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On metacyclic extensions

parMasanari KIDA

Résumé. Nous construisons des extensions galoisiennes de
groupes de Galois métacycliques variés au moyen d’une théorie
de Kummer émanant d’une isogénie de certains tores algébriques.
En particulier, notre méthode nous permet de construire des tores
algébriques paramétrant des extensions métacycliques.

Abstract. Galois extensions with various metacyclic Galois
groups are constructed by means of a Kummer theory arising
from an isogeny of certain algebraic tori. In particular, our method
enables us to construct algebraic tori parameterizing metacyclic
extensions.

1. Introduction
A finite group G is called metacyclic if it contains a normal cyclic sub-

group N such that the quotient group G/N is also cyclic. The category of
metacyclic groups contains important families of groups such as dihedral
groups and Frobenius groups. A Galois extension L/k is called a metacyclic
extension if the Galois group Gal(L/k) is isomorphic to a metacyclic group.
In this paper, we give a method to construct metacyclic extensions using
a Kummer theory without roots of unity studied in our previous paper
[10]. Évariste Galois already knew that if a polynomial of prime degree
`(≥ 5) is solvable, then the Galois group of the polynomial is a Frobenius
group (see [7, Lemma 7.1.2]). Thus our method enables us to construct
such solvable extensions. In their paper [14], Nakano and Sase also study a
construction of metacyclic extensions, which is a generalization of a former
result of Imaoka and Kishi [6] on Frobenius and dihedral extensions. Our
construction supersedes their construction in some respect. Furthermore,
because our construction comes from a Kummer theory and there are geo-
metric objects parameterizing the field extensions, we can expect to get
more algebraic and arithmetic information about the extensions.

After we give some preliminaries on metacyclic groups and the Kummer
theory in the next section, we state and prove one of our main theorem in
Section 3. In Section 4, we explain geometry behind our construction. In
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fact, we show that our metacyclic extensions are parameterized by rational
points on certain algebraic tori defined over the base field. In Section 5, we
give a relationship between our construction and the construction due to
Sase and Nakano. Several examples are given in the final section.

Notation. The following symbols are used throughout this paper. Let `
be an odd prime number fixed once for all. We denote a field of ` elements
by F`. We also fix a base field k whose characteristic is different from `. We
assume that any separable extensions of k are contained in a fixed separable
closure ksep of k. For an integerm prime to the characteristic of k, we denote
by ζm a primitive m-th root of unity in ksep. For any separable extension K
over k, we write Kc for the `-th cyclotomic extension K(ζ`).

Let r be a divisor of `− 1 and F a cyclic extension over k of degree r
r = [F : k].

We denote by σ a generator of the Galois group of F/k:
Gal(F/k) = 〈σ〉.

Let n be the degree of the cyclotomic extension Fc/F :
n = [Fc : F ];

and τ a generator of the Galois group of Fc/F :
Gal(Fc/F ) = 〈τ〉.

Since both kc/k and F/k are abelian extensions, Fc = Fkc is also an
abelian extension over k of degree nr. Therefore there exists a subgroup
of Gal(Fc/k) isomorphic to Gal(F/k) whose generator is a lift of σ. We
denote the generator also by σ. Then we have an isomorphism

Gal(Fc/k) ∼= 〈σ〉 × 〈τ〉.
For a finite group G, a field extension L/k is called a G-extension if it is

a Galois extension whose Galois group is isomorphic to G.
Other notation will be introduced when we need it.

2. Preliminaries
In this section, we give some preliminaries from group theory and a

Kummer theory for certain algebraic tori.

2.1. Metacyclic groups. We refer to [3, Section 47] for basic facts on
metacyclic groups. A metacyclic group G is an extension of a cyclic group
with cyclic kernel N :

1 −−−−→ N −−−−→ G −−−−→ G/N −−−−→ 1 (exact)
In this paper, we are solely concerned with the case where the order of N is
a prime number `. We write N = 〈ρ〉 and G/N = 〈σN〉. Since N is normal
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in G, we can find an element x in F×` such that σ−1ρσ = ρx holds. For a
positive integer m, we have σ−mρσm = ρx

m . Let s be the order of x in F×`
and r the order of σN . Then it follows that
(2.1) s | r | `− 1.
Hence the extension splits by a theorem of Schur [4, Theorem 15.2.2] and
there exists a subgroup H of G isomorphic to G/N satisfying G = N o
H. Note that if x and x′ generate the same subgroup in F×` , then the
corresponding metacyclic groups are isomorphic. Therefore such a group is
determined by `, r and s and thus we denote this group by M`(r, s):

M`(r, s) = 〈σ, ρ | σr = 1, ρ` = 1, σ−1ρσ = ρx, ord(x mod `) = s〉.
It is easy to observe that

M`(r, s) is abelian ⇐⇒ s = 1;
M`(r, s) is a Frobenius group F`r ⇐⇒ s = r;
M`(r, s) is a dihedral group D` of order 2`⇐⇒ s = r = 2.

