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Relations among arithmetical functions,
automatic sequences, and sum of digits functions
induced by certain Gray codes

par YuicHt KAMIYA et LEo MURATA

RESUME. Dans I’étude de la somme des chiffres Sy en base deux,
la fonction arithmétique u définie par u(0) = 0 et u(n) = (—1)""!
pour n > 1 joue un rble de premieére importance. Dans cet ar-
ticle, nous commencgons par généraliser la relation entre Sy et u
en introduisant une permutation sur I’ensemble des suites a va-
leurs complexes, nulles en 0. Comme application, certaines rela-
tions impliquant la fonction somme des chiffres Sg associée a un
code binaire infini G de type Gray sont mises en vidence. En par-
ticulier nous montrons que la différence n — Sg(n) — Sg(n — 1)
s’obtient par un automate. La formule sommatoire de P. Flajolet
et L. Ramshaw pour la somme des chiffres associée au classique
code refléchi de Gray est aussi généralisée. La méthode est analy-
tique; elle utilise la tranformée de Mellin et la formule de Perron
pour les séries de Dirichlet.

ABSTRACT. In the study of the 2-adic sum of digits function
Sa(n), the arithmetical function w(0) = 0 and u(n) = (—1)""! for
n > 1 plays a very important role. In this paper, we firstly gen-
eralize the relation between So(n) and u(n) to a bijective relation
between arithmetical functions. And as an application, we inves-
tigate some aspects of the sum of digits functions Sg(n) induced
by binary infinite Gray codes G. We can show that the difference
of the sum of digits function, Sg(n) — Sg(n — 1), is realized by
an automaton. And the summation formula of the sum of digits
function for reflected binary code, proved by P. Flajolet and L.
Ramshaw, is also generalized. Here we use analytic tools such as
Mellin transform and Perron’s formula for Dirichlet series.

Manuscrit regu le 1°* février 2011.

Mots clefs. arithmetical function, sum of digits function, Gray code, automatic sequence,
Delange’s theorem.

Classification math. 11A25, 11B85.
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1. Introduction

Let ¢ > 2 be an integer, n be a non-negative integer, and
o
n= Z ar(n)d®, 0 <ap(n) <q-1,
k=0

be its ¢g-adic expansion. The g-adic sum of digits function Sg(n) is defined
by

Sun) = 3 an(n).
k=0

On the average of S;(n), in 1975, H. Delange [3] obtained the following
famous result.

Delange’s Theorem. For any positive integer N,

iNz_lS (n) = -1 lo N—i—F(lOgN)
N —= T 2logq & logq /’

where the function F(x) is defined by either of the following two ways (I)
and (I1), and F(x) is periodic with period 1, continuous, and nowhere dif-
ferentiable:

M Fa)=1 20+ -)

q'r(quszfl

i 1
+gt ey g /O (thJ —qlt] - qT)dt,
r=0

where || denotes the integer part of x,
(I) F(z) =) Cpe>™*

keZ
whose Fourier coefficients are given by

q—1 qg+1
Co = log(27) — 1) — L=
i1 Sl
Cp =ij—— 9897 k#£0
% z27rk:1-|_127”k’ # 0,
ogq

where ((s) denotes the Riemann zeta-function.

From now on, we are specially interested in the case ¢ = 2.
Let u: N U{0} — C be the arithmetical function defined by

(n) 0, ifn=0,
u(n) =
(-1 ifneN,
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and ¢ : [0,00) — C be its summatory function:

)= ) uln),

0<n<lzx

the value is, for n € N U {0},

0, ifze2n,2n+1),

(=4 HTE )

1, ifze2n+1,2n+2).

We notice that there exists a strong relation between w(n) and Sz(n). In

fact, since the 2-adic coefficients satisfy the relation ay(n) = &(n/2F), we
have

() Solm) = Y €().
k=0

From the expression
1 N1 ] So N-1
N2 o= 52 X e(5)
n=0 k=0 n=0
we can derive Delange’s (I) directly, not easily but straightforward. More-

over, the Dirichlet series whose coefficients are u(n) has the expression

o0

S um) _ (1—2175)¢(s), Rs> 1,

nS

n=1

then Perron’s method and the residue analysis give Delange’s (II) directly
(see [8]). It seems that the function u(n) plays a crucial role in the study
of Sa(n). In order to clarify and generalize the relation between u(n) and
Sa(n), we present here a much more general result, which is our first main
result.

Let A be the set of all arithmetical functions f : N U {0} — C with
f(0) =0. For f € A, define the map ® : A — A by

(1.2) @MNm)=>_ > fla).
k=00<a< S

And for S € A, define the map ¥ : A — A by

(1.3)  (¥(9))(n)

0, if n =0,
= S(n)—S(n—l)—(S(%)—S(%—l)), if n > 2 is even,
S(n)—S(n—1), if n is odd.

Then we have

Theorem 1.1. The map ® is bijective with the inverse map ®~1 = V.
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Theorem 1.1 guarantees the existence of the bijective relation between
simple arithmetical functions and sum of digits type functions. According
to this notation, the relation (1.1) is expressed as Sy = ®(u). We will prove
Theorem 1.1 in Section 2.

We mention here another example. Besides the usual binary code (the
ordered sequence of all 2-adic expansions), we have another binary code —
the reflected binary code (RBC),

RBC = {0,1,11, 10,110,111, 101, 100, ...},

whose definition will be given in Section 3. For the reflected binary code,
its sum of digits function Sgpc(n) is naturally defined. According to the
notation of Theorem 1.1, we have

(1.4) U(Srpc) = x4,  P(x4) = SrBC;
where x4 is the Dirichlet character mod 4 defined by
0, ifn=0 mod 4,
1, ifn=1 mod 4,
0, if n=2 mod 4,
-1, ifn=3 mod 4,

x4(n) =

see Table 1 in Section 3.

Flajolet and Ramshaw [5] studied the average of Sgpc(n), and they ob-
tained Delange’s (II)-type result for it. Flajolet et al. [6] obtained Delange’s
(IT)-type result for the average of various interesting arithmetical functions,
their main tools were Mellin transform and Perron’s formula. Dumont and
Thomas [4] studied the average of arithmetical functions coming from sub-
stitutions, by making use of the theory of substitution matrices.

