ1(λ) 0

0 σ2(λ)

)
,

for all λ ∈ OK . Moreover, we get

Γ = µΦ(a).

This is what we wanted to prove. �

This concludes the study of the ring of endomorphisms of Cousin groups
of complex dimension 2 and of rank 3.

Remark. The notion of types does not appear in the quadratic imaginary
case because of the following reason. There are only two types; let Φ = {σ}
be one of the two types. The other one is then Φ = {σ}. Let ρ be the
unique non-trivial Galois automorphism of K over Q. In other words, it is
the complex conjugation of this CM -field. We then have

C/µΦ(a) = C/µΦ(ρ(a)).

Therefore, one does not miss anything by working only with one of the two
CM -types. This is typically what one does by viewing a quadratic imag-
inary number field already inside of C, since this is the same as choosing
one of the two embeddings.

In the case of non-totally real cubic number fields, it is not clear to us
whether there is a link or not between

C2/µΦ(a) and C2/µΦ(a),

and because of that, the notion of CM -types seems to be important.
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3.3. The action of the class group. In this section, we shall work with a
fixed non-totally real cubic number field K and a fixed type Φ = {σ1, σ2}.
The gothic letters a, b, and c will stand as usual for fractional ideals of
K. The symbol ClK denotes the class group of K, and hK denotes its
cardinality. It is well-known that hK is finite. Moreover, whenever we say
Cousin group, we mean a Cousin group of complex dimension 2 and rank 3.
Recall also that given C2/Γ, we have the associated matrix representation
with respect to the canonical basis of C2 which we denote by

φ 7→Mφ.

More generally, if we are given a morphism

φ : C2/Γ1 → C2/Γ2,

then there is the corresponding lift Lφ and we shall denote the matrix
associated to Lφ by Mφ. We shall also use the following notation: If λ ∈ K
then M(λ) will stand for the matrix(

σ1(λ) 0
0 σ2(λ)

)
.

Note also that any Cousin group of the form C2/µΦ(a) is of type (K,Φ).
Moreover, this property is preserved under isomorphism.

Let then ΣΦ be the set of isomorphism classes of Cousin groups of type
(K,Φ). We shall now explain that there is an action of ClK on ΣΦ and
it turns out that this action is simply transitive. We use the symbol [ ]
to denote an equivalence class both in ClK and in ΣΦ. Note also that for
any class in ΣΦ there is a representative of the form C2/µΦ(a) for some
fractional ideal a.

The action ClK × ΣΦ → ΣΦ will be given by

[a] · [C2/µΦ(b)] = [C2/µΦ(ab)].

In order to see that this, indeed, induces a simply transitive action, we just
need one lemma from which everything else is a consequence.

Lemma 11. Suppose that we have an isomorphism

φ : C2/µΦ(b) '→ C2/µΦ(c).

There exists then λ ∈ K such that

Mφ = M(λ).

Moreover, this λ has the property that

λ · b = c.
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Proof. By the approximation theorem we can find λ1 ∈ K× such that
λ1c ⊆ b. The matrix M(λ1) induces a morphism

C2/µΦ(c)→ C2/µΦ(b),

which we denote by the same symbol M(λ1). Consider then the endomor-
phism M(λ1) ◦ φ of C2/µΦ(b):

C2/µΦ(b) φ−→ C2/µΦ(c) M(λ1)−→ C2/µΦ(b).

Its lift in matrix form is given byM(λ2) for some λ2 ∈ K×. Note that both
M(λ1) and M(λ2) are non-singular. We then have

M(λ1) ·Mφ = M(λ2).

Since M(λ1) is non-singular, we get

Mφ = M(λ),

where λ = λ−1
1 λ2.

Now, we clearly have λ · b ⊆ c. Since λ1 · c ⊆ b, we see that λ−1
2 λ1 · c ⊆ b,

and we conclude that λ · b = c. �

Proposition 1. Suppose we have an isomorphism

φ : C2/µΦ(b) '→ C2/µΦ(c),

and suppose that a is any fractional ideal of K. We then have

C2/µΦ(ab) ' C2/µΦ(ac).

Proof. By Lemma 11, we know thatMφ = M(λ) for some λ ∈ K× satisfying
λ · b = c. This induces an isomorphism

C2/µΦ(ab) ' C2/µΦ(ac),

its inverse being induced by M(λ−1). �

Proposition 2. Let a, a′ be fractional ideals of K and suppose that [a] =
[a′]. Suppose also that we are given C2/µΦ(b). We then have

C2/µΦ(ab) ' C2/µΦ(a′b).

Proof. Since [a] = [a′], there exists λ ∈ K× such that λa = a′. Consider
M(λ), similarly as in the proof of Proposition 1, it induces an isomorphism

C2/µΦ(ab) ' C2/µΦ(a′b).

�

Remark. Propositions 1 and 2 prove in fact that the action is well-defined.

Proposition 3. The action above is simply transitive.
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Proof. The fact that it is transitive follows from the following remark. Given
any two Cousin groups of the form

C2/µΦ(b) and C2/µΦ(c),

we have
[b−1c] · [C2/µΦ(b)] = [C2/µΦ(c)].

Similarly, the simple transitiveness follows from the fact that

C2/µΦ(ab) ' C2/µΦ(a′b)

implies that there exist λ ∈ K× such that

λab = a′b,

by Lemma 11. But then multiplying by b−1, we get

λa = a′,

that is [a] = [a′]. �

Corollary 7. There are exactly hK isomorphism classes of Cousin groups
of type (K,Φ).

Proof. This follows immediately from Proposition 3. �

We thus see that the arithmetic of non-totally real cubic number fields
is intimately related with Cousin groups of complex dimension 2 and rank
3 having extra multiplication. As we said in the introduction, we postpone
the study of meromorphic functions on the connected abelian complex Lie
groups C2/µΦ(a) to a further paper.
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