2.2. Kummer theory via algebraic tori. Suppose that there exists an
integer-coefficient polynomial
(2.2) P(t) = c1 + c2t+ · · ·+ cnt

n−1 ∈ Z[t]
of degree n− 1 satisfying the following two conditions:
(2.3) Z[ζn]/(P(ζn)) ∼= Z/(`) = F`;
and
(2.4) P(ζin) ∈ Z[ζin]× for all i with (n, i) > 1.
We assume that the ring isomorphism (2.3) induces a group isomorphism

(2.5) νk : Gal(kc/k) ∼→ 〈ζn mod P(ζn)〉.
Therefore we have n = [kc : k]. Let Rkc/kGm be the Weil restriction of
scalars of the multiplicative group. The algebraic torus Rkc/kGm is an n-
dimensional torus defined over k splitting over kc. For other basic properties
of Rkc/kGm, see [15, 3.12]. Then the circulant matrix

(2.6) circ(c1, c2, . . . , cn) =


c1 c2 · · · cn
cn c1 · · · cn−1
...

... · · ·
...

c2 c3 · · · c1


defines an endomorphism Λ of degree ` on the character module ̂RFc/kGm

of Rkc/kGm, which is, by definition,

̂RFc/kGm = Homk-schemes(Rkc/kGm,Gm,k).
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In fact, we can show that |det(circ(c1, c2, . . . , cn))| = ` under our assump-
tions. In the dual category, we have a self-isogeny λ of degree ` on the
k-torus Rkc/kGm. The following theorem is proved in [10].

Theorem 2.1. Let λ be the self-isogeny of Rkc/kGm of degree ` defined
as above. Then every point in the kernel of λ is k-rational and the exact
sequence attached to the isogeny λ

1 −−−−→ kerλ −−−−→ Rkc/kGm
λ−−−−→ Rkc/kGm −−−−→ 1 (exact)

induces the Kummer duality
(2.7) κk : Rkc/kGm(k)/λRkc/kGm(k) ∼→ Homcont(Gal(ksep/k), kerλ(k)).

For any P ∈ Rkc/kGm(k), the image κk(P ) is a homomorphism χP send-
ing every s ∈ Gal(ksep/k) to P 1−s. As a consequence, every cyclic exten-
sion over k of degree ` is obtained by adjoining an inverse image λ−1(P )
of some P ∈ Rkc/kGm(k) and a generator ρ of Gal(k(λ−1(P ))/k) acts by
ρ(λ−1(P )) = Zλ−1(P ) with some Z ∈ kerλ(k).

It is known that this Kummer theory holds for the following cases:
• If n is a prime and if there exists an element λ ∈ Z[ζn] whose
norm is `. Then we can find P(t) satisfying our assumptions.
• We can always construct P(t) in the case where n = 4.
• The base field k of the Kummer theory can be descended to the
field Q of rational numbers when ` = 3, 5, 7, and 11.

See [10, Section 4] for the detail.

3. Algebraic theorem
A field extension L/k is called metacyclic extension if it is a Galois

extension whose Galois group is isomorphic to a metacyclic group. Our
aim is constructing all metacyclic extensions with Galois group M`(r, s)
over k containing a given intermediate field F under certain assumptions.
We sometimes refer to such an extension by L/F/k. Here we understand
that F is the fixed field by the normal subgroup of order ` in M`(r, s).

From now on, suppose that we are given a cyclic extension F/k of degree
r satisfying the following assumption. The first assumption is that there
exists a Kummer theory κk by an n-dimensional algebraic torus Rkc/kGm

explained in Section 2.2. The second assumption is F ∩ kc = k. Then κk
naturally lifts to
(3.1)
κk × F : Rkc/kGm(F )/λRkc/kGm(F ) ∼→ Homcont(Gal(ksep/F ), kerλ(k)).
Hence every cyclic extension of F can be obtained by this isomorphism.
On the other hand, the Galois group Gal(F/k) = 〈σ〉 naturally acts on the
left hand side of this isomorphism. We use the isomorphism (3.1) and the



On metacyclic extensions 343

Galois action to construct metacyclic extensions L over k that are cyclic
over F .