The reflected binary code, which was used in the patent of F. Gray
[7], is the simplest example of the Gray codes. The Gray codes have an
outstanding property — successive words differ by a single bit. Taking into
account the fact (1.4), now let us introduce a family of infinite Gray codes
G, define the sum of digits functions Sg for G, and study the behaviour of
Sg and \I’(Sg)

Definition 1.1. (finite Gray code) Let L be a positive integer, and

Go = {QQ(O), gO(l)v s 7g0(2L - 1)}
be a list of all binary L-bit words, where Gyp(0) consists of all bits 0, i.e.,
Go(0) = 00---00. If successive L-bit words in Gy differ by a single bit, then

L
Go is called an L-bit Gray code. If the first and last words in a Gray code
Go also differ by a single bit, then Gy is called a cyclic Gray code.
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Starting from an L-bit Gray code Gg, we construct the infinite Gray code
G induced by Gy. We use the conventions:

1. For any list of words M = {my, ma,...,my;},

M ={m;,mi_1,...,my}.

2. For any list M of binary words with maximam length s, M’ denotes
the list built from M by replacing each words m in M by adding
enough 0’s on the left, giving 0°~1"Im, where |m/| denotes the length
of the word m.

3. For any list of words M = {my,ma,...,my},

1-M = {1lmy,1ma,...,1m}.

Definition 1.2. (infinite Gray code) For an L-bit Gray code Gy =
—~
{Go(0),Go(1),...,Go(2F — 1)}, the list G = {Go,1-Go } is the (L + 1)-bit
—~7
Gray code. For the (L 4 1)-bit Gray code Gy, the list Go = {G1,1-G; } is

the (L + 2)-bit Gray code, and inductively the Gray codes G3, Gy, ... are
defined. Then the infinite Gray code G induced by Gy is defined by

g = lim Qj.

Jj—00
Definition 1.3. (sum of digits function for Gray code) Let G be an

infinite Gray code, and put G = {G(0),G(1),...,G(n),...}. Then the sum
of digits function Sg for G is defined by

Sg(n) = the sum of digits of G(n).

In Section 3, we will give some examples of infinite Gray codes and sum
of digits functions.

When we take a sum of digits function Sg for an infinite Gray code G,
then Sg € A. Theorem 1.1 shows the existence of the arithmetical function
U(Sg) € A. The next theorem states that the arithmetical functions W(Sg)
have some common properties. We will prove this result in Section 5.

Theorem 1.2. Let G be the infinite Gray code induced by an L-bit Gray
code Gy, Sg be the sum of digits function for G, and fg = ¥(Sg). Then the
following properties hold:

(i) [values of fg]
foln) = {il, if n is odd,

0,£2, ifn is even.
(ii) [periodicity]
fg(n) = fg(n—25%2), n> 2842,
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(iii) [point-symmetry]
fo(n) = —fg(2"** —n), 0<n<2E42,

(iv) [zero-sum property]

2l+2_1

(1.5) > fg(n) =0.
n=0

Moreover, if the Gray code Gy is cyclic, then

oL+1_

(1.6) > fo(n) =0.
n=0

The sum of digits function Sg for an infinite Gray code G has a connec-
tion with automaton. More precisely, the difference sequence of Sg(n) is
generated by an automaton.

Theorem 1.3. Let G be the infinite Gray code induced by an L-bit Gray
code Gy, and Sg be the sum of digits function for G. Let Hg be the sequence
defined by

]-7 an=0,

(1.7) Hg(n) = {Sg<n> — Sg(n—1), ifneN.

Then Hg is a 2-automatic sequence.

We notice that Hrpc coincides with the regular paperfolding sequence, see
Table 1 in Section 3. For the regular paperfolding sequence and automatic
sequences, see Allouche and Shallit [1] Chapter 5.

Now let us study an analytic aspect of the arithmetical function ¥(Sg)
for an infinite Gray code G. Since Theorem 1.2 shows that those arithmetical
functions fg = ¥(Sg) are periodic and satisfy the zero-sum property, we
consider a little more general situation.

Let f € A, and p > 2 be an integer. We assume two properties on f:

[Periodicity]: f is a periodic function with period p,
[Zero-sum]: SPZ4 f(n) = 0.

Let us introduce the Dirichlet series

(18) L, )=
n=1

f(n)’ Rs > 1.

nS

From [Periodicity] and [Zero-sum] this Dirichlet series can be analytically
extended to the whole complex s-plane, and this extension is also denoted

by L(s, f). For the average of S = ®(f), we can prove the following analo-
gous result to Delange’s Theorem.
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Theorem 1.4. Let p > 2 be an integer. Assume that f € A satisfies
[Periodicity] with period p and [Zero-sum]. Let S = ®(f). Let £ : [0,00) —
C be the function defined by £(x) = > g<n<s f(n). Then, for any positive
integer N, -

N—
(1.9) Z

where the function F(x) is defined by either of the following two ways (I)
and (I1), and F(x) is periodic with period 1 and continuous:

oo z—|z]
) F@) =0+ L2 - 200, +25 5 [0 (€@ - 1o, )i
r=0
:E) — Z Dke2m'kr

keZ
whose Fourier coefficients are given by

1 1 L' (0
D= (5~ g E0. )+ H
(?ng,f)

"o mik(s + 1)

log N log N

10.0)+ F(ig) - 5 6V)

k# 0,

the function G(N) is periodic with period p/2, i.e., G(N + p/2) = G(N),
and defined by

=Z2r/m L(0, f))da

We will prove this in Section 7.
In Section 8, we specialize to f = fg = ¥(Sg) with an infinite Gray code
G. Then we can prove L(0, fg) = 1/2, which gives the following two results.

Corollary 1.1. Let G be the infinite Gray code induced by an L-bit Gray
code Gy, and Sg be the sum of digits function for G. Then, for any positive
integer N,

N—
1 log N log N 1
— E F — —G(N
N —= 210g2Jr (log2) N (N),

where F(x) and G(N) are defined in Theorem 1.4 with f = ¥(Sg).