By (3.1), the quotient group Rkc/kGm(F )/λRkc/kGm(F ) is a vector space
over F`. Therefore the group ring F`[σ] acts on this quotient. Let χ be a
character of Gal(F/k)

χ : Gal(F/k) −→ F×`
sending σ to an element of F` of order r. Then

(3.2) ej = 1
r

r−1∑
i=0

χj(σ−i)σi ∈ F`[σ]

are orthogonal idempotents (j = 0, 1, . . . , r − 1) in F`[σ].
Now we can state the algebraic side of our result.

Theorem 3.1. Let F be a cyclic extension of a field k with Kummer theory
κk (2.7) of degree r such that F ∩ kc = k. For each j = 0, 1, . . . , r − 1,
the image of ej

(
RFc/FGm(F )/λRkc/kGm(F )

)
under κk × F corresponds

to metacyclic extensions over k with Galois group isomorphic to M`(r, s)
where s = r/(j, r). In particular, it corresponds to abelian extensions if
j = 0 and to Frobenius extensions if (j, r) = 1.

Conversely, every M`(r, s)-extension over k containing F arises in this
way.

Proof. Let P be an F -rational point of Rkc/kGm whose class P is an element
of Ej = ej

(
Rkc/kGm(F )/λRkc/kGm(F )

)
. We assume that P is non-trivial.

Then by Theorem 2.1 the extension L = F (λ−1(P )) is a cyclic extension
over F of degree `. We first show that L is a Galois extension over k. Let
σ̃ be an extension of σ to L. If we write Q = λ−1(P ), then we have

λ(σ̃(Q)) = σ̃(λ(Q)) = σ̃(P ) = σ(P )
because the isogeny λ is defined over k. This shows that F (σ̃(Q)) =
F (λ−1(σP )). On the other hand, since P belongs to Ej , we have σP =
P
χ(σ)j where u = χ(σ)j is an element of F` of order s. Since u is invertible

modulo `, P and P u generate the same subgroup in Ej . By Kummer theory,
this implies F (σ̃(Q)) = F (Q). Thus it yields k(σ̃(Q)) = k(Q) as we desired.

The Galois group Gal(L/k) fits in the following exact sequence:
1 −−−−→ Gal(L/F ) −−−−→ Gal(L/k) −−−−→ Gal(F/k) −−−−→ 1 (exact).
Since the orders of Gal(L/F ) and Gal(F/k) are relatively prime, the exact
sequence splits. Let ρ be a generator of Gal(L/F ). Let us denote a unique
lift of σ to Gal(F/k) by the same symbol. Then it remains to show that σ
and ρ satisfy the relation σ−1ρσ = ρu. We resume the previous calculation:

λ(σ(Q)) = σ(P ) = P u = λ(Qu)
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in Ej . Let Z be an element in kerλ(ksep) = kerλ(k) such that ρ(Q) = QZ.
Since the order of ρ is `, the order of Z is also `. From the above calculation,
it follows that σ(Q) = QuR with some R ∈ Rkc/kGm(F ). Moreover, since
Z is k-rational, we see that σ(Z) = Z and ρ(Z) = Z hold. Combining these
actions, we obtain

σρu(Q) = σ(QZu) = σ(Q)σ(Z)u = QuRZu

and

ρσ(Q) = ρ(QuR) = ρ(Q)uρ(R) = QuRZu.

From this it follows σ−1ρσ = ρu.
Conversely, let L/F/k be any M`(r, s)-extension. Since L/F is a cyclic

extension, we can write L = F (λ−1(P )) with some P ∈ RFc/FGm(F ). We
have to show that the class P of P belongs to Ej for some j. Since L/k is
a Galois extension, for any lift σ̃ of σ, we have k(σ̃(λ−1(P ))) = k(λ−1(P )).
As we saw in the above, σ̃(λ−1(P )) = λ−1(σP ) holds. Therefore we obtain
F (λ−1(σP )) = F (λ−1(P )). By Kummer theory, σP and P must generate
the same subgroup in the quotient. Hence there exists an integer u satisfying
σP = P u in the quotient. Taking an integer j such that u ≡ χj(σ) (mod `),
we conclude P ∈ Ej .

This completes the proof of our theorem. �

Theorem 3.1 shows that, if F satisfies appropriate conditions, we can
always dig it to construct metacyclic extensions.

Remark 3.2. We can show a similar theorem for F = Q(ζ`) and k = Q. For
general `, we do not have a Kummer theory over the base field Q contrary
to our assumption in Theorem 2.1. But we use the classical Kummer theory
to prove the theorem in this situation. Note that we have to take account
of the action of σ on Z ∈ kerλ(F ) and the resulting s is shifted by this
effect (see [2, Theorem 5.3.5]).

Some remarks on a base change and an extension are in order.
Let L/F/k be an M`(r, s)-extension and k′ an intermediate field in F/k

with [F : k′] = r′. It is easy to observe that the extension L/F/k′ is also a
metacyclic extension and the Galois group is isomorphic toM`

(
r′, s

(s,r/r′)

)
.

We write ej(F/k) for ej defined by (3.2) and ej(F/k′) for the corresponding
object for the extension F/k′.

We have the following lemma.

Lemma 3.3. Let t = [k′ : k]. We have

ej(F/k′) =
t−1∑
i=0

ej+r′i(F/k).
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If the ej+r′i(F/k)-component parametrizes M`(r, s)-extensions, then the
ej(F/k′)-component parametrizes M`

(
r′, s

(s,r/r′)

)
-extensions.

The first half can be shown by a standard calculation with characters.
For the latter half, we have s = the order of ζjr = r/(r, j). Then we can
show that the order of ζj

′

r′ is s/(s, t) by an elementary argument. We omit
the detail of the proof.

Since we assume kc ∩ F = k, we have Rkc/kGm ×k k′ = Rk′c/k′Gm and
there is a map from Rkc/kGm to Rk′c/k′Gm. By the above lemma, a natural
inclusion map

ej+r′i(F/k)
(
Rkc/kGm(F )/λRkc/kGm(F )

)
−→

ej(F/k′)
(
Rk′c/k′Gm(F )/λRk′c/k′Gm(F )

)
is induced. This map corresponds to the base change k′/k.

Next we consider the following situation. Let L′/F ′/k be a metacyclic
extension with group M`(r′, s) constructed by the Kummer theory κF ′ .
Let F be a cyclic extension of k containing F ′ whose degree [F : k] = r
divides ` − 1. Assume that κF ′ induces a Kummer theory κF over F . We
use the same symbol λ for the isogeny inducing κF . Then the composite
field L = L′F is a Galois extension over k. In fact, L/F/k is a metacyclic
extension and the Galois group is isomorphic to M`(r, s). This follows from
the following lemma.

Lemma 3.4. We have a natural inclusion

ej(F ′/k)
(
Rkc/kGm(F ′)/λRkc/kGm(F ′)

)
−→

e[F :F ′]j(F/k)
(
Rkc/kGm(F )/λRkc/kGm(F )

)
.

If the ej(F ′/k)-component parametrizes M`(r′, s)-extensions, then the
e[F :F ′]j(F/k)-component parametrizes M`(r, s)-extensions.

Proof. First note that there is a natural mapRkc/kGm(F ′) −→ Rkc/kGm(F )
induced by inclusion F ′ ⊂ F .

Let Gal(F/k) = 〈σ〉 as before. Then we have Gal(F ′/k) = 〈σ〉/〈σr′〉. Let
t = [F : F ′]. Then the character group of Gal(F ′/k) is generated by χt.
Thus

ej(F ′/k) = 1
r′

r′−1∑
i=0

χtj(σ−i)σi
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is well-defined. Now we compute

etj(F/k) = 1
r

t−1∑
k=0

r′−1∑
m=0

χtj(σ−(kr′+m))σkr′+m

= 1
r

t−1∑
k=0

r′−1∑
m=0

χtj(σ−m)σkr′+m

= 1
r

r′−1∑
m=0

χtj(σ−m)σm
 t−1∑
k=0

σkr
′

= 1
t
TrF/F ′ej(F ′/k),

where TrF/F ′ is the trace map from F to F ′. Since TrF/F ′ acts on F ′ by the
multiplication-by-t map, etj(F/k) acts as ej(F ′/k). This shows the first half
of the lemma and the latter half is proved by an elementary calculation. �

The inclusion map in Lemma 3.4 corresponds to the extension F/F ′.

4. Geometric counterpart
In this section we construct algebraic tori defined over k parameteriz-

ing M`(r, s)-extensions over k. This reveals the geometric nature of our
construction.

We consider the character module ̂RFc/kGm of RFc/kGm =
RF/k(RFc/FGm) = RF/k(Rkc/kGm ×k F ), which is a free Z-module of rank
rn. We have

̂RFc/kGm ⊗Z Q = Q[Gal(Fc/k)] = Q[〈σ〉 × 〈τ〉] = Q[σ]⊗Q Q[τ ].