Theorem 1.5. Under the same notation as in Theorem 1.2,

2L+2

(1.10) > mfg(m) = =28,

m=0
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If the L-bit Gray code Gy is cyclic, then
2L+1

(1.11) > mfg(m) = —2".
m=0
2. A bijection between arithmetical functions

Let f(n) be an arithmetical function f : N U {0} — C with f(0) = 0,
i.e., f € A. Define the function ¢ : [0,00) — C by

(2.1) )= > f(n)
0<n<zx
and the arithmetical function S : N U {0} — C by
(2.2) Sn) =% 5(2%)
k=0

Since £(57) = 0 for k’s with 2k > n, S(n) is well-defined for any n € NU{0}.
Obviously, S(0) = 0. Hence S € A, and S = ®(f) (cf. (1.2)).

Lemma 2.1. We have

" (n) —8(%), if n is even,
§n) = { S(n) — S(252), ifn is odd.
2

Proof. If n is even, then by (2.2),
S(n) = &(n) + S(g)

If n is odd, then VLT_li = | 5%] for any k£ > 1. Since {(z) is constant on
the interval [m,m + 1) with m € N U {0}, it follows that

S(n +Z§(n_1)

:f(n)—l-S(n;l).

Proposition 2.1. For f € A, let S = ®(f). Then
fn) = {S(n) —Sn-1)— (S(%) -S(% - 1)), z:fn 2 2 is even,
S(n) = S(n—1), if n is odd.

Proof. From (2.1) we have f(n) = {(n) — {(n — 1), then combining with
Lemma 2.1, we obtain the result. O
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Proposition 2.2. Forn € N, put n = 2/m with j € NU {0} and 2 { m.
Then

S(n) —S(n—1) Zf

Proof. 1t follows from Proposition 2.1 that

i f(2*m)

k=0

_ gj: (5(2k ) — S(2Fm —1) — (5(2];7”) - 5(22’” - 1))) + f(m)
k=1

= S(2'm) = $(27m —1) = (S(m) = S(m— 1)) + f(m)

=8(n)—Sn-—1).

Proof of Theorem 1.1. Proposition 2.1 shows that ® is injective, and that
W(B(f)) = f (k. (13)).

Take an arbitrary S € A and put ¥(S) = f. We prove ®(¥(S))(n) =
S(n) by induction on n. Obviously, ®(¥(S))(0) = S(0). Assume that
O(¥(S))(n—1)=S(n—1) foran n € N, i.e.,

Z > fla)=58(n-1).

k= 00<(z<" L
== ok

Let n = 2/m with j € NU {0} and 2 { m. Then, by Proposition 2.2,

2SN =3 Y fo+Y Y fla

= —1 = —1
k=00<a< 7t k=0 228 <a<

= S(n—1)+ z]:f(;)
k=0

n
ok

J
=Sn—-1)+ Zf(2km) = S(n).

k=0
This proves ®(¥(S)) = S and therefore ® is surjective. O

Remark. Theorem 1.1 is easily generalized to the g-adic case. Let ¢ > 2
be an integer. For f € A, define the map ®,: A — A by

D=3 3 i

k=00<a< %
q
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And for S € A, define the map ¥, : A — A by

(Wq(5))(n)
0, if n =0,
=<¢{Sn)—Sn-1)— (S(%) —S(%—l)), ifn>qgandn=0 mod g,
S(n)—S(n—1), ifn>1landn#0 mod gq.

Then the map @, is bijective with the inverse map @;1 =V,

In order to study sum of digits functions for infinite Gray codes, the
map ®, is most appropriate. By making use of ®,, we can prove Delange’s
Theorem in a different way.

3. Examples of infinite Gray codes
In this section we present some infinite Gray codes and related functions.
The reflected binary code (RBC). This is the simplest infinite Gray
code. Gy = {0,1} is the 1-bit cyclic Gray code. According to the procedure

described in Definition 1.2, we can construct the infinite Gray code induced
by this Go:

RBC = {0,1,11,10,110,111, 101,100, 1100,1101, 1111, 1110, ...}
= {RBC(0), RBC(1),RBC(2), RBC(3),...,RBC(n),...}, say.

RBC is a permutation of the usual binary code, and it has the property of
Gray codes: RBC(n) and RBC(n + 1) differ by a single bit.
We define the sum of digits function Sgpc(n) for RBC by

Srpc(n) = the sum of digits of RBC(n),
see Table 1.
The infinite Gray code AG3. We have the 3-bit cyclic Gray code
Go = {000,001,011, 111,101, 100, 110,010}, which is an example of antipo-

dal Gray codes (see Killian and Savage [9]). The infinite Gray code induced
by this Gy is

AG3 = {000,001,011, 111, 101, 100, 110, 010,
1010, 1110, 1100,1101,1111,1011, 1001, 1000, 11000, . . .}
= {AG3(0),AG3(1),AG3(2),AG3(3),...,AG3(n),...}, say.
We define the sum of digits function Sags(n) for AG3 by
Saas(n) = the sum of digits of AG3(n),

see Table 2 in the last section (p. 332-333).
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Table 1. RBC and its sum of digits function.

n | RBC | Srpc | Hrec | Hrec(+/2) | frBC
0 0 0

1 1 1 1 1
2 11 2 1 1 0
3 10 1 -1 -1
4 110 2 1 1 0
5 111 3 1 1
6 101 2 -1 -1 0
7 100 1 —1 -1
8 1100 2 1 1 0
9 1101 3 1 1
10| 1111 4 1 1 0
11 1110 3 -1 -1
12| 1010 2 -1 —1

13| 1011 3 1 1
14 | 1001 2 -1 —1

15| 1000 1 —1 -1
16 | 11000 2 1 1 0
17 | 11001 3 1 1
18 | 11011 4 1 1 0
19 | 11010 3 —1 -1
20 | 11110 4 1 1 0
21 | 11111 5 1 1
22 1 11101 4 -1 -1 0
23 | 11100 3 -1 -1
24 |1 10100 2 -1 -1 0
25110101 3 1 1
26 | 10111 4 1 1 0
27 1 10110 3 -1 -1
28 | 10010 2 -1 -1 0
29 | 10011 3 1 1
30 | 10001 2 —1 —1 0
31 | 10000 1 -1 -1

The infinite Gray code AG4. We start from the 4-bit antipodal Gray
code

Go = {0000,0001,0011,0111, 1111, 1110, 1100, 1000,
1010,1011,1001, 1101,0101, 0100, 0110, 0010}
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(see [9]). Then the infinite Gray code induced by this Gy is
AG4 = {0000,0001,0011,0111, 1111, 1110, 1100, 1000,
1010, 1011, 1001, 1101, 0101, 0100, 0110, 0010, 10010, . ..}
= {AG4(0),AG4(1),AG4(2),AG4(3),...,AG4(n),...}, say.
We define the sum of digits function Spags(n) similarly (see Table 3,
p. 335-336).

4. Properties of Sg and Hg
In this section we derive the properties of Sg and Hg.
Lemma 4.1. For n € NU{0}, put
n=2"4ng, ¢qeNU{0}, 0<ng<2tL
Then

Sg(n) = {SRBC(ZQ) +8g(no), if0<mg <2,

Srec(2q + 1) + Sg (211 — 1 —nyg), if 2F < ny < 21+,
where Sgpc s defined in Section 3.

Proof. Let Go = {Go(0),Go(1),...,Go(2¥ — 1)} be an L-bit Gray code, and
let G be the infinite Gray code induced by Gy (cf. Definition 1.2). We notice
that, when

n=2 4ng, 0<ng< 2k,
then
G(n) = RBC(2q) - Go(no),
where we use - by the meaning of Convention 3 in Section 1, and when
n = 2L+1q + ng
=2E(2¢+1)4+ng—2F, 0<ng—2F < 2F,

then
G(n) = RBC(2¢ + 1) - Go (2 — 1 — (no — 21))
= RBC(2¢+ 1) - Go (25X — 1 — ny).
From here we get this lemma directly. g

Proposition 4.1. Forn > 28 put
n=2"4ng, ¢geN, 0<ng<2L
Let Hg be the sequence defined by (1.7).
(i) If n is odd, then
Hg(n) = Hg(n — 2511,
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(i) If n is even and ng is neither ng = 0 nor ng = 2%, then
Hg(n) = Hg(n — 211,
(iii) If ng = 2, then
H(n) = (~1)".
(iv) If no = 0, we define m € N as ¢ = 2Im, j € NU{0}, and 2 { m.
Then

—1

Hg(n) = (~1)"7".

Proof. (i) When ny is in the range 0 < ng < 2%, it follows from Lemma 4.1
that

Hg(n) = Srec(2q) + Sg(no) — Srec(249) — Sg(no — 1)
= Hg(no)
and
Hg(n —2"1) = Sgpe(2(g — 1)) + Sg(no)
— Sreo(2(¢ — 1)) — Sg(no — 1)
= Hg(no).
When ng is in the range 2% < ng < 25*1 it follows from Lemma 4.1 that
Hg(n) = Srpo(2q + 1) + 562" — 1 — ng)
— Srpo(2g + 1) — Sg (25 — ng)
= —Hg(2"*! = ng)
and
Hg(n — 2" = Sppc(2(g — 1) + 1) + Sg (25T — 1 — ng)
— SrBo(2(g — 1) +1) = Sg(2"+! — ng)
= —Hg(2""" = ny).

Hence in both cases we obtain (i).

We can prove (ii) similarly to (i).

(iii) In this case, n = 2/*1g 4+ 2F and n — 1 = 28+ + 2 — 1. Then, by
Lemma 4.1,

Hg(n) = Srpc(2q + 1) + Sg(28+! — 1 - 25
— Srpe(2g) — Sg(2" — 1)
= Hrpo(29 +1).
Here we apply Lemma 4.1 to the case G = RBC. For [ € N U {0}, put
1=2%¢ +1y, ¢ eNU{0}, 0<ly<2%
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Then

SrBc(2¢") + Srpc(l), i 0<1y<2,

4.1) S l)=
(4.1) Srec(l) {SRBc(2q/+1)+SRBC(22_1_10)’ if 2 <l <22

When ¢ = 2r, then 2¢ + 1 = 227 + 1. By (4.1),

SRBC(Q(] + 1) = SRBc(QT) + SRBc(l) = SRB(j(2?”) +1

and

Srec(29) = Srpc(2r) + Srec(0) = Srpc(2r).
Hence
(4.2) HRBC(2q + 1) =1= (—l)q.

When ¢ = 2r + 1, then 2¢ + 1 = 227 + 3. By (4.1),

Srpc(2g + 1) = Sgrpc(2r + 1) 4+ Sgrpc(22 — 1 — 3) = Srpc(2r + 1),
and

SrBc(29) = Srpc(2r + 1) + Srpc(2® — 1 —2) = Sppa(2r + 1) + 1.
Hence
(4.3) Hppc(2¢+1) = —-1=(-1)%
Hence in both cases we obtain (iii).

(iv) In this case, n = 2l and n — 1 = 211 (g — 1) + 25+ — 1. Then,
by Lemma 4.1,
(44)  Hg(n) = Srec(2g) + Sg(0)
— Sreo(2(g — 1) +1) = Sg(2"! =1 — (2" — 1))
= Hgrpc(29).

When ¢ = 2/m = 2/(2r + 1), j,7 € NU {0}, then

B {22(2jr+2j—1), if j € N,

22 4 2, if j = 0.
By (4.1),
Snmo(2q) = Srec (27t 4 27) + Srpe(0), if j €N,
RBOY = Sppe(2r + 1) + Sppc(22 —1-2), if j =0,

(

(
SRBC(Q)? lf.j € Na
SRBC(Q) + 1> lf] = 07
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and
j+1 J_1 21—
SRBC(Qq—l) _ {SRBC(2 r+ 2 )+SRBC(2 3),
Srec(2r) + Sree(1),
_{Smecla—1).  ifjEN,
Srpc(g—1)+1, ifj=0.
Hence
Hrpc(2q) = Hrpc(q) = - - = Hrpc(m).
(4.2) and (4.3) give Hgrpc(m) = (—1)m’;1, and hence
m—1

HRBC(Q(]) = (*1) 2 .
Substituting this into (4.4), we obtain (iv).

5. Proof of Theorem 1.2

321

Proof of Theorem 1.2 (i). Since G is an infinite Gray code, G(n) and G(n—1)
differ by a single bit. This means |Sg(n) — Sg(n — 1)| = 1 for any n € N,

then Proposition 2.1 gives our assertion directly.
First we assume (ii) and (iii), and prove (iv).