We choose a character χc of Gal(F/k)
χc : Gal(F/k) −→ Q(ζ`−1)×, χc(σ) = ζr.

For j = 0, 1, . . . , r − 1, let

ecj = 1
r

r−1∑
i=0

χjc(σ−i)σi ∈ Q(ζ`−1)[σ].

These ej ’s are orthogonal idempotents of Q(ζ`−1)[σ]. Now, for any positive
divisor s of r, we set

εs =
∑

ord(ζjr)=s

ecj = 1
r

r−1∑
i=0

TrQ(ζs)/Q

(
χ
r
s
c (σ−i)

)
σi,

where the sum is taken over the integers j (modulo r) such that the order
of ζjr is s, namely over j satisfying s = r/(r, j) and TrQ(ζs)/Q denotes the
trace map. We say that j belongs to s in this situation. Then it is easy to
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see that εs ∈ Q[σ] for all s and they are, indeed, orthogonal idempotents
of Q[σ]. We have a decomposition of ̂RFc/kGm ⊗Q:

̂RFc/kGm ⊗Q =
⊕
s|r

(εsQ[σ]⊗Q[τ ]) .

Let R(s) be an algebraic k-torus whose character module is the Z-span of
a Q-basis of εsQ[σ]⊗Q Q[τ ] (cf. the construction of the torus R(Φd) in [15,
5.1]).

In the dual category of k-tori, we have an isogeny.

Proposition 4.1. There exists an isogeny

γ :
∏
s|d
R(s) −→ RF/k(RFc/FGm)

defined over F of degree dividing some power of r. In particular, the degree
is prime to `.

The assertion on the degree follows by looking at the denominator of the
idempotents.

Let Λ : Z[τ ] −→ Z[τ ] be the dual homomorphism of λ. This naturally
induces a homomorphism Λs = 1 ⊗ Λ : R̂(s) −→ R̂(s) on the character
module of R(s). Therefore we have an induced self-isogeny λs of R(s). An
easy diagram chase argument shows that there exists an injective homo-
morphism

ϕs : R(s)(k)/λsR(s)(k) −→ RFc/kGm(k)/λRFc/kGm(k)(4.1)
∼= RFc/FGm(F )/λRFc/FGm(F )
= Rkc/kGm(F )/λRkc/kGm(F ).

Here we use a canonical identification RFc/FGm(F ) = RF/k(RFc/FGm)(k).
Now we regard ecj as an element of the `-adic group algebra Z`[σ] and

reduce modulo ` to obtain

ecj ≡ ej′ (mod `)

with some j′ belonging to s. We note here that r in the denominator of
ecj is prime to `. The following proposition is almost obvious from the con-
struction of the k-torus R(s).

Theorem 4.2. If j belongs to s, then there is j′ that also belongs to s such
that we have a group isomorphism

ej (R(s)(k)/λsR(s)(k)) ∼= ej′
(
Rkc/kGm(F )/λRkc/kGm(F )

)
induced by ϕs in (4.1).
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Proof. If j belongs to s, we have ecjεs = ecj . Therefore we have a map from
ej (R(s)(k)/λsR(s)(k)) to ej′

(
Rkc/kGm(F )/λRkc/kGm(F )

)
. Since deg γ

and deg λs are coprime, we have the above isomorphism by taking the
quotients. �

This theorem means that an inverse image of a k-rational point of a k-
torus R(s) essentially generates an M`(r, s)-extension. Hence we may con-
sider Theorems 3.1 and 4.2 as a non-abelian Kummer theory. But we should
note that, for a general P ∈ R(s)(k), the extension F (λ−1(P ))/k is not nec-
essarily a Galois extension. We have to take an ej-component (see the proof
of Theorem 3.1).

Remark 4.3. Let E be an elliptic curve defined over k having a k-rational
`-torsion point P . The isogeny λ : E −→ E′ = E/〈P 〉 defined over k
induces an injective homomorphism

E′(F )/λ(E(F )) ↪−→ Homcont(Gal(ksep/F ), kerλ(k))

for any field F containing k. Suppose that F/k is a Galois extension. If we
decompose E′(F ) by the action of Gal(F/k), we have a similar construction
of metacyclic extensions. If Aut(E) is compatible with Gal(F/k), we can
also interpret each eigenspace as a twist of E (see [8]). For example, if
F/k is a quadratic extension with Galois group 〈σ〉, then the subspace
of E′(F )/λ(E(F )) on which σ acts by −1 is coming from the group of
k-rational points on the quadratic twist of E′ by F/k.