Proof of Theorem 1.2 (iv). (1.5) is a direct consequence of (iii).
If the Gray code Gy is cyclic, then, by Proposition 2.1,

2L+1_1 2L+1_1 2L+1_1
S fen)y= > fen)+ D fa(n)
n=0 =l v
2l+11
= Y (Se(n) - Sg(n—1))
n=1
2l+1l_q
n n
S5 () -sel3 )

n:even

= Sg(2FH — 1) — Sg(2F — 1).
From the construction of the infinite Gray code G, we know

L+1 _
G(2 1) =100 . 00,

0

hence Sg (2Lt — 1) = 1. Since Gy is cyclic, G(2F — 1) and G(0) differ by a

single bit, and hence Sg(2F — 1) = 1. These give (1.6).

O
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—_

Proof of Theorem 1.2 (ii). By (1.3) and (1.7),

| Hg(n)— Hg(%), ifnis even,
(5.1) fo(n) = {H (n), ’ if n is odd.

When n is odd, it follows from Proposition 4.1 (i) and (5.1) that fg(n) =
fa(n —2542).
Now we consider the case n is even. We put

n=22¢4+n, @ eN, 0<n <22 (ni: even),

and divide this case into some subcases according to the size of ny. In each
case, taking into account of (5.1), we calculate Hg(n) and Hg(n/2), one by
one.
(Case 1): 0 < ny < 2X*1 and ny # 2F. Since n = 25+1(2¢;) + ny and
— 2841 = 2+1(2¢; — 1) 4 ny, Proposition 4.1 (ii) gives Hg(n) = Hg(n —
2142 Since

:2L+1q1+%, 0< % <2k,

|3

Proposition 4.1 (i) and (ii) give
_ 2L+2

o(3) = (5 -2) = o2

Thus fg(n) = fg(n — 2572).

(Case 2): 2141 < ny < 2542 and ny # 25+ 4 2% In this case we rewrite
nasn = 281(2¢; + 1) +ny — 28 where 0 < ny — 26+ < 2541 and
ny — 28+1 £ 2L Then Proposition 4.1 (ii) gives Hg(n) = Hg(n — 2172).
Since

n ni
R 2L+1 el 2L < =< 2L+1
2 0t 2 2 )

Proposition 4.1 (i) and (ii) give
L+2
n n L1\ n—2
(2) ( -2 ) B Hg( 2 )
Thus fg(n) = fg(n — 28+2).

(Case 3): ny; = 2L ie., n = 2E41(2¢1) + 2%. Proposition 4.1 (iii) gives
Hg(n) = (=1)?1 = 1. Slnce n—2042 = 2L41(2¢; —2) + 28 Hg(n—2872) =
(—1)?172 = 1. Hence

Hg(n) = Hg(n — 2"*?).
Since n/2 = 2L+1q; + 2571 Proposition 4.1 (i) and (ii) give
L+2
Y (ol tt) = g (M2
Hg(z) - Hg(z 2 ) - Hg( 2 )
Thus fg(n) = fg(n — 2572).

(Case 4): ng = 2E+1 428 e, n = 2111(2¢; + 1) + 2L, In this case, we

can prove fg(n) = fg(n — 25+2) similarly to Case 3.
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(Case 5): When ny = 0, define m as ¢ = 2)m and 2 t m, ie., n =
2L41(27+1m). Then Proposition 4.1 (iv) gives

m—1
(5.2) Hg(n) = (=1)">".
And n — 2042 = 2841(2(2/m — 1)). If j > 1, then Proposition 4.1 (iv) gives

J o —
(5.3) Hg(n—2M%) = (-1)7 5
If j = 0, define m’ as m —1 = 2/'m/ and 2 { m/, ie.,, n — 2842 =
2L+1(27"+ 1) Then Proposition 4.1 (iv) gives
(5.4) Hg(n —2"7%) = (-1)"7"
Now n/2 = 2E+1(29m). Then Proposition 4.1 (iv) gives
n m—1
(5.5) HQ(E) =(-1)"z.
And n/2 — 28+ = 2L41(2/m — 1). By Proposition 4.1 (iv), if j > 1, then
n o1\ _ 29m—2
(5.6) Hg(g —2") = (-5,
and, if j = 0, then
N o1 ot
(5.7) Hg(2 241) = (-1)*3

Combining (5.2) — (5.7) with (5.1), we get fg(n) = fg(n — 25+2) = 0.
(Case 6): nq =211 ie., n = 28+1(2¢; + 1). Proposition 4.1 (iv) gives

(5.8) Hg(n) = (1)1
Since n — 212 = 2L+1(2¢; — 1),
(5.9) Hg(n —252) = (—1)2~1,
Now n n
5 :2L+1q1+2L and 5_2L+l :2L+1(q1_1)+2[/_
Then Proposition 4.1 (iii) gives
Y

(5.10) Hg<2) = (1)
and

N oL+l _ (_ya-1
(5.11) Hg(2 2 )7( 1n-t,

Combining (5.8) — (5.11) with (5.1), we get fg(n) = fg(n — 25+2) = 0.
This completes the proof of Theorem 1.2 (ii). O

Proof of Theorem 1.2 (iii). By the procedure to get G, from G; (cf. Definition
1.2),

(5.12) Sg(n) = Sg(2FM2 —1—n) +1, 281 <p < 20F2
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and

(5.13) Sg(n —1) = Sg(2F*2 —n) +1, 2L < pn < 28+2
From (5.12) and (5.13), it follows that

(5.14) Hg(n) = —Hg(2'™ —n), 0<n <2872 n 20+

If n is odd, then (5.1) and (5.14) give the desired formula.
If n is even with 0 < n < 2842 and n # 2L+1 then (5.1) and (5.14) give

n
(5.15) fo(n) = —Hg(2X+2 — n) + Hg (242 5).
Since
ol+2 _ " _ 9L+1 oL+1 _ 1 oL+l _ " oL+l oL+1 _ T ;oL
5 +( 2), 0< 5 < , 5 # 2",

Proposition 4.1 (i) and (ii) give

g (22 = ) = Hg(2041 = 1) = g (22).

Substituting this into (5.15), we obtain the desired formula.

Finally, Theorem 1.2 (ii), Proposition 4.1 (iv), and Proposition 4.1
(iii) give fg(2L*1) = fg(2F+2 + 24 Hg(28+2 + 21+ = —1, and
Hg (254! 4 21) = —1, respectively. Hence fg(21*1) = 0. O

6. Proof of Theorem 1.3

Let K9(Hg) be the 2-kernel of Hg, i.e., the set of subsequences of Hg of
the form Hg(2°n+b), where a € NU{0} and 0 < b < 2% In order to prove
Theorem 1.3, it is sufficient to prove the finiteness of the 2-kernel Ks(Hg),
see Theorem 6.6.2 of Allouche and Shallit [1] p.185.

If a < L, then the number of sequences of the form Hg(2%n + b), 0 <
a<L,0<b< 2% isat most (L +1)2". We divide the case a > L+ 1 into
some subcases according to the property of b.

(Case 1): bis odd. Let by be a non-negative integer with b = by (mod 25+1),
0 < by < 2E*L Then by is odd and 2%n + b = 2Ltlm 4+ by for some
m € N U{0}. Proposition 4.1 (i) gives

Hg(2%n +b) = Hg(2" 'm + by — 2571 = ... = Hg(by).

Since the values of Hg are 1 or —1, the number of sequences of the form
Hg(2%n + b) is at most 2.

(Case 2): b is even, b # 0 (mod 211 and b # 2F (mod 2571). Let by
be a non-negative integer chosen similarly as in Case 1. Then by is even,
bo # 0, and by # 2L. By Proposition 4.1 (ii) and the same argument as
above, we see that the number of sequences of the form Hg(2%n + b) is at
most 2.
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(Case 3): b = 2F (mod 2F+1). Let b = 25+ 25 € N U {0}. Then
20 + b = 2L+ (20711 4 1) + 2L Proposition 4.1 (iii) gives
Hg(2%n +b) = (=1)% " 'nr
=)=, ifa=L+1,
(=D, ifa> L+ 1.
Hence the number of sequences of the form Hg(2%n + b) is at most 4.
(Case 4): b =0 (mod 2841) and b # 0. Let b = 277, j € NU{0}, 2 {r.
Obviously, L +1 < j < a. Then 2n + b = olA19i=L=1(20=ip + 1), and
2%7In + r is odd. Proposition 4.1 (iv) gives

20 Jpqr—1

Hg(2n+b) = (-1)" 2
:{(—1)"(—1)31, if a=j+1,

(-1)=7, ifa>j+1.
Hence the number of sequences of the form Hg(2%n + b) is at most 4.
(Case 5): b = 0. Proposition 2.2 gives
Hg(2n) = fg(2"n) + fg(2~'n) + -~ + fg(2n) + Hg(n).
By Theorem 1.2 (ii), fg(2*n) = fg(0) = 0 for a > L + 2. Hence
Hg(2'n) = fg(2"*'n) + fg(2"n) + -~ + fg(2n) + Hg(n),

and the number of sequences of the form Hg(2n) is 1.
Thus the 2-kernel Ko(Hg) is a finite set. O

Corollary 6.1. Let G be the infinite Gray code induced by an L-bit Gray
code Go, and Sg be the sum of digits function for G. Then Sg is 2-reqular.

Proof. Since Hg is a 2-automatic sequence and Sg(n) = >0 _; Hg(m),
Theorems 16.1.5 and 16.4.1 of Allouche and Shallit [1] give that Sg is 2-
regular. O

7. Proof of Theorem 1.4

Let p > 2 be an integer. Let f : N U {0} — C be the arithmetical
function with f(0) = 0, £ : [0,00) — C be the function defined by (2.1),
and S = ®(f). Throughout this section, we assume that

[Periodicity]: f is a periodic function with period p,
[Zero-sum): Zz;lo (n) =0.
It is obvious that
[C1]: &(x) is constant on the interval [m,m + 1) with m € N U {0},
[C2]: £(z) =0 for z € [0,1).
Moreover, [Periodicity] and [Zero-sum]| give that
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[C3]: € is a periodic function with period p.

Here we prepare some lemmas.

Lemma 7.1. We have

1 N—-1 1 00 N 2%
N 7;) Sn) = ;)2 /0 ¢(2)da.
Proof. By (2.2),
N-—1 oco N—1
(7.1) >osm) =3 &(5):
n=0 k=0 n=0

Since 0 < {2% {w} < 1 and [C1], the inner sum of (7.1) is expressed as
N-1 N v
Selg) = [ (= [ ell]+ {5} - e
N N
= [ e(|5e))az = [ e(5)a

Substituting this into (7.1), we obtain the desired formula. O

Lemma 7.2. We have

(7.2) L(if) _ /OOO f(x)xsl_i_lda:, Rs > 0.

Proof. The Dirichlet series (1.8) is analytic for s > 1 because of the
boundedness of f. By [Periodicity],

(7.3) Z Z

j=0m=1

=, Rs> 1
m—l—]p

By integration by parts, [Zero-sum], [C2], and [C3], the inner sum is ex-
pressed as

> A= S s [
= m)———+s ) —————dz
= (m+gp)s = (p + jp)° 1 (x +jp)stt
(j+1)p£( ) 1 J
=5 x)—=dz.
Jp wstl

Substituting this into (7.3), we obtain (7.2) for Rs > 1. (7.2) is also valid
for Rs > 0 because of the boundedness of £ and [C2]. O

Lemma 7.3. We have

+100 28 L(Saf>Ns
4 1 . 1.
(7.4) Z S(n) =5 /a_m 25—1 s(s+1) ooz
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= /Oy &(x)dx

Then the boundedness of £ gives |Z(y)| < C|y| for some positive constant
C'. Hence, applying integration by parts to (7.2), we have

Proof. Let

L(s, f) oy 1
:/0 :(y)ys+2dy, Rs > 0.

s(s+1)
Applying the Mellin inversion formula to the above, we have
w+ico L(s, )y’
7.5 ——ds, > 1.
(7.5) / 3¢ 27T2/a,¢oo s(s+1) 5o«
Lemma 7.1 and (7.5) give (7.4). O

Remark. By comparing the Dirichlet coefficients, (1.3) is equivalent to

(7.6) 3 50 _nss(” —D_ QSQj - L(s,f), M1

n=1

Lemma 7.3 is directly derived from (7.6). In fact, by the Perron type formula
with (7 .6),

—Z S(n—1))(N—n) =

1 fotic 25 L(s, f)N®
7/ LG N

270 Ja—ico 25 —1  s(s+1)
and the left-hand side is equal to SN LS(n).

Lemma 7.4. For L(s, f) the following properties hold:

(i) The Dirichlet series (1.8) can be analytically extended to the whole
complex s-plane.