Although we cannot expect to obtain all such extensions by this single
homomorphism, it is shown in [13] and [12] that varying such E’s over Q
gives all D5 = M5(2, 2)-extensions over Q.

5. Nakano and Sase’s construction
In this section, we compare our result with Nakano and Sase’s ([14]). As

in the previous sections, let

Gal(F/k) = 〈σ〉, Gal(Fc/F ) = 〈τ〉

and we may regard as

Gal(Fc/k) = 〈σ〉 × 〈τ〉.

Here we impose a condition for the generator τ to satisfy ζτ` = ζ
νk(τ)
` by

the isomorphism (2.5). For a positive integer j prime to s and less than s,
let E(s, j) be the fixed subfield of Fc by the subgroup generated by τ

n
s
jσ:

E(s, j) = F

〈
τ
n
s jσ
〉

c .
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We have [E(s, j) : k] = n/s. Define ε = 1
n

n−1∑
i=0

νk(τ−i)τ i ∈ F`[τ ]. Nakano

and Sase prove the following theorem.

Theorem 5.1 (Nakano-Sase [14]). Let L/F be a cyclic extension of degree
`. Suppose that L/k is a Galois extension. Take α ∈ F×c satisfying Lc =
Fc(
√̀
α). Then L/k is an M`(r, s)-extension if and only if the class of α

belongs to ε
(
E(s, j)×/E(s, j)×`

)
for some j prime to s.

We shall show the following proposition to make clear the relationship
to our result.

Proposition 5.2. If j belongs to s, then there is a surjective homomor-
phism

ej
(
Rkc/kGm(F )/λRkc/kGm(F )

)
−→ ε

(
E(s, j′)×/E(s, j′)×`

)
for some j′ belonging to s.

Proof. We fix an isomorphism φk : Rkc/kGm −→ Gn
m,kc

defined over kc.
Let P ∈ Rkc/kGm(F ) and φk(P ) = (α1, . . . , αn). Then by [10, Proposition
6.3] we have
(5.1) Fc(λ−1(P )) = Fc (

√̀
εα1) .

Hence a map sending P ∈ Rkc/kGm(F )/λRkc/kGm(F ) to α1 ∈ F×c /F×c
` is a

well-defined homomorphism. We write α for α1 for simplicity. If P belongs
to the ej-component, then P σ ≡ Pχ

j(σ) (mod λRkc/kGm(F )) holds. This
yields that ασ ≡ αχ

j(σ) (mod F×c
`), because τ and σ commute. Since j

belongs to s, the order of χj(σ) in F×` is s. Choose j′ so that

χj(σ)νj
′

F (τ
n
s ) ≡ 1 (mod `)

holds. Then it is easy to observe that j′ also belongs to s and we have

(εα)τ
n
s j
′
σ ≡ (εα)ν

j′
F (τ

n
s )χj(σ) ≡ εα (mod F×c

`).

It follows that the class of εα is in ε
(
E(s, j′)×/E(s, j′)×`

)
. Thus we can

define a map sending P to the class of εα. By the construction, this map is a
group homomorphism. It remains to show that the map is surjective. Take
an element α ∈ E(s, j′) whose class belongs to ε

(
E(s, j′)×/E(s, j′)×`

)
.

Let P = φ−1
F (α, ατ , . . . , ατr−1). Then P maps to the class of εα = α. This

completes the proof of the proposition. �

Since the degree [Fc : F ] is prime to `, the expression (5.1) gives a lot of
information about the extension F (λ−1(P ))/F . In particular, if F is a num-
ber field, then the extension is unramified outside the prime ideals dividing
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` and nεα (note that n is also prime to `). Furthermore the extension is
trivial if and only if εα ∈ F×c

`.
Combining with the classical Kummer theory, we obtain the following

criterion for isomorphic fields.

Corollary 5.3. Let P and P ′ be two points in Rkc/kGm(F ) and α and α′
corresponding elements in F×c . Then two fields F (λ−1(P )) and F (λ−1(P ′))
are isomorphic if and only if εα and εα′ generate the same subgroup in
F×c /F

×
c
`.