(i)
1
L(s,f)< (1+]t])277, s=o0+1it,
where the implied constant is uniform for s in a vertical strip o1 <
o< o2 <0.

Proof. (i) From (7.3) it follows that

(7.7) Z f(m (s 7), Rs > 1,

where ((s,a) is the Hurwitz zeta—functlon defined by

> 1
)= —— 0<a<l1, Rs>1.
((s,a) 7;)(”+a)s a< s

The function ((s,a) is analytically extended to the whole complex s-plane
with a simple pole at s = 1, then L(s, f) has the same property. (7.2) shows
that L(s, f) is also analytic at s = 1.
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(ii) Substituting Hurwitz’s formula (see [2] p.257) into (7.7), we get

Using this expression and the estimate
(s) < e B4 [H)772, C1<o <Oy |t =1,
we have the desired estimate. O

Lemma 7.5. Let n:[0,00) — C be the function defined by

y
1w = [ (€@~ L. f)do.
Then n(p) = 0 and n is a periodic function with period p.

Proof. By (7.7), ((0,a) = % — a, and [Zero-sum],

p

(7.8) L@ﬁz—;ZnWm»

m=0

Then, by integration by parts and [Zero-sum],

1 (P
M&ﬁ—péﬁ@ﬂy
Hence
n@)zé%ﬁé?ﬂ@—f@b@ﬂmza

By n(p) = 0 and [C3],

y+p

(¢@) = LO. Nz + [ (€(@) = (0. f))da

p

n(y+p)=/p

0
_ /Oy(g(g: +p) = L(0, f))dx = n(y).
O

Now let us prove Theorem 1.4 (II). By Lemma 7.4 and the Phragmén-
Lindel6f convexity principle, we can shift the contour of integration of (7.4)
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to the vertical line Rs = § with —% < B < 0. Then

= 1 L(s, f)(2N)®
Z s % 25 — 1 s(s+1)

1 L(s, [)2N)®
+2 Rm 2 —1  s(s+1)

k;ez log 2
k20

1 /6+ioo 25 L(s, f)N*
5oice 1—25 s(s+1)

:R1+ZR2*I(N), say.

keZ
k20

(7.9)

— d
o 5

Firstly, let us consider I(N ) We have
£ N)?

B+ioco p
Z 2mi / (s+1) 5

After shifting the contour of integration of (7.5) to the vertical line s = 3,

1 (P L(s, fy® 1 v
i i mds— y/o (§(w) — L(O, f))dx

> rw / o L0, f))da

where the series converges absolutely by Lemma 7.5. G(N) in Theorem 1.4
is equal to N - I(N), and it is a periodic function with period p/2. In fact,
by Lemma 7.5,

and hence

(7.10) I(N

oo [e.o] 1

G(N+p/2)=>_ %n@w +p27 ) =) yn(?z\f) G(N).
r=1 r=1

Secondly, let us consider R;. We get, near the point s = 0,
1 1 X B, 1 1

1 -——4+0
25 — 1 slog?z (slog2)" = slog2 2" (Is1);
where Bg =1, By = —5, By = %, ...are the Bernoulli numbers,
1
=1-s5+0(s
=15t O(sP)

(2N)* = 1+ slog(2N) + O(ls]?),
and

L(s, f) = L(0, f) + L'(0, f)s + O(Is[*).
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Using these estimates, we get

1 logN -1 Lo, f)
(7.11) ! <2+ log 2 ) 0, 1) + log 2
Finally, let us consider Ry. We get, near the point s = 12(?;’57

! ! iBn( log 2 — 2mik)"
= —-(slog2 — 2mi
2°=1 slog2—2mik = n! & m
= ! +0(1)
~ slog?2 — 2mik ’
and hence
2mik e
(7.12) Ry = (1cf§2’f)Nl°g"’
2mk(12£§ +1)

Substituting (7.10), (7.11), and (7.12) into (7.9), we obtain Theorem 1.4
(ID). O

Next, let us prove Theorem 1.4 (I). For any N € N, put M, R € NU{0}

with N=2M + R 0< R<2M je, M = Ll;gggj. By Lemma 7.1,

;Zga Z/ SATISEDS / 655 )

k M+1

and the second term on the right-hand side is 0 by [C2]. Hence

2

1

(7.13) 125 (M +1)L(0, f) +—Z/ ) = L(0, f))da
n=0

= (M+1)L(0, f) + NJ’ say.

We have
M N
= ;0/0 (e( (0.1))
M N
=2y [ 6(2w) - L0, f))dr



Relations among arithmetical functions 331

Here
23 @) - 0.
=2 Z / (e 2M0) - 10, )
:2/ L(0. f))dz = G(N).
Hence -
(7.14) J—QME;[&@@%ﬁ—MQﬁMm—GMU

Substituting (7.14) into (7.13), we obtain

725 = (M +1)L(0, f)

M 0 M
+2z/2 (2"x) L(O,f))da:—%G(N),

which is identical with Theorem 1.4 (I). O
8. Proof of Corollary 1.1 and Theorem 1.5

Proof of Corollary 1.1. By Theorem 1.2, the formula (1.9) is valid in the
setting of p = 2112, f = fg, ¢ = &g, and S = Sg. An L-bit Gray code Gy,
which contains 2” words, is a permutation of the usual binary code. Hence,
for all N = 2L+ 1 >0,

=

1 -1

L N-1
I RZ: Sg(n) = N nz:% Sa(n)

Thus the main term of (1.9) and that of Delange’s (2-adic case) are iden-
tical. This concludes L(0, fg) = 1/2. O
Proof of Theorem 1.5. (7.8) with f = fg and L(0, fg) = 1/2 give (1.10). By
fg (251 = 0, Theorem 1.2 (iii), and (1.6), we have