6. Examples
In this section, we give explicit examples of Theorems 3.1 and 4.2.

Example 6.1. Let k = Q+
c be the maximal real subfield of Qc. A linear

polynomial P(t) = `+ 1
2 + 1− `

2 t defines an endomorphism of RQc/Q+
c
Gm

of degree ` and we have a Kummer theory κQ+
c
. If F is a quadratic extension

of k different from Qc, then we have
κk × F : Rkc/kGm(F )/λRkc/kGm(F ) ∼= Homcont(Gal(ks/F ), kerλ(k)).

Note that if F = Qc, we have a classical Kummer theory over F instead
(see Remark 3.2). The tori in Proposition 4.1 are explicitly given as

R(1) = RQc/QGm and R(2) = ker(NFc/Qc : RFc/QGm → RQc/QGm).
We have an isogeny

γ : R(1)×R(2) −→ RFc/QGm

of degree 2 corresponding to the group algebra decomposition

Q[Gal(Fc/Q)] ∼=
(1− σ

2

)
Q[Gal(Fc/Q)]⊕

(1 + σ

2

)
Q[Gal(Fc/Q)].

Let P ∈ RFc/FGm(F ) and LP = F (λ−1(P )). The extension LP /F is a
cyclic extension of degree `. Theorems 3.1 and 4.2 imply that

P ∈ Imϕ0 =⇒ LP /Q+
c is a C2`-extension;

P ∈ Imϕ1 =⇒ LP /Q+
c is a D`-extension.

A construction of dihedral extensions over Q+
c is also studied in [5]. In

their paper, the authors use a clever transformation to obtain a simple
family of generic polynomials. Whereas polynomials arising from our con-
struction are less simple, they can be computed systematically and contain
more arithmetical information such as irreducibility of them.

For a special case of ` = 3, we have k = Q and a method to compute
an explicit generic polynomial defining D3-extensions by this Kummer con-
struction is briefly explained in [11].
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Example 6.2. Let ` = 5 and k = Q. We take a quartic cyclic extension F
over Q disjoint from Qc. Then circ(1, 1,−1, 0) induces a Kummer duality
over Q, hence over F . We have

R(1) = RQc/QGm,

R(2) = ker
(
N
F
〈σ2〉
c /Qc

: R
F
〈σ2〉
c /Q

Gm → RQc/QGm

)
,

and

R(4) = ker
(
N
Fc/F

〈σ2〉
c

: RFc/QGm → R
F
〈σ2〉
c /Q

Gm

)
.

There is an isogeny

γ : R(1)×R(2)×R(4) −→ RFc/QGm

of degree 4. In this case, the rational points of torus R(4) decomposes
to the e1 and e3-components if we pass into the quotient by λ. Let P ∈
RFc/FGm(F ) and LP = F (λ−1(P )) as in the previous example. Then from
our theorems, it follows

P ∈ Imϕ1 =⇒ LP /Q is a C20-extension;
P ∈ Imϕ2 =⇒ LP /Q is an M5(4, 2)-extension;
P ∈ Imϕ4 =⇒ LeiP /Q is an F20-extension for i = 1, 3.

Note that M5(4, 2) is not a transitive permutation group of degree 5. It is
isomorphic to C4 ×D5 and a polynomial of degree 20 over the base field is
required to define it.

Let F ′ be the unique quadratic intermediate field of F/k. Let k′ be an
alias for F ′. Then we have the following relations between idempotents:

e0(F/k′) = e0(F/Q) + e2(F/Q);
e1(F/k′) = e1(F/Q) + e3(F/Q).

Each idempotent of F/k′ corresponds to

R(1) = RQc/QGm and R(2) = ker(NF ′c/Qc : RF ′c/QGm → RQc/QGm),

respectively as in Example 6.1. We have C10 and D5-extensions over k′
corresponding to each torus. The extension relations in Lemma 3.4 are given
by e0(F ′/Q) −→ e0(F/Q) and e1(F ′/Q) −→ e2(F/Q). These relations
correspond to the extensions from C10 to C20 and from D5 to M5(4, 2),
respectively.

We can compute a cyclic polynomial of LP /F by the method in [9]. In
our case, for a parameter φF (P ) = (α1, α2, α3, α4) = (α1, α

τ
1 , α

τ2
1 , α

τ3
1 ), it
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is given by

T 5 + 1
10Tr((ζ3 + ζ2 − 2)α1α3)T 3 + 1

25Tr((ζ3 − 3ζ2 − 2ζ − 1)α1α2α3)T 2

+ 1
100

(
4α1α2α3α4 + 4Tr((ζ3 + ζ2)α2

1α2α3) + 4Tr((−ζ3 + ζ2 + 1)α2
2α

2
4)