2L+2 2L+1 1 2L+1 1
> mfglm)= 3" mfg(m)+ Z (2542 = m) fg (2" — m)
m=0 m=0
2+l
=2 Y mfg(m
m=0

This and (1.10) conclude (1.11). O
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Table 2. AG3 and its sum of digits function.

n | AG3 | Sacs | Hacs | Hacs(-/2) | faas
0 000 0

1 001 1 1 1
2 011 2 1 1 0
3 111 3 1 1
4 101 2 -1 1 -2
5 100 1 —1 -1
6 110 2 1 1 0
7 010 1 -1 -1
8 1010 2 1 —1 2
9 1110 3 1 1
10 1100 2 -1 —1 0
11 1101 3 1 1
12| 1111 4 1 1 0
13| 1011 3 -1 -1
14 | 1001 2 -1 -1 0
15| 1000 1 -1 -1
16 | 11000 2 1 1 0
17 | 11001 3 1 1
18 | 11011 4 1 1 0
19 | 11111 5 1 1
20 | 11101 4 -1 -1 0
21| 11100 3 -1 -1
22111110 4 1 1 0
23 | 11010 3 -1 -1
24 | 10010 2 -1 1 -2
25110110 3 1 1
26 | 10100 2 -1 -1 0
27 | 10101 3 1 1
28 | 10111 4 1 -1 2
29 | 10011 3 —1 —1
30 | 10001 2 -1 -1 0
31 | 10000 1 -1 -1

9. Examples and Tables

The infinite Gray code AG3 (cf. Section 3) is induced by the 3-bit cyclic
Gray code. Then Theorem 1.2 (ii) shows that fags = U(Saqs) is a periodic
function with period 32(= 23%2). Table 2 gives the list of the values of

faas(n).
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n | AG3 | Sacs | Hags | Hacs(-/2) | facs
32 [ 110000 | 2 1 1 0
33110001 | 3 1 1
341110011 | 4 1 1 0
35110111 5 1 1
36 | 110101 | 4 -1 1 -2
371110100 | 3 —1 -1
38 | 110110 | 4 1 1 0
39110010 | 3 -1 -1
40 | 111010 | 4 1 -1 2
41 | 111110 | 5 1 1
42 | 111100 | 4 -1 -1 0
43 | 111101 | 5 1 1
44 | 111111 6 1 1 0
45 | 111011 5 -1 —1
46 | 111001 | 4 —-1 -1 0
47111000 | 3 -1 —1
48 | 101000 | 2 -1 -1 0
49 | 101001 | 3 1 1
50 | 101011 | 4 1 1 0
51101111 | 5 1 1
52 | 101101 | 4 -1 —-1 0
53 1101100 | 3 -1 -1
54101110 | 4 1 1 0
55 | 101010 | 3 —1 -1
56 | 100010 | 2 —-1 1 -2
57 | 100110 | 3 1 1
58 | 100100 | 2 -1 -1 0
59 | 100101 | 3 1 1
60 | 100111 | 4 1 —1 2
61 | 100011 | 3 -1 —1
62 | 100001 | 2 -1 -1 0
63 | 100000 | 1 -1 —1

The periodicity of fags and Table 2 give
Proposition 9.1. Let fags = ¥(Sags). Then
fags(n) = xs(n) + e32(n),

where xg, €32 are periodic functions with periods 8, 32, respectively, defined
by
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0, if n =0 mod 8,
1, if n =1 mod 8,

,f -2, ifn =4 mod 32,
0, if n =2 mod 8, ;

: 2, if n = 8 mod 32,
1, if n =3 mod 8, ;

xs(n) = ; ez2(n) = ¢ =2, if n =24 mod 32,

0, if n =4 mod 8, ;

: 2, if n = 28 mod 32,
—1, ifn =5 modS§, .

; 0, otherwise.
0, if n =6 mod 8,
—1, ifn=7modS8,

Similarly, fags = V(Saqs) is a periodic function with period 64 (= 24+2),
see Table 3.

Proposition 9.2. Let fags = ¥(Sacs). Then
faca(n) = xs(n) + eea(n),

where xg is the same one as in Proposition 9.1, and ¢4 s a periodic func-
tion with period 64 defined by

-2, ifn=6,18,28, 38,44, 50 mod 64,
gea(n) = ¢ 2, if n = 14, 20, 26, 36, 46, 58 mod 64,
0, otherwise.

facs (resp. faga) is expressed as the Dirichlet character yg plus the
additional arithmetical function €32 (resp. €¢4). This situation is different
from frec = x4. We will try to understand the meanings of £32 and €g4 in
a future study.
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Table 3. AG4 and its sum of digits function.

Relations among arithmetical functions

n | AG4 | Saca | Haca | Haca(-/2) | faca
0 0000 0

1 0001 1 1 1
2 0011 2 1 1 0
3 0111 3 1 1
4 1111 4 1 1 0
5 1110 3 —1 -1
6 1100 2 -1 1 -2
7 1000 1 -1 -1
8 1010 2 1 1 0
9 1011 3 1 1
10 1001 2 -1 —1 0
11 1101 3 1 1
12| 0101 2 -1 —1 0
13| 0100 1 -1 -1
14| 0110 2 1 -1 2
15| 0010 1 -1 -1
16 | 10010 2 1 1 0
17 | 10110 3 1 1
18 | 10100 2 -1 1 -2
19 | 10101 3 1 1
20 | 11101 4 1 -1 2
21 | 11001 3 -1 -1
22 | 11011 4 1 1 0
23 | 11010 3 -1 -1
24 | 11000 2 -1 -1 0
25| 11100 3 1 1
26 | 11110 4 1 -1 2
27 | 11111 5 1 1
28 | 10111 4 -1 1 -2
29 | 10011 3 —1 —1
30 | 10001 2 -1 -1 0
31 | 10000 1 -1 -1

335



336

Yuichi KAMIYA, Leo MURATA

AG4

Saqa

Haga(-/2)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
92
93
o4
95
o6
o7
o8
29
60
61
62
63

110000
110001
110011
110111
111111
111110
111100
111000
111010
111011
111001
111101
110101
110100
110110
110010
100010
100110
100100
100101
101101
101001
101011
101010
101000
101100
101110
101111
100111
100011
100001
100000

2

=N W O W W W WD WN W W Ok Ol Wk Lo O e W

1
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