−Tr((ζ3 + ζ2 + 1)α2
1α

2
3 + (−ζ3 − ζ2)α2

2α
2
4)
)
T

+ 1
625N

(
Tr((−ζ3− 3ζ2 − 4ζ − 2)α4

1α
2
2α

3
3) + 5Tr((2ζ2 + 2ζ + 1)α3

1α
2
2α

3
3α4)

+5Tr((ζ3 + ζ2 + 2ζ + 1)α3
1α

2
2α

2
3α

2
4)
)
∈ F [T ],

where ζ = ζ5 and Tr is the trace map with respect to the group gen-
erated by τ : ζ 7→ ζ3 and N is the norm of α1. We use a computer
algebra system Magma [1] to calculate this polynomial and others in this
paper. For any α = α1 ∈ F×c , a new parameter e1α ≡ α4(ασ)3(ασ2)(ασ3)2

(mod F×c
5) gives an equation over F defining a Frobenius extension over

Q, if it is irreducible. To be more explicit, let F = Q(a) where a is a root of
x4 − 4x2 + 2. The extension F/Q is a cyclic quartic extension. We take

α = (a3 − 2a)ζ + (a3 − 3a− 1)ζ3 + (a3 − 3a+ 1)ζ4 + 0 · ζ2

This is a generator of a prime ideal of Fc lying above 43. Then a polynomial
for the new parameter e1α is

T 5 + 1
147008443(194882430a2 − 1023328667)T 3

+ 1
17094005(−1849922a3 + 9747040a)T 2

+ 1
108057411566421245(−238719986420786572a2 + 935734522878575728)T

+ 1
17076753216164011682789400125(−21541738717651961915020136592a3

+ 70127585153841423297745439632a).

This polynomial defines a cyclic quintic extension over F which is an F20-
extension over Q. The relative discriminant of the ring of integers of the
splitting field has a factorization p8

5p
4
43, where pp is a prime ideal of F lying

above p. This is what we can expect from the parameter.

As we noted in Section 2.2, apart from ` = 3, 5, there are Kummer
theories for ` = 7 and 11 over Q. These Kummer theories enable us to
construct all the metacyclic extensions over Q for the following groups:

C14, D7, C21, F21, C42,M7(6, 2),M7(6, 3), F42, C22, F22,

C55, C110,M11(10, 2),M11(10, 5), F110.



On metacyclic extensions 353

References
[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user lan-

guage. J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number
theory (London, 1993).

[2] H. Cohen, Advanced topics in computational number theory. Springer-Verlag, New York,
2000.

[3] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative alge-
bras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John
Wiley & Sons, New York-London, 1962.

[4] M. Hall, Jr., The theory of groups. Chelsea Publishing Co., New York, 1976.
[5] K. Hashimoto and K. Miyake, Inverse Galois problem for dihedral groups. Number the-

ory and its applications (Kyoto, 1997), Dev. Math., vol. 2, 165–181. Kluwer Acad. Publ.,
Dordrecht, 1999.

[6] M. Imaoka and Y. Kishi, On dihedral extensions and Frobenius extensions. Galois theory
and modular forms, Dev. Math., vol. 11, 195–220. Kluwer Acad. Publ., Boston, MA, 2004.

[7] C. U. Jensen, A. Ledet, and N. Yui,Generic polynomials. Mathematical Sciences Research
Institute Publications, vol. 45. Cambridge University Press, Cambridge, 2002.

[8] M. Kida, Galois descent and twists of an abelian variety. Acta Arith. 73 (1995), no. 1,
51–57.

[9] , Cyclic polynomials arising from Kummer theory of norm algebraic tori. Algorith-
mic number theory, Lecture Notes in Comput. Sci., vol. 4076, 102–113. Springer, Berlin,
2006.

[10] , Descent Kummer theory via Weil restriction of multiplicative groups. J. Number
Theory 130 (2010), 639–659.

[11] , A Kummer theoretic construction of an S3-polynomial with given quadratic sub-
field. Interdisciplinary Information Sciences 16 (2010), 17–20.

[12] M. Kida, Y. Rikuna, and A. Sato, Classifying Brumer’s quintic polynomials by weak
Mordell-Weil groups. Int. J. Number Theory 6 (2010), 691–704.

[13] O. Lecacheux, Constructions de polynômes génériques à groupe de Galois résoluble. Acta
Arith. 86 (1998), no. 3, 207–216.

[14] S. Nakano and M. Sase, A note on the construction of metacyclic extensions. Tokyo J.
Math. 25 (2002), no. 1, 197–203.